Research Article

The Effect of the Saccharomyces Boulardii Supplement in Combined Feed on the Health, Growth, and Fecal Microbiota of Growing Calves

Dulat Zhalelov¹, Serkan Ozkaya², Mehmet Gündoğdu³, Kanber Kara⁴, Abdymanap Ospanov¹ and Aigul Timurbekova¹

Article history Received: 07-05-2025 Revised: 13-06-2025 Accepted: 23-07-2025

Corresponding Author:
Dulat Zhalelov
Department of Technology & Food
Safety, Kazakh National Agrarian
Research University, Almaty,
Kazakhstan
Email:Zhalelov.dulat@kaznaru.edu.kz

Abstract: The aim of this study was to study the effect of a specific strain of yeast, Saccharomyces cerevisiae boulardii T8-3C (SCB), on the growth, health, and bacterial profile of calves' feces. A total of 12 animals were included in the experiment on a commercial calf farm for a total of 90 days. The calves were fed hay and alfalfa twice a day, as well as combined concentrated feed (CP 17%) throughout the experiment and randomly assigned to receive daily SCB supplements of 1% for the first group and 2% for the second group of the combined feed weight. Rumen total bacteria count increased significantly with SCB application in G2. A slight decreasing trend was observed in the total protozoa count. While Entodinium species numerically significantly decreased with SCB application, the percentage of Isotricha+Dasytricha species significantly increased. A notable rise in the fecal count of SCB in calves was observed at the 12th week, compared to the 0th week, with 4.8×10^{7} colonies of SCB per gram of feces in the 12th week. The addition of SCB showed an improvement in the overall growth status of calves in terms of Average Daily Gain (ADG), final body weight and feed intake. However, a total of 50% of calves had diarrhea that were not fed with SCB, and 25.0% of calves receiving SCB had diarrhea. Regarding the calves of the control group, 25% of the calves registered with diarrhea were treated with antibiotics. In group G2, there was a significant reduction in the Total Oxidant Status (TOS), Oxidative Stress Index (OSI), and Malondialdehyde (MDA) levels. Besides, Glutathione Peroxidase (GPx) concentration significantly decreased with SCB application. Rumen ammonia production was significantly increased in G2, similarly the percentage of acetic acid in the rumen fluid significantly reduced with SCB application.

Keywords: Saccharomyces cerevisiae boulardii, Growth, Fecal Microbiota, Calf Diarrhea, Probiotic, Blood Metabolites, Rumen Parameters

Introduction

To enhance the economic benefits of raising calves, it is crucial to achieve high productivity and growth rates. Numerous studies have focused on the use of feed

additives, such as antibiotics, probiotics, and prebiotic precursors, to alter the microbial composition of the gastrointestinal tract, with the aim of improving both animal health and productivity (Allen *et al.*, 2005). A few years ago, the inclusion of antibiotics in ruminant feed

¹Department of Technology and Food Safety, Kazakh National Agrarian Research University, Almaty, Kazakhstan

²Department of Animal Science, Isparta Applied Sciences University, Isparta, Turkey

³Department of Food Engineering, Süleyman Demirel University, Isparta, Turkey

⁴Department of Animal Nutrition and Nutritional Diseases, Erciyes University, Kayseri, Turkey

was prohibited to prevent the development of crossresistance between animal pathogens and human pathogens. As a result, it has become essential to identify alternative feed additives, such as probiotic "natural" products, to support the health and productivity of ruminants (Arowolo and He, 2018).

Probiotics are living microorganisms that, if taken in sufficient quantities, benefit the health of the host (Markowiak and Śliżewska, 2018). Probiotics improve the action of beneficial microorganisms in the rumen and stabilize the pH of the rumen, consequently increasing the digestibility of nutrients (Qiao *et al.*, 2009). The addition of probiotics to the diet of ruminants showed an increase in immunity and a decrease in the number of pathogenic microorganisms in the intestinal tract (Qadis *et al.*, 2014). In addition, active dry probiotic yeast has been found to act as a growth stimulator (McAllister *et al.*, 2011), affects the immune system in several species (Burdick Sanchez *et al.*, 2021) and improves milk production in dairy cows (Schlabitz *et al.*, 2022).

Yeast is a source of various growth factors, including vitamins, that contribute to stabilizing rumen pH and preventing acidosis by promoting lactate-recycling bacteria. SCB is regarded as one of the most widely used yeast cultures in ruminant diets (Rossi *et al.*, 2004). The beneficial effects of SCB yeast, however, have been inconsistent and largely depend on the specific treatment protocol and the diet composition (Bittencourt *et al.*, 2012).

It was observed that in calves and lambs receiving SCB daily, the development of cellulolytic microbes in the rumen occurs faster (Chaucheyras-Durand *et al.*, 2012).

Dijkstra *et al.* (2012) demonstrated that yeast helps to minimize daily pH fluctuations, thereby enhancing the stability of the rumen environment throughout the day. Furthermore, the inclusion of SCB in the starter culture for Holstein-Frisian calves significantly boosted their dry compound feed intake (Lesmeister *et al.*, 2004; He *et al.*, 2017; Galvão *et al.*, 2005).

Similar results were also obtained with the use of other probiotics in young calves (Timmerman *et al.*, 2005). For example, the article of Oikonomou *et al.*, (2013) reported a lower bacterial diversity in the feces of calves with neonatal diarrhea and pneumonia compared to healthy calves. Improving microbial diversity in the intestine is one of the ways SCB acts, which has been characterized in experimental models with monogastric animals to improve intestinal health (McFarland, 2010; Brousseau *et al.*, 2015) and also due to the fact that newborns and dairy calves function as monogastrics before weaning, probiotics such as SCB are promising.

Adding 0.5 g of a product containing Saccharomyces cerevisiae boulardii T8-3C (2.1×10¹0 CFU/g) to the grain can increase dry matter intake (DMI) and weight gain before weaning (Galvão *et al.*, 2005). However, when 1.0 g of a product containing Saccharomyces

cerevisiae boulardii T 8-3 C (SUB: 2.1×10¹0 CFU/g) was injected into a milk substitute, it does not improve DMI or young calves (Pinos-Rodríguez et al., 2008). Interestingly, calves have less diarrhea if they receive yeast, regardless of doses or strains (Galvão et al., 2005; Pinos-Rodríguez et al., 2008), without paying attention to the temperature and humidity of the environment. In this study, we hypothesized that feeding live yeast SCB in a combined feed can improve the health and productivity of calves by enriching the beneficial intestinal microflora, thereby reducing the need for treatment. The aim of this study was to evaluate whether SCB dietary supplement can improve growth and productivity, as well as reduce calf mortality and morbidity. The aim of the further study was to find out whether it is possible to observe the enrichment of the intestinal microbiota in calves' stool samples with the addition of SCB to the combined feed.

Scientific Hypothesis

Supplementing the diet of calves with Saccharomyces cerevisiae boulardii T8-3C (SCB) will improve their growth performance, fecal microbiota composition, and reduce the incidence of diarrhea. Specifically, SCB supplementation will enhance feed intake, increase the abundance of beneficial rumen bacteria, and modulate the microbial profile in feces, particularly by increasing SCB colonies. Furthermore, SCB will reduce oxidative stress and improve rumen parameters, leading to better overall health and productivity in calves.

Objectives

The primary objective of this study was to evaluate the effects of Saccharomyces cerevisiae boulardii T8-3C (SCB) supplementation on the growth performance, health status, and microbial composition of feces in calves.

The study specifically aimed to:

- 1. Evaluate the effect of SCB on the Average Daily Gain (ADG), final body weight, and feed consumption in calves.
- 2. Evaluate the effect of SCB supplementation on the incidence of diarrhea and overall morbidity.
- 3. Analyze changes in fecal microbial composition, with a focus on the abundance of SCB colonies and other beneficial bacteria.
- 4. Determine the influence of SCB on rumen fermentation parameters, including total bacterial count, protozoa populations, and ammonia production.
- 5. Investigate changes in oxidative stress markers such as Total Oxidant Status (TOS), Oxidative Stress Index (OSI), Malondialdehyde (MDA), and Glutathione Peroxidase (GPx) in response to SCB supplementation.
 6. Explore the potential of SCB as a probiotic feed additive to promote health, support digestive

microbiota, and reduce the need for antibiotic treatment in commercial calf-rearing practices.

Materials and Methods

Animal Management and Experimental Design

Twelve Holstein calves were randomly assigned into three groups, each containing four calves, based on their initial body weight. The experiment lasted for three months at the Dairy Cattle farm of Isparta University of Applied Sciences (Isparta, Turkey). The calves were housed individually in clean, well-ventilated pens, and were provided with fresh, clean drinking water ad libitum. Weights of the calves were recorded prior to the start of the experiment and at four-week intervals throughout the study.

Feeding Mode

According to the plan, we fed the calves 2 times a day (08:00 and 17:00). The feeding menu includes alfalfa (Hay alfalfa) and concentrated feed. Feeding was carried out according to the weight of calves in accordance with the requirements (NRC, 2001). The control group of calves was fed diets without any probiotic additives (0 Pro). In the treated groups, the probiotic was added to the feed at the rate of 1% by weight of the combined feed (recommended levels), as well as in higher doses – 2% by weight of the combined feed. The ingredients of the concentrated feed mixture provided to the calves, along with its nutritional composition, are presented in Table 1. The next day, all the residues were weighed.

Table 1: Percentage indicators in feed measurement

(Hay Alfalfa) is 4% of kg,	G1 = control group
LW calves (live weight)	
(Calf starter) is 2% of kg,	G2 =1% composition
LW calves (live weight)	of feed weight
Probiotic	
(Sacchromyces boulardii):	G3= 2% composition
1) 1% composition of feed weight	of feed weight
2)2% composition of feed weight	

Source of Probiotics

Fecal consistency was assessed at the 12-week mark, prior to feeding. A scoring scale from one to four was applied: 1 = firm, well-formed feces; 2 = soft, pudding-like feces; 3 = similar to pancake batter (early signs of diarrhea); 4 = watery, liquid-like feces, indicating severe diarrhea, as outlined by Larson *et al.* (1977).

Determination of Ammonia-Nitrogen and SCFA Concentration in the in Vitro Fermentation Fluid

Rumen fluid was collected using a gastric tube for the analysis of ammonia nitrogen and volatile fatty acids (VFA) throughout the duration of the experiment. The pH

of the rumen fluid was measured immediately after collection, and the remaining fluid was stored at -20°C for further analysis.

The ammonia concentration (mg/L) in the in vitro fermentation fluid was determined using a commercial ammonia assay procedure (Megazyme K-AMIAR 02/20, Wicklow, Ireland) (Kara, 2021). The total gas volume at 24 h of in vitro incubation was recorded, and 10 mL of the rumina fermentation fluid in the glass fermenter was collected into Falcon tubes. The SFCA molarities were determined using the Gas Chromatography (GC) device (Thermo Trace 1300, Thermo Scientific, Waltham, MA, USA). The GC device was equipped with a Flame Ionization Detector (FID) and a polyethylene glycol column (length: 60m, inner diameter: 0.25mm, film thickness: $0.25\mu m$) (TG-WAXMS, Thermo Scientific, Waltham, MA, USA). The device was operated according to the procedure described by Ersahince and Kara (2017). The SCFA molarities was determined by the Xcalibur program (Thermo Scientific, Waltham, MA, USA), were calculated.

Total Bacteria and Protozoa Count and Protozoa Identification in Rumen Fluid

Protozoa were identified and counted in the rumen fluid using a microscope according to the method determined by Ogimato and Imai (1981). Protozoa count: 0.1 ml of rumen fluid was taken and 0.9 ml of MFS solution (100 ml of formaldehyde solution (30%), 900 ml of distilled water, 0.6g methylgreen, 8g NaCl) was added. After counting under the microscope, the calculation was made with the following formula (Yıldız, 2001):

Number of cells in cm3 (ml): 1000*Number of cells counted/total squares counted*dilution*volume.

Protozoa identification: Protozoa were differentiated into cilia based on their shape and the location of the cilia. In the samples to be taken on the slide, the protozoa species were counted up to a total of 100 and the percentage rates of protozoa were calculated.

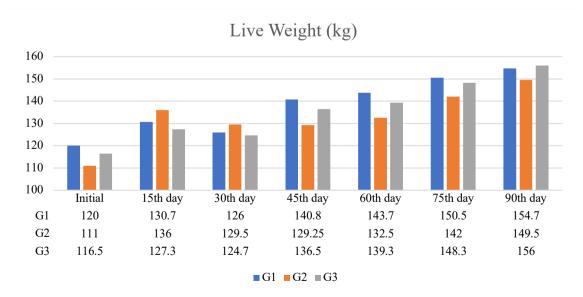
For total bacteria count, rumen fluid was diluted with formaldehyde and total number of bacteria in the rumen was determined with a spectrophotometer at a wavelength of 600 nm.

Blood Samples and Analytical Procedures

Blood samples were collected from two calves per group at both the start and end of the experiment via jugular vein puncture. The samples were drawn into 10 ml tubes containing potassium oxalate and sodium fluoride. The blood samples taken were centrifuged at 3500 rpm for 10 min and blood serum was obtained. Liver and kidney function parameters, oxidative stress, antioxidant defense

mechanism and immune response were examined in blood serum. In the liver function test, Albumin (ALB), Alkaline Phosphatase (ALP), Alanine transaminase (ALT), Gamma Glutamyl Transferase (GGT), Glucose (GLU), Total Bilirubin (TBil), Lactate Dehydrogenase (LDH) variables were examined. In the kidney function test, ALB, Blood Urea Nitrogen (BUN), Calcium (Ca), Creatine (CREA), Inorganic Phosphorus (IP), Total Protein (TP) variables were examined. In addition, Triglyceride (TG) and Total Cholesterol (TC) variables were also examined in blood serum. The study assessed various biomarkers related to oxidative stress, including Total Oxidant Status (TOS), Oxidative Stress Index (OSI), and Malondialdehyde (MDA). Additionally, markers of antioxidant defense mechanisms such as Total Antioxidant Status (TAS), Paraoxonase (PON-1), Superoxide Dismutase (SOD), Glutathione Peroxidase (GPx), and Catalase (CAT) were analyzed. The immune response was also evaluated through measurements of Immunoglobulin A (IgA), G (IgG), and M (IgM) levels.

Statistical Analysis


Statistical analysis was conducted using Minitab 17 software to evaluate the effects of SCB supplementation on growth, blood metabolites, rumen parameters, and microbial indicators. Data were first tested for normal distribution (Shapiro–Wilk test) and homogeneity of variances (Levene's test). One-way ANOVA was performed to compare treatment means. When significant differences were detected, Tukey's post-hoc test was applied for multiple comparisons. A significance threshold of p < 0.05 was adopted, while $0.05 \le p < 0.10$ was considered a statistical trend.

Results and Discussion

Maintaining optimal health in calves, both prior to and following weaning, is crucial for product production. Calf growth and health are primarily influenced by the functioning of the gastrointestinal tract and immune system, which can be affected during times of infection or stress (National Research Council, 2001). To assess its impact on calf productivity and health post-weaning, a probiotic supplement was introduced.

Group feed intakes were calculated instead of individual feed intakes because the calves were housed as a group. Therefore, statistical analyses related to feed intake and feed efficiency were not performed. The control Group (G1) had an average daily feed intake of 11.56 kg/d, of which 7.24 kg of alfalfa hay and 4.31 kg concentrate feed. The second Group (G2), in which 1% supernatant was added to its diet, received a total intake of 9.48 kg/d, of which 5.89 kg of alfalfa hay and 3.59 kg of concentrate feed. The third group that added 2% supernatant to their feed received 11.36 kg/d of feed, of which 7.12 kg of alfalfa hay and 4.24 kg of concentrate feed. The feed efficiency was calculated as 0.22 for G1, 0.25 for G2, and 0.19 for G3.

No significant effect of SCB supplementation on the body measurements of calves was observed (Fig. 1). It was stated by Khademi *et al.* (2022) that probiotic supplementation provided a non-significant increase in the body measurements of calves. A meta-analysis on the effects of probiotics on the growth of body measurements of calves showed that probiotics did not have a significant effect on growth (Wang *et al.*, 2023). However, Shams *et al.* (2022) reported that probiotic supplementation significantly increased the chest girth of calves, but other body measurements were not affected.

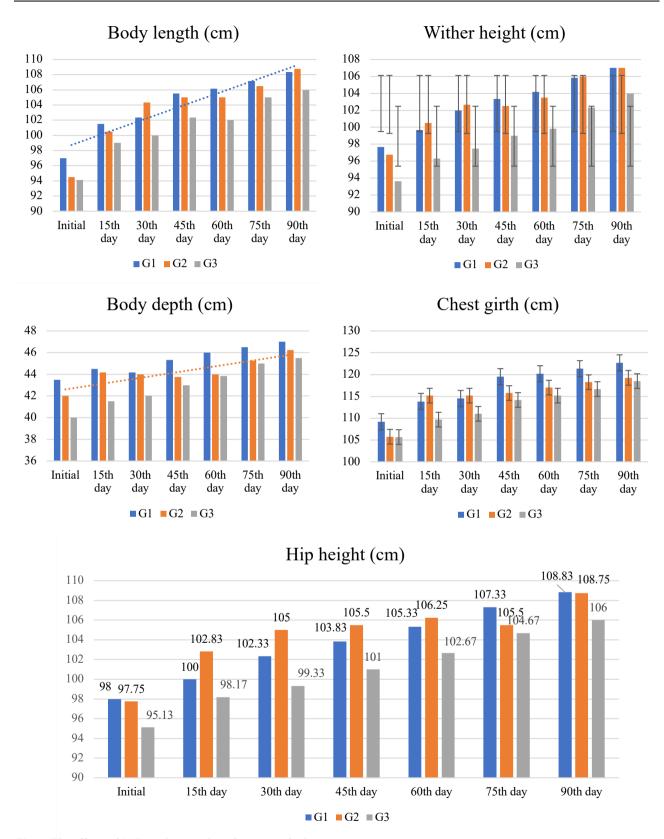


Fig. 1: The effects of SCB on the growth performance of calves

At the end of experiment, SCB application had no significant effect on the serum biochemical variables of the calves (Table 2). In biochemical blood analyzes at the initial of experiment, the concentration of the GLU concentration was significantly higher in G2 (P<0.05), but the difference in the GLU among groups at the end of the experiment was not significant. Similar to the glucose concentration at the beginning and end of the experiment in our study, Shams et al. (2022) stated that probiotic application did not have a significant effect on the blood variables of calves. The meta-analysis summaries on the impact of probiotics on the blood biochemical markers of calves indicated that probiotics did not have a significant effect on the levels of certain biochemical variables, including ALP, ALT, albumin, blood urea nitrogen, glucose, total protein, total cholesterol, and triglycerides, but did significantly affect the concentrations of some biochemical variables such as AST and LDH (Wang et al., 2023). Different results among the studies may be due to factors such as the form of yeast applied, application time, shape and frequency. It has been stated that Active Dry Yeast Culture (ADYC) supplementation significantly increases the serum GLU concentration of calves, however, tends to reduce serum BUN concentration.

Yeast (SCB) added to calves' diets tended to reduce the total protozoa count (Table 3). While it significantly reduced the Entodinium count in the protozoa population (P<0.05), no significant effect was observed on the Isotrisha+Dasytricha and Diplodinium counts. However, group G3 demonstrated a notable increase in total bacterial counts (P<0.05).

It has been stated that S. cerevisiae increases cellulolytic bacteria in the rumen, affects the formation of ciliate protozoa, and accelerates the functional growth of the rumen ecosystem by creating suitable ecological conditions in the rumen (Chaucheyras-Durand and Fonty, 2002). In the study conducted with lambs, it was determined that the supplementation of yeast culture caused the total protozoa.

Table 4 presents the impact of SCB supplementation on oxidative stress, antioxidant defense mechanisms, and the immune response in calves. S. cerevisiae B. supplementation significantly reduced the concentrations of TOS, OSI and MDA variables, which are indicators of oxidative stress (P<0.05). While the concentrations of PON-1, SOD and CAT variables, which are markers of the antioxidant defense mechanism, increased insignificantly, the GPx concentration decreased significantly (P<0.05; Table 4).

Antioxidant enzymes show an effect by converting free radicals derived from oxygen into less dangerous forms. Antioxidant enzyme activity is induced by oxidative stress, and higher levels of these enzymes indicate the presence of severe oxidative stress. While these enzymes reduce MDA concentration, they increase the activity of the antioxidant defense mechanism, supporting antioxidant capacity and reducing the effects of oxidative stress.

The effect of SCB supplementation on the immune response of calves was different but not significant (Table 4). The results obtained in the study support Khaziakhmetov *et al.* (2020), who reported that probiotics do not have a significant effect on blood serum IgA, IgG and IgM concentrations. However, on the contrary, it has been stated that probiotics can increase the concentrations of these three immunoglobulins and support the immunity of calves. It is thought that the different results between studies are due to the difference in the administered doses of probiotics. It has also been stated that probiotics supplementation improves calf health by increasing immunoglobulin concentration, and significantly support the immunity of calves (Wang *et al.*, 2023).

The results regarding the effects of Saccharomyces cerevisiae boulardii on the rumen fermentation parameters of calves in the post-weaning period are shown in Table 5.

Supplementation with Saccharomyces cerevisiae boulardii had no significant impact on rumen pH or total VFA levels, butyric acid, propionic acid and acetic acid production (Table 4). However, SCB supplementation significantly affected ammonia-N production (P<0.05). While ammonia-N production increased significantly in G2, this production decreased significantly in G3. The pH, which was highest in G1, was reduced insignificantly by the supplementation on SCB. Total VFA insignificantly decreased in G2 and increased in G3.

The pH of healthy rumen varies between 6 and 7. It is thought that the differences in pH values among studies are due to differences in the yeast culture concentration used. It has been stated that ADYC can increase ammonia-N use in the rumen by reducing ammonia-N concentration in the rumen. Kamal et al. (2013) stated that live yeast could increase microbial protein synthesis by reducing ammonia-N concentration in the rumen. This situation was consistent with our results obtained in G3. Ammonia-N is the main ingredient of microbial protein synthesis, and the rumen microbial population plays an important role in microbial protein synthesis by using this ammonia-N. Yeasts can support the increase of microbial populations that play a role in the digestion of fibrous substances and protein utilization. As a matter of fact, as seen in Table 2, the bacterial count increased significantly in G3. The increased bacterial count promoted the use of ammonia-N, and therefore the ammonia-N concentration decreased in G3.

Table 2: Results of the biochemical blood analysis conducted in calves across experimental groups (Mean \pm SE)

	G1	G2	G3	P value
ALT				
Initial	53.50±3.50	46.50 ± 0.50	44.50±14.50	0.76
End	59.50±0.50	58.00 ± 7.00	54.50±1.50	0.71
GGT				
Initial	11.50±1.50	14.00 ± 1.00	13.50 ± 1.50	0.48
End	12.00 ± 0.00	9.00 ± 2.00	11.00 ± 1.00	0.37
ALP				
Initial	120.00 ± 10.00	140.00 ± 2.00	143.50 ± 23.50	0.55
End	126.50 ± 23.50	117.50 ± 1.50	102.50 ± 15.50	0.62
TC				
Initial	69.00 ± 5.00	81.00 ± 12.00	75.00 ± 17.00	0.80
End	95.50±7.50	101.00 ± 4.00	86.00 ± 8.00	0.40
CREA				
Initial	0.175 ± 0.035	0.12 ± 0.03	0.58 ± 0.20	0.13
End	0.225 ± 0.005	0.34 ± 0.05	0.32 ± 0.13	0.62
Ca				
Initial	9.05±0.25	9.70 ± 0.90	8.35 ± 0.65	0.45
End	9.10 ± 0.80	9.20 ± 0.30	8.80 ± 0.30	0.86
IP				
Initial	4.70 ± 0.04	4.78 ± 0.72	2.27±1.97	0.38
End	5.33±0.18	4.63±0.19	5.26 ± 0.34	0.25
TP				
Initial	6.59±0.35	6.50 ± 0.57	6.45 ± 0.46	0.98
End	7.31 ± 0.17	7.01 ± 0.14	7.13 ± 0.74	0.90
ALB				
Initial	3.04 ± 0.08	3.01 ± 0.13	3.005 ± 0.125	0.97
End	3.26±0.15	3.24 ± 0.07	2.97 ± 0.05	0.22
LDH				
Initial	1176.00±120.00	1081.50±84.50	1243.00 ± 125.00	0.64
End	1182.00±72.00	1227.50±47.50	1345.50±59.50	0.29
TG				
Initial	10.50±5.50	12.50±5.50	20.50±4.50	0.45
End	19.50±4.50	24.50±7.50	23.50±0.50	0.78
Tbil		, ,		****
Initial	0.00 ± 0.00	0.05 ± 0.05	0.00 ± 0.00	0.47
End	0.00 ± 0.00	0.05±0.05	0.05 ± 0.05	0.65
GLU				
Initial	70.60±2.90B	86.03±1.03A	75.30±2.50AB	0.04
End	61.55±0.15	61.85±3.45	65.25±2.05	0.53
BUN	01100=0110	01100-2110	00.20=2.00	0.00
Initial	6.02 ± 0.01	6.01 ± 0.01	6.01 ± 01	0.39
End	6.04 ± 0.01	6.03±0.005	6.02 ± 0.00	0.22
GLOB	0.01=0.01	0.02=0.002	0.02=0.00	V.22
Initial	3.55±0.43	3.49 ± 0.70	3.44 ± 0.58	0.99
End	4.19±0.16	3.77±0.21	4.1±0.69	0.76
ALB/GLOI				0
Initial	0.0430±0.0006	0.034 ± 0.001	0.040 ± 0.002	0.12
End	0.052±0.002	0.049 ± 0.001	0.048 ± 0.001	0.31
BUN/CREA		0.017=0.001	0.010=0.001	0.51
Initial	35.80±7.13	53.40±13.30	11.75±4.04	0.10
	1.1.0U± / . L 1	JJ. T U⊥1J.JU	11./J _ 1 .U 1	0.10

Table 3: Rumen microbial population in calves: Protozoa and bacterial counts across experimental groups (Mean \pm SE)

	G1	G2	G3	P value
Protozoa	5.49±0.02	5.36±	5.36±	0.07
		0.04	0.01	
Entodinium	5.40±	$5.24\pm$	5.21±	0.02
	0.02A	0.03B	0.002B	
Isotrisha+	4.77±	$4.71\pm$	$4.82 \pm$	0.36
Dasyticha	0.00	0.06	0.04	
Diplodinium	$3.47\pm$	$3.41\pm$	$3.32\pm$	0.82
	0.00	0.23	0.15	
Entodinium%	79.95±	$76.28 \pm$	$70.08 \pm$	0.07
	0.95	1.58	2.58	
Isotrisha+	19.09±	$22.48\pm$	$28.96 \pm$	0.04
Dasyticha%	0.90B	1.05AB	2.29A	
Diplodinium%	$0.95 \pm$	$1.23 \pm$	$0.95 \pm$	0.81
	0.45	0.52	0.29	
Total bacteria	9.044±	9.039±	9.34±	0.02
	0.007B	0.003B	0.06A	

Current study, SCB non-significantly affected the concentration of propionic acid, butyric acid and acetic acid in the rumen of calves (Table 5). While butyric acid and propionic acid increased insignificantly, acetic acid decreased. As is known, GLU is an energy substrate that plays an important role in mammalian metabolism. GLU production in ruminants occurs as a result of gluconeogenesis in the liver, and propionate is an important precursor of this. In our study, the nonsignificant increase in rumen propionic acid fermentation resulted in a non-significant improvement in the performance of calves (Fig. 1) along with increased energy. In our study, the nonsignificant increase in propionic acid and butyric acid may have had a positive effect on the rumen development of calves. It has been stated that probiotic supplementation does not affect the amount of total short-chain fatty acids and molar ratio of butyrate, iso-butyrate, valerate and iso-valerate in the rumen, however, significantly increases the ratio of propionate and significantly reduces the ratio of acetate.

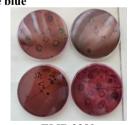
The supplementation of SCB reduced the E. coli and total coliform bacteria count non-significantly in G3, while it increased the Enterobacteriaceae count (Table 6). In addition, SCB significantly suppressed Salmonella growth and significantly stimulated Lactic acid bacteria growth. This shows that SCB supports the growth of lactic acid bacteria in the gastrointestinal tract and suppresses the growth of pathogenic bacteria (Fig. 2-4).

Table 4: Oxidative stress and antioxidant immunity parameters in calves supplemented with SCB (Mean \pm SE, P <0.05)

TAS (mmol/L) Initial 0.66±0.01 0.95±0.03 0.75±0.21 0.36 End 0.72±0.01 0.88±0.05 0.775±0.005 0.08 TOS (µmol/L) Initial 2.76±0.23 4.77±1.46 3.42±0.49 0.39 End 5.90± 2.69± 4.11±0.25B 0.01 0.46A 0.02C OSI Initial 0.41±0.04 0.50±0.17 0.47±0.06 0.85 End 0.81± 0.30± 0.53±0.02B 0.00 End 0.04A 0.01C 0.00 0.00 PON-I(U/L) 1 331.00± 335.50±3.50 0.92 End 478.00± 495.50± 402.50± 0.76 Initial 247.00± 202.50± 175.00±6.00 0.85 End 380.00± 495.50± 402.50± 0.76 GPX (U/L) Initial 247.00± 289.00± 0.04 End 317.50±3.5 279.00± 270.00± 0.01 I		C1	C2	<u> </u>	Danalara		
Initial 0.66±0.01 0.95±0.03 0.75±0.21 0.36 End 0.72±0.01 0.88±0.05 0.775±0.005 0.08 TOS (µmol/L) Initial 2.76±0.23 4.77±1.46 3.42±0.49 0.39 End 5.90± 2.69± 4.11±0.25B 0.01 0.46A 0.02C		G1	G2	G3	P value		
End 0.72±0.01 0.88±0.05 0.775±0.005 0.08 TOS (µmo/L) Initial 2.76±0.23 4.77±1.46 3.42±0.49 0.39 End 5.90± 2.69± 4.11±0.25B 0.01 0.46A 0.02C			0.05.0.02	0.75 : 0.21	0.26		
TOS (µmol/L)							
Initial 2.76±0.23 4.77±1.46 3.42±0.49 0.39 End 5.90± 2.69± 4.11±0.25B 0.01			0.88 ± 0.05	0.775±0.005	0.08		
End 5.90± 0.46A 0.02C							
Ditial Divide							
Initial 0.41±0.04 0.50±0.17 0.47±0.06 0.85 End 0.81± 0.30± 0.53±0.02B 0.00 DON-1(U/L) Initial 322.50± 331.00± 335.50±3.50 0.92 29.50 29.00 End 478.00± 495.50± 402.50± 0.76 113.00 98.50 37.50 SOD (U/ml) Initial 247.00± 202.50± 175.00±6.00 0.85 143.00 38.50 End 380.00± 495.50± 402.50± 0.76 0.00 98.50 37.50 GPX (U/L) Initial 291.00±9.0 350.00± 289.00± 0.04 0B 8.00A 12.00B End 317.50±3.5 279.00± 270.00± 0.01 0A 3.00B 5.00B CAT (U/mL) Initial 36.45±3.05 35.31± 32.05±2.75 0.57 2.49	End			$4.11\pm0.25B$	0.01		
Initial 0.41±0.04 0.50±0.17 0.47±0.06 0.85 End 0.81± 0.30± 0.53±0.02B 0.00 O.04A 0.01C PON-I(U/L) Initial 322.50± 29.00 End 478.00± 495.50± 402.50± 0.76 113.00 98.50 37.50 SOD (U/mI) Initial 247.00± 202.50± 175.00±6.00 0.85 143.00 38.50 37.50 End 380.00± 495.50± 402.50± 0.76 0.00 98.50 37.50 GPX (U/L) Initial 291.00±9.0 350.00± 289.00± 0.04 0B 8.00A 12.00B End 317.50±3.5 279.00± 270.00± 0.01 0A 30.0B 5.00B CAT (U/mL) Initial 36.45±3.05 35.31± 32.05±2.75 0.57 2.49 End 31.30±4.60 32.45± 36.50±8.30 0.80 IgA (mg/dL) Initial 488.6± 387.30± 481.20±4.20 0.45 8.30 IgM(mg/dL) Initial 488.6± 387.30± 481.20±4.20 0.45 90.30 43.30 End 362.60± 346.10± 714.00± 0.17 23.60 4.90 195.00 IgG(ug/mI) Initial 212.54± 278.30± 238.90± 0.06 0.75 12.30 15.30 End 249.23± 237.24± 239.70± 0.68 T.68 1.43 14.50 MDA(mmol/L) Initial 44.80± 21.01± 18.92±9.53 0.55 27.30 3.66 End 44.38± 18.97± 23.36± 0.04		0.46A	0.02C				
End							
O.04A O.01C PON-1(U/L)		0.41 ± 0.04					
PON-1(U/L) Initial 322.50± 331.00± 335.50±3.50 0.92 29.50 29.00 End 478.00± 495.50± 402.50± 0.76 113.00 98.50 37.50 SOD (U/ml) Initial 247.00± 202.50± 175.00±6.00 0.85 143.00 38.50 End 380.00± 495.50± 402.50± 0.76 0.00 98.50 37.50 GPX (U/L) Initial 291.00±9.0 350.00± 289.00± 0.04 0B 8.00A 12.00B End 317.50±3.5 279.00± 270.00± 0.01 0A 3.00B 5.00B CAT (U/mL) Initial 36.45±3.05 35.31± 32.05±2.75 0.57 2.49 End 31.30±4.60 32.45± 36.50±8.30 0.80 0.05 IgA (mg/dL) Initial 33.90±9.60 22.15± 17.55±1.15 0.32 5.55 End 20.00±2.10 30.20± 23.10±2.20 0.45 8.30 IgM(mg/dL) Initial 488.6± 387.30± 481.20±4.20 0.48 90.30 43.30 End 362.60± 346.10± 714.00± 0.17 23.60 4.90 195.00 IgG(ug/ml) Initial 212.54± 278.30± 238.90± 0.06 0.75 12.30 15.30 End 249.23± 237.24± 239.70± 0.68 7.68 1.43 14.50 MDA(nmol/L) Initial 44.80± 21.01± 18.92±9.53 0.55 27.30 3.66 End 44.38± 18.97± 23.36± 0.04	End			$0.53\pm0.02B$	0.00		
Initial 322.50± 29.00 29.00 29.50 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.50 37.50 20.00 20.50± 175.00±6.00 0.85 143.00 38.50 2495.50± 402.50± 0.76 0.00 98.50 37.50 289.00± 0.06 0.00 98.50 37.50 289.00± 0.04 08 8.00A 12.00B 270.00± 0.01 0A 3.00B 5.00B 270.00± 0.01 0A 3.00B 5.00B 270.00± 0.57 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.49 2.30±2.75 0.57 2.49 2.49 2.30±2.20 0.45 8.30 30.20± 23.10±2.20 0.45 8.30 30.20± 23.10±2.20 0.45 8.30 30.20± 23.10±2.20 0.45 23.60 4.90 195.00 3.60 4.90 195.00 3.60 3.			0.01C				
End 478.00± 495.50± 402.50± 0.76 113.00 98.50 37.50 SOD (U/ml) Initial 247.00± 202.50± 175.00±6.00 0.85 143.00 38.50 End 380.00± 495.50± 402.50± 0.76 0.00 98.50 37.50 GPX (U/L) Initial 291.00±9.0 350.00± 289.00± 0.04 0B 8.00A 12.00B End 317.50±3.5 279.00± 270.00± 0.01 0A 3.00B 5.00B CAT (U/mL) Initial 36.45±3.05 35.31± 32.05±2.75 0.57 2.49 End 31.30±4.60 32.45± 36.50±8.30 0.80 IgA (mg/dL) Initial 33.90±9.60 22.15± 17.55±1.15 0.32 5.55 End 20.00±2.10 30.20± 23.10±2.20 0.45 8.30 IgM(mg/dL) Initial 488.6± 387.30± 481.20±4.20 0.48 90.30 43.30 End 362.60± 346.10± 714.00± 0.17 23.60 4.90 195.00 IgG(ug/ml) Initial 212.54± 278.30± 238.90± 0.06 1gG(ug/ml) Initial 212.54± 278.30± 238.90± 0.06 1gG(ug/ml) Initial 212.54± 278.30± 238.90± 0.06 7.68 1.43 14.50 MDA(nmol/L) Initial 44.80± 21.01± 18.92±9.53 0.55 27.30 3.66 End 44.38± 18.97± 23.36± 0.04							
End 478.00± 495.50± 402.50± 0.76 113.00 98.50 37.50 SOD (U/ml) Initial 247.00± 202.50± 175.00±6.00 0.85 143.00 38.50 End 380.00± 495.50± 402.50± 0.76 0.00 98.50 37.50 GPX (U/L) Initial 291.00±9.0 350.00± 289.00± 0.04 0B 8.00A 12.00B End 317.50±3.5 279.00± 270.00± 0.01 0A 3.00B 5.00B CAT (U/mL) Initial 36.45±3.05 35.31± 32.05±2.75 0.57 2.49 End 31.30±4.60 32.45± 36.50±8.30 0.80 IgA (mg/dL) Initial 33.90±9.60 22.15± 17.55±1.15 0.32 5.55 End 20.00±2.10 30.20± 23.10±2.20 0.45 8.30 IgM(mg/dL) Initial 488.6± 387.30± 481.20±4.20 0.48 90.30 43,.30 End 362.60± 346.10± 714.00± 0.17 23.60 4.90 195.00 IgG(ug/ml) Initial 212.54± 278.30± 238.90± 0.06 0.75 12.30 15.30 End 249.23± 237.24± 239.70± 0.68 T.68 1.43 14.50 MDA(nmol/L) Initial 44.80± 21.01± 18.92±9.53 0.55 27.30 3.66 End 44.38± 18.97± 23.36± 0.04	Initial			335.50 ± 3.50	0.92		
Titial 247.00± 202.50± 175.00±6.00 0.85							
SOD (U/ml)	End				0.76		
Initial 247.00± 202.50± 175.00±6.00 0.85 143.00 38.50			98.50	37.50			
Table Tab							
End 380.00± 495.50± 402.50± 0.76 0.00 98.50 37.50 GPX (U/L) Initial 291.00±9.0 350.00± 289.00± 0.04 0B 8.00A 12.00B End 317.50±3.5 279.00± 270.00± 0.01 0A 3.00B 5.00B CAT (U/mL) Initial 36.45±3.05 35.31± 32.05±2.75 0.57 2.49 End 31.30±4.60 32.45± 36.50±8.30 0.80 IgA (mg/dL) Initial 33.90±9.60 22.15± 17.55±1.15 0.32 5.55 End 20.00±2.10 30.20± 23.10±2.20 0.45 8.30 IgM(mg/dL) Initial 488.6± 387.30± 481.20±4.20 0.48 90.30 43,.30 End 362.60± 346.10± 714.00± 0.17 23.60 4.90 195.00 IgG(ug/ml) Initial 212.54± 278.30± 238.90± 0.06 0.75 12.30 15.30 End 249.23± 237.24± 239.70± 0.68 7.68 1.43 14.50 MDA(nmol/L) Initial 44.80± 21.01± 18.92±9.53 0.55 27.30 3.66 End 44.38± 18.97± 23.36± 0.04	Initial			175.00 ± 6.00	0.85		
O.00 98.50 37.50		143.00					
CFX (U/L)	End	$380.00 \pm$	$495.50 \pm$	$402.50 \pm$	0.76		
Initial 291.00±9.0 350.00± 289.00± 0.04 OB			98.50	37.50			
Big	GPX (U	U/ L)					
End 317.50±3.5 279.00± 270.00± 0.01 CAT (U/mL) Initial 36.45±3.05 35.31± 32.05±2.75 0.57 2.49 2.49 End 31.30±4.60 32.45± 36.50±8.30 0.80 lgA (mg/dL) 0.05 Initial 33.90±9.60 22.15± 17.55±1.15 0.32 End 20.00±2.10 30.20± 23.10±2.20 0.45 8.30 8.30 387.30± 481.20±4.20 0.48 90.30 43,30 481.20±4.20 0.48 90.30 43,30 481.20±4.20 0.48 23.60 4.90 195.00 195.00 IgG(ug/ml) Initial 21.25±± 278.30± 238.90± 0.06 0.75 12.30 15.30 0.68 7.68 1.43 14.50 MDA(nmol/L) 11 18.92±9.53 0.55 27.30 3.66 22.00± 23.36± 0.04	Initial	291.00 ± 9.0	$350.00 \pm$	$289.00\pm$	0.04		
OA 3.00B 5.00B CAT (U/mL) Initial 36.45±3.05 35.31± 32.05±2.75 0.57 2.49 End 31.30±4.60 32.45± 36.50±8.30 0.80 0.05 IgA (mg/dL) Initial 33.90±9.60 22.15± 17.55±1.15 0.32 5.55 End 20.00±2.10 30.20± 23.10±2.20 0.45 8.30 IgM(mg/dL) Initial 488.6± 387.30± 481.20±4.20 0.48 90.30 43,.30 End 362.60± 346.10± 714.00± 0.17 23.60 4.90 195.00 IgG(ug/ml) Initial 212.54± 278.30± 238.90± 0.06 0.75 12.30 15.30 End 249.23± 237.24± 239.70± 0.68 7.68 1.43 14.50 MDA(nmol/L) Initial 44.80± 21.01± 18.92±9.53 0.55 27.30 3.66 End 44.38± 18.97± 23.36± 0.04		0B	8.00A	12.00B			
CAT (U/mL) Initial 36.45±3.05 35.31± 32.05±2.75 0.57 2.49 36.50±8.30 0.80 End 31.30±4.60 32.45± 36.50±8.30 0.80 IgA (mg/dL) Initial 33.90±9.60 22.15± 17.55±1.15 0.32 End 20.00±2.10 30.20± 23.10±2.20 0.45 8.30 8.30 387.30± 481.20±4.20 0.48 90.30 43,30 481.20±4.20 0.48 90.30 43,30 0.17 195.00 IgG(ug/ml) Initial 212.54± 278.30± 238.90± 0.06 0.75 12.30 15.30 0.68 7.68 1.43 14.50 MDA(mmol/L) Initial 44.80± 21.01± 18.92±9.53 0.55 27.30 3.66 End 44.38± 18.97± 23.36± 0.04	End	317.50 ± 3.5	$279.00 \pm$	$270.00\pm$	0.01		
Initial 36.45±3.05 35.31± 2.49 2.49 36.50±8.30 0.80 0.05 36.50±8.30 0.80 0.05 36.50±8.30 0.80 0.05 36.50±8.30 0.80 0.05 36.50±8.30 0.80 0.05 36.50±8.30 0.80 0.20± 36.50±8.30 0.32 0.45 0.32 0.45 0.30 0.45 0.30 0.45 0.30 0.45 0.30 0.45 0.30 0.45 0.30 0.45 0.30 0.45 0.30 0.45 0.30 0.45 0.30 0.45 0.30 0.45 0.30 0.45 0		0A	3.00B	5.00B			
End 31.30 ± 4.60 $32.45\pm$ 36.50 ± 8.30 0.80 IgA (mg/dL) Initial 33.90 ± 9.60 $22.15\pm$ 17.55 ± 1.15 0.32 End 20.00 ± 2.10 $30.20\pm$ 23.10 ± 2.20 0.45 8.30 IgM(mg/dL) Initial $488.6\pm$ $387.30\pm$ 481.20 ± 4.20 0.48 90.30 $43,30$ End $362.60\pm$ $346.10\pm$ $714.00\pm$ 0.17 23.60 4.90 195.00 IgG(ug/ml) Initial $212.54\pm$ $278.30\pm$ $238.90\pm$ 0.06 0.75 12.30 15.30 End $249.23\pm$ $237.24\pm$ $239.70\pm$ 0.68 7.68 1.43 14.50 MDA(nmol/L) Initial $44.80\pm$ $21.01\pm$ 18.92 ± 9.53 0.55 27.30 3.66 End $44.38\pm$ 18.97 \pm 23.36 \pm 0.04	CAT (U	U/ mL)					
End 31.30 ± 4.60 $32.45\pm$ 0.05 36.50 ± 8.30 0.80 IgA (mg/dL) Initial 33.90 ± 9.60 $22.15\pm$ 17.55 ± 1.15 0.32 5.55 5.55 5.55 End 20.00 ± 2.10 $30.20\pm$ 23.10 ± 2.20 0.45 8.30 8.30 8.30 IgM(mg/dL) 8.30 8.30 8.30 Initial $488.6\pm$ $387.30\pm$ 481.20 ± 4.20 0.48 90.30 43.30 43.30 90.30 90.30 90.30 90.30 End $362.60\pm$ $346.10\pm$ $714.00\pm$ 91.500 90.17 IgG(ug/ml) 90.30 90.500 90.500 IgG(ug/ml) 90.75 90.500 90.500 Initial $21.2.54\pm$ $278.30\pm$ $238.90\pm$ 90.50 90.68 90.75 90.50	Initial	36.45 ± 3.05	$35.31 \pm$	32.05 ± 2.75	0.57		
IgA (mg/dL) Initial 33.90 ± 9.60 $22.15\pm$ 17.55 ± 1.15 0.32 End 20.00 ± 2.10 $30.20\pm$ 23.10 ± 2.20 0.45 IgM(mg/dL) Initial $488.6\pm$ $387.30\pm$ 481.20 ± 4.20 0.48 90.30 $43,30$ 0.48 End $362.60\pm$ $346.10\pm$ $714.00\pm$ 0.17 23.60 4.90 195.00 0.17 IgG(ug/ml) Initial $212.54\pm$ $278.30\pm$ $238.90\pm$ 0.06 0.75 12.30 15.30 0.68 End $249.23\pm$ $237.24\pm$ $239.70\pm$ 0.68 0.68 7.68 1.43 14.50 0.68 MDA(mmol/L) $0.00\pm0.00\pm0.00$ 0.00 ± 0.00 Initial $44.80\pm$ $21.01\pm$ 18.92 ± 9.53 0.55 0.55 27.30 3.66 0.00 ± 0.00 End $44.38\pm$ $18.97\pm$ $23.36\pm$ 0.04			2.49				
IgA (mg/dL) Initial 33.90 ± 9.60 $22.15\pm$ 17.55 ± 1.15 0.32 End 20.00 ± 2.10 $30.20\pm$ 23.10 ± 2.20 0.45 End 20.00 ± 2.10 $30.20\pm$ 23.10 ± 2.20 0.45 8.30 IgM(mg/dL) Initial $488.6\pm$ $387.30\pm$ 481.20 ± 4.20 0.48 90.30 $43,30$ 0.17	End	31.30 ± 4.60	$32.45 \pm$	36.50 ± 8.30	0.80		
Initial 33.90 ± 9.60 $22.15\pm$ 17.55 ± 1.15 0.32 End 20.00 ± 2.10 $30.20\pm$ 23.10 ± 2.20 0.45 IgM(mg/dL) Initial $488.6\pm$ $387.30\pm$ 481.20 ± 4.20 0.48 90.30 $43,30$ 0.48 0.48 0.48 0.48 0.48 0.17			0.05				
End 20.00 ± 2.10 $30.20\pm$ 23.10 ± 2.20 0.45 8.30 IgM(mg/dL) Initial $488.6\pm$ $387.30\pm$ 481.20 ± 4.20 0.48 90.30 $43,.30$ End $362.60\pm$ $346.10\pm$ $714.00\pm$ 0.17 23.60 4.90 195.00 IgG(ug/ml) Initial $212.54\pm$ $278.30\pm$ $238.90\pm$ 0.06 0.75 12.30 15.30 End $249.23\pm$ $237.24\pm$ $239.70\pm$ 0.68 7.68 1.43 14.50 MDA(nmol/L) Initial $44.80\pm$ $21.01\pm$ 18.92 ± 9.53 0.55 27.30 3.66 End $44.38\pm$ $18.97\pm$ $23.36\pm$ 0.04	IgA (m	g/dL)					
End 20.00 ± 2.10 $30.20\pm$ 8.30 23.10 ± 2.20 0.45 IgM(mg/dL) Initial $488.6\pm$ 387.30 \pm 481.20 ±4.20 0.48 90.30 $43,.30$ End $362.60\pm$ 346.10 \pm 714.00 \pm 0.17 23.60 4.90 195.00 IgG(ug/ml) Initial $212.54\pm$ 278.30 \pm 238.90 \pm 0.06 0.75 12.30 15.30 End $249.23\pm$ 237.24 \pm 239.70 \pm 0.68 7.68 1.43 14.50 MDA(nmol/L) Initial $44.80\pm$ 21.01 \pm 18.92 \pm 9.53 0.55 27.30 3.66 End $44.38\pm$ 18.97 \pm 23.36 \pm 0.04	Initial	33.90 ± 9.60	$22.15\pm$	17.55 ± 1.15	0.32		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5.55				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	End	20.00 ± 2.10	$30.20 \pm$	23.10 ± 2.20	0.45		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			8.30				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
End $362.60\pm$ $346.10\pm$ $714.00\pm$ 0.17 IgG(ug/ml) Initial $212.54\pm$ $278.30\pm$ $238.90\pm$ 0.06 0.75 12.30 15.30 0.68 End $249.23\pm$ $237.24\pm$ $239.70\pm$ 0.68 7.68 1.43 14.50 MDA(nmol/L) Initial $44.80\pm$ $21.01\pm$ 18.92 ± 9.53 0.55 27.30 3.66 End $44.38\pm$ $18.97\pm$ $23.36\pm$ 0.04	Initial	$488.6 \pm$	$387.30 \pm$	481.20 ± 4.20	0.48		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		90.30					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	End	$362.60 \pm$	$346.10 \pm$	$714.00 \pm$	0.17		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		23.60	4.90	195.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IgG(ug	/ml)					
End $249.23\pm$ $237.24\pm$ $239.70\pm$ 0.68 7.68 1.43 14.50 MDA(nmol/L) Initial $44.80\pm$ 21.01 \pm 18.92 \pm 9.53 0.55 27.30 3.66 End $44.38\pm$ 18.97 \pm 23.36 \pm 0.04	Initial	$212.54 \pm$	$278.30 \pm$	$238.90 \pm$	0.06		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.75	12.30	15.30			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	End	$249.23 \pm$	$237.24 \pm$	$239.70 \pm$	0.68		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.68	1.43	14.50			
27.30 3.66 End $44.38\pm$ $18.97\pm$ $23.36\pm$ 0.04	MDA(nmol/L)						
End $44.38\pm$ $18.97\pm$ $23.36\pm$ 0.04	Initial	$44.80 \pm$	$21.01\pm$	18.92 ± 9.53	0.55		
		27.30	3.66				
	End	$44.38 \pm$	$18.97 \pm$	$23.36 \pm$	0.04		
T.J.IA 1.0JD 7.0JAD		4.51A	1.85B	4.89AB			

Table 5: Impact of Saccharomyces cerevisiae boulardii on rumen fermentation parameters in calves (Mean ± SE)

	G1	G2	G3	P Value
Ph	8.28±	7.71±0.24	7.58 ± 0.40	0.44
	0.29			
Ammonia-N mg/L	50.45±	$64.92 \pm$	41.18±	0.04
	2.19AB	5.11A	8.88B	
Total VFA	8.75±	7.35 ± 0.74	9.27 ± 2.63	0.78
	1.75			
mmol/L				
Isocaproic	0.013±	0.013±	$0.014\pm$	0.98
•	0.004	0.002	0.002	
Hexanoic acid	$0.042\pm$	$0.037\pm$	$0.037 \pm$	0.46
	0.004	0.000	0.000	
Valeric acid	$0.07\pm$	$0.077\pm$	0.09 ± 0.03	0.68
	0.01	0.004		
Isobutyric acid	$0.05\pm$	$0.045\pm$	0.04 ± 0.01	0.90
•	0.01	0.005		
Isovaleric acid	$0.05\pm$	$0.042\pm$	0.07 ± 0.01	0.34
	0.01	0.006		
Butyric acid	$0.64\pm$	0.65 ± 0.05	0.81 ± 0.20	0.70
•	0.13			
Propionic acid	$1.068 \pm$	1.25 ± 0.13	1.58 ± 0.47	0.45
•	0.18			
Acetic acid	$6.80\pm$	5.22 ± 0.54	6.60 ± 1.91	0.72
	1.49			



EMB 2388 *E. coli* – 1,6*10⁵ ... 5*10⁵ Enterobacter spp. $-1*10^6$... $1,3*10^6$ $Koliform - 1,2*10^6 \dots 1,4*10^6$

EMB 2385 E. $coli - 1,3*10^6 \dots 4,7*10^6$ Enterobacter spp. $-5.3*10^6$... $5,7*10^6$ $Koliform - 1*10^7 \dots 7*10^6$

EMB 2389 E. $coli - 1,3*10^6 \dots 4,7*10^6$ $\textit{Enterobacter spp.} -5,3*10^6 \dots$ $5,7*10^6$ $Koliform - 1*10^7 \dots 7*10^6$

EMB 2386 E. $coli - 6,7*10^4 \dots 2*10^5$ Enterobacter spp. - $3,7*10^5 \dots 2*10^5$ *Koliform* − 4,3*10⁵ ... $4*10^{5}$

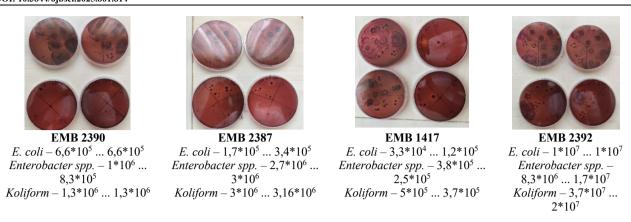


Fig. 2: Fecal bacterial counts (log CFU/g) for E. coli, Enterobacter spp., and total coliforms in calves across experimental groups.

Fig. 3: Analyses of de man, rogosa, and sharpe. lactic acid

Fig. 4: Bismuth sulfite agar assays. Salmonella spp

Table 6: Effect of SCB supplementation on fecal bacteria count in calves (Mean \pm SE)

	G1	G2	G3	P Value
E. coli	6.08 ± 0.48	6.47 ± 0.00	5.17±0.18	0.10
Coliform	6.69 ± 0.40	6.93 ± 0.00	5.79 ± 0.16	0.08
Enterobac	8.75 ± 1.75	7.35 ± 0.74	9.27 ± 2.63	0.78
Salmonella	$6.84\pm0.34A$	$5.23 \pm 0.05 B$	$5.03\pm0.28B$	0.02
Lactic acid	4.50±0.19B	$4.94\pm0.62B$	$7.09\pm1.10A$	0.01

S. cerevisiae improves intestinal health by stimulating the growth of lactate-producing bacteria such as lactobacilli (Conlon and Bird, 2015). As a matter of fact, stated that SCB increases the beneficial microflora population in the intestine by promoting the growth of the lactobacilli population in the feces and suppressing the growth of potential pathogens. On the other hand, Wang et al. (2023), as a result of their meta-analysis on the effects of probiotics on intestinal flora, stated that probiotics increased the number of coliforms at non-

significant, decreased the number of Streptococcus at a non-significant, tended to increase the number of lactobacilli, however, significantly increased the total number of bacteria in the feces.

Conclusion

The supplementation of probiotics, specifically Saccharomyces cerevisiae boulardii, to the calves' diet resulted in a significant improvement in average daily gain and a reduction in the frequency of diarrhea. Importantly, these beneficial effects were observed without any adverse impact on the levels of key metabolite indicators in the blood. These findings suggest that S. cerevisiae boulardii supplementation may be a viable strategy to enhance calf health and growth, offering potential benefits for livestock management practices.

However, due to the limitations in sample size and study duration, further research is needed to confirm these

results and explore the long-term effects of S. cerevisiae boulardii supplementation on broader health parameters, microbiota composition, and overall farm productivity. Future studies should also investigate optimal dosages and supplementation protocols across various calf breeds and environmental conditions.

Acknowledgement

The authors express their sincere gratitude to the Faculty of Agriculture at Isparta University of Applied Sciences (Isparta, Turkey) for providing the facilities and support necessary to carry out this research. The authors also wish to thank Aynur Karahan and Togzhan Boranbayeva for their valuable assistance in the scientific work and in the preparation of the manuscript.

Funding Information

The authors received financial support for the publication of this article from the Kazakh National Agrarian Research University.

Author Contributions

Dulat Zhalelov: Contributed to data collection on animal development and transferred data into electronic format; prepared the initial draft of the manuscript; participated in revising the manuscript; approved the final version; and agrees to be accountable for all aspects of the work.

Serkan Ozkaya: Designed the study; collected and analyzed blood and fecal samples; conducted bacterial counts and protozoa identification in rumen fluid; performed statistical analyses and interpreted the results; prepared the final version of the manuscript; critically revised the text; approved the final version; and agrees to be accountable for all aspects of the work.

Mehmet Gündoğdu: Performed bacterial counts on fecal samples obtained from calves; contributed to data interpretation; revised the manuscript for important intellectual content; approved the final version; and agrees to be accountable for all aspects of the work.

Kanber Kara: Collected rumen fluid samples from calves and performed analyses related to nitrogen concentration and volatile oil content; contributed to data interpretation; revised the manuscript; approved the final version; and agrees to be accountable for all aspects of the work.

Abdymanap Ospanov: Provided scientific consultancy and guidance during the execution of the study; contributed to the interpretation of findings; revised the manuscript critically for intellectual content;

approved the final version; and agrees to be accountable for all aspects of the work.

Aigul Timurbekova: Contributed to the interpretation of research findings and discussion of the study's implications; participated in the review and editing of the manuscript; provided critical revisions for important intellectual content; approved the final version; and agrees to be accountable for all aspects of the work.

Ethics

All procedures in the study were conducted following the ethical guidelines and recommendations set by the Research Ethics Committee of the Faculty of Agriculture at Isparta University of Applied Sciences.

Conflict of Interest

The authors state that they have no conflict of interest.

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

Allen, M. S., Bradford, B. J., & Harvatine, K. J. (2005). The cow as a model to study food intake regulation. *Annual Review of Nutrition*, 25(1), 523–547. https://doi.org/10.1146/annurev.nutr.25.050304.092 704

Arowolo, M. A., & He, J. (2018). Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. *Animal Nutrition*, *4*(3), 241–249. https://doi.org/10.1016/j.aninu.2018.04.010

Bittencourt, L. L., Silva, J. R. M., Oliveira, B. M. L., Dias Júnior, G. S., Lopes, F., Siécola Júnior, S., et al. (2011). Diet digestibility and performance of dairy cows supplemented with live yeast. *Scientia Agricola*, 68(3), 301–307. https://doi.org/10.1590/S0103-90162011000300005

Brousseau, J.-P., Talbot, G., Beaudoin, F., Lauzon, K., Roy, D., & Lessard, M. (2015). Effects of probiotics *Pediococcus acidilactici* strain MA18/5M and *Saccharomyces cerevisiae* subsp. *boulardii* strain SB-CNCM I-1079 on fecal and intestinal microbiota of nursing and weanling piglets. *Journal of Animal Science*, 93(11), 5313–5326. https://doi.org/10.2527/jas.2015-9190

Burdick Sanchez, N. C., Broadway, P. R., & Carroll, J. A. (2021). Influence of yeast products on modulating metabolism and immunity in cattle and swine. *Animals*, *11*(2), 371. https://doi.org/10.3390/ani11020371

- Chaucheyras-Durand, F., & Fonty, G. (2002). Influence of a probiotic yeast (*Saccharomyces cerevisiae* CNCM I-1077) on microbial colonization and fermentations in the rumen of newborn lambs. *Microbial Ecology in Health and Disease*, 14(1), 30–36. https://doi.org/10.1080/089106002760002739
- Chaucheyras-Durand, F., Chevaux, E., Martin, C., & Forano, E. (2012). Use of yeast probiotics in ruminants: Effects and mechanisms of action on rumen pH, fibre degradation, and microbiota according to the diet. https://doi.org/10.5772/50192
- Conlon, M., & Bird, A. (2015). The impact of diet and lifestyle on gut microbiota and human health. *Nutrients*, 7(1), 17–44. https://doi.org/10.3390/nu7010017
- Dijkstra, J., Ellis, J. L., Kebreab, E., Strathe, A. B., López, S., France, J., & Bannink, A. (2012). Ruminal pH regulation and nutritional consequences of low pH. Animal Feed Science and Technology, 172(1–2), 22–33. https://doi.org/10.1016/j.anifeedsci.2011.12.005
- Ersahince, A., & Kara, K. (2017). Nutrient composition and in vitro digestion parameters of Jerusalem artichoke (*Helianthus tuberosus* L.) herbage at different maturity stages in horse and ruminant. *Journal of Animal and Feed Sciences*. https://doi.org/10.22358/jafs/76477/2017
- Galvão, K. N., Santos, J. E. P., Coscioni, A., Villaseñor, M., Sischo, W. M., & Berge, A. C. B. (2005). Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal *Escherichia coli*. *Reproduction Nutrition Development*, 45(4), 427– 440. https://doi.org/10.1051/rnd:2005040
- He, Z. X., Ferlisi, B., Eckert, E., Brown, H. E., Aguilar, A., & Steele, M. A. (2017). Supplementing a yeast probiotic to pre-weaning Holstein calves: Feed intake, growth and fecal biomarkers of gut health. *Animal Feed Science and Technology*, *226*, 81–87. https://doi.org/10.1016/j.anifeedsci.2017.02.010
- Kamal, R., Dutt, T., Singh, M., Kamra, D. N., Patel, M., Choudhary, L. C., Agarwal, N., Kumar, S., & Islam, M. (2013). Effect of live *Saccharomyces cerevisiae* (NCDC-49) supplementation on growth performance and rumen fermentation pattern in local goat. *Journal of Applied Animal Research*, 41(3), 285–288. https://doi.org/10.1080/09712119.2013.782865
- Kara, K. (2021). Nutrient matter, fatty acids, in vitro gas production and digestion of herbage and silage quality of yellow sweet clover (*Melilotus officinalis* L.) at different phenological stages. *Journal of Animal and Feed Sciences*, 30(2), 128–140. https://doi.org/10.22358/jafs/136401/2021
- Khademi, A. R., Hashemzadeh, F., Khorvash, M., Mahdavi, A. H., Pazoki, A., & Ghaffari, M. H. (2022). Use of exogenous fibrolytic enzymes and

- probiotic in finely ground starters to improve calf performance. *Scientific Reports*, 12(1). https://doi.org/10.1038/s41598-022-16070-0
- Khaziakhmetov, F., Khabirov, A., Tagirov, K., Avzalov, R., Tsapalova, G., & Basharov, A. (2020). The influence of "Stimix Zoostim" and "Normosil" probiotics on fecal microflora, hematologic indicators, nutrient digestibility, and growth of mother-bonded calves. *Veterinary World*, 13(6), 1091–1097.
 - https://doi.org/10.14202/vetworld.2020.1091-1097
- Larson, L. L., Owen, F. G., Albright, J. L., Appleman, R. D., Lamb, R. C., & Muller, L. D. (1977). Guidelines toward more uniformity in measuring and reporting calf experimental data. *Journal of Dairy Science*, 60(6), 989–991. https://doi.org/10.3168/jds.s0022-0302(77)83975-1
- Lesmeister, K. E., Tozer, P. R., & Heinrichs, A. J. (2004). Development and analysis of a rumen tissue sampling procedure. *Journal of Dairy Science*, 87(5), 1336–1344. https://doi.org/10.3168/jds.s0022-0302(04)73283-x
- Markowiak, P., & Śliżewska, K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. *Gut Pathogens*, 10(1). https://doi.org/10.1186/s13099-018-0250-0
- McAllister, T. A., Beauchemin, K. A., Alazzeh, A. Y., Baah, J., Teather, R. M., & Stanford, K. (2011). The use of direct fed microbials to mitigate pathogens and enhance production in cattle. *Canadian Journal of Animal Science*, *91*(2), 193–211. https://doi.org/10.4141/cjas10047
- McFarland, L. V. (2010). Systematic review and metaanalysis of *Saccharomyces boulardii* in adult patients. *World Journal of Gastroenterology*, *16*(18), 2202. https://doi.org/10.3748/wjg.v16.i18.2202
- National Research Council. (2001). *Nutrient requirements of dairy cattle*.
- Oikonomou, G., Teixeira, A. G. V., Foditsch, C., Bicalho, M. L., Machado, V. S., & Bicalho, R. C. (2013). Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA: Associations of *Faecalibacterium* species with health and growth. *PLoS ONE*, 8(4), e63157. https://doi.org/10.1371/journal.pone.0063157
- Pinos-Rodríguez, J. M., Robinson, P. H., Ortega, M. E., Berry, S. L., Mendoza, G., & Bárcena, R. (2008). Performance and rumen fermentation of dairy calves supplemented with *Saccharomyces cerevisiae* 1077 or *Saccharomyces boulardii* 1079. *Animal Feed Science and Technology*, 140(3–4), 223–232. https://doi.org/10.1016/j.anifeedsci.2007.08.003
- Qadis, A. Q., Goya, S., Ikuta, K., Yatsu, M., Kimura, A., Nakanishi, S., & Sato, S. (2014). Effects of a bacteria-based probiotic on ruminal pH, volatile fatty

- acids and bacterial flora of Holstein calves. *Journal of Veterinary Medical Science*, 76(6), 877–885. https://doi.org/10.1292/jvms.14-0028
- Qiao, G. H., Shan, A. S., Ma, N., Ma, Q. Q., & Sun, Z. W. (2009). Effect of supplemental *Bacillus* cultures on rumen fermentation and milk yield in Chinese Holstein cows. *Journal of Animal Physiology and Animal Nutrition*. https://doi.org/10.1111/j.1439-0396.2009.00926.x
- Rossi, F., Di Luccia, A., Vincenti, D., & Cocconcelli, P. S. (2004). Effects of peptidic fractions from *Saccharomyces cerevisiae* culture on growth and metabolism of the ruminal bacteria *Megasphaera elsdenii*. *Animal Research*, 53(3), 177–186. https://doi.org/10.1051/animres:2004009
- Schlabitz, C., Neutzling Lehn, D., & Volken de Souza, C. F. (2022). A review of *Saccharomyces cerevisiae* and the applications of its byproducts in dairy cattle feed: Trends in the use of residual brewer's yeast. *Journal of Cleaner Production*, 332, 130059. https://doi.org/10.1016/j.jclepro.2021.130059

- Shams, M. H., Hashemzadeh, F., Khorvash, M., Pazoki, A., Beiranvand, H., Mousavi, F., & Rafiee, H. (2022). Interaction of colostrum pasteurization with probiotics supplementation on health and performance of Holstein calves. *Animal Feed Science and Technology*, 288, 115319. https://doi.org/10.1016/j.anifeedsci.2022.115319
- Timmerman, H. M., Mulder, L., Everts, H., van Espen, D. C., van der Wal, E., Klaassen, G., Rouwers, S. M. G., Hartemink, R., Rombouts, F. M., & Beynen, A. C. (2005). Health and growth of veal calves fed milk replacers with or without probiotics. *Journal of Dairy Science*, 88(6), 2154–2165. https://doi.org/10.3168/jds.s0022-0302(05)72891-5
- Wang, L., Sun, H., Gao, H., Xia, Y., Zan, L., & Zhao, C. (2023). A meta-analysis on the effects of probiotics on the performance of pre-weaning dairy calves. *Journal of Animal Science and Biotechnology*. https://doi.org/10.1186/s40104-022-00806-z
- Yıldız, G. (2001). *Ankara Üniversitesi Veteriner* Fakültesi Dergisi, 48(2), 1. https://doi.org/10.1501/vetfak 0000001601