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Abstract: The deleterious consequences of collinearity in linear regression on 
the precision of estimators of regression coefficients and the interpretability of 
the fitted model are widely recognized. In this study, we compare several 
methodologies for assessing collinearity in linear models and explore the effect 
of outliers on collinearity. The robustness of collinearity measures (individual 
and overall) is validated through two detailed Monte Carlo simulation study 
which also considers the effect of outliers on collinearity indices. The methods 
are illustrated with two real-world agricultural and fish morphology l data sets 
to show potential applications. The results do not provide any evidence for an 
effect from outliers on collinearity identification using the collinearity indices 
(individual and overall). The FG and Fj collinearity indices more robust as both 
sample size and collinearity degree increase. The VIF (individual measure) had 
a better performance on the fitted model with a greater number of parameters. 
 
Keywords: Multicollinearity, Overall Some Individual Indices, Monte Carlo 
Simulation, Mctest Package 
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Introduction 

In the context of multiple regression analysis, 
multicollinearity refers to a scenario where there is a 
pronounced interconnection among the explanatory 
variables (Wondola et al., 2020). The presence of 
collinearity indicates that a substantial part of the 
information in one or more of these covariates is 
redundant. Habshah et al. (2009) pointed out that 
collinearity, or non-orthogonality of the design matrix, 
is an almost linear dependence between two or more 
covariates. According to Silvey (1969); Belsley et al. 
(1980), in cases where the variables exhibit linear 
correlations, it is possible for one or more eigenvalues of 
the model X'X to be relatively tiny. The presence of 
collinearity causes difficulties in the estimation of model 
parameters, variable selection and model interpretation. 
When covariates in a regression model are not 
orthogonal, inference based on estimates of model 
parameters can be invalid. Multicollinearity leads to 
increased variances in the estimated parameters, which 
might result in the individual predictors appearing 
statistically insignificant despite the overall model being 
significant. When multicollinearity is present, it can 
complicate the estimation of the beta coefficients and 
their interpretation. As multicollinearity intensifies, the 
confidence intervals for the regression coefficients 
become wider and the t-statistics shrink in value. For 
coefficients to be deemed statistically significant under 
these conditions, they must be larger, implying that 
rejecting the null hypothesis becomes more challenging 
when multicollinearity exists. However, it's important to 
note that large standard errors can arise from factors 
other than multicollinearity (Oke et al., 2019).  

While the model's predictive performance may 
remain unaffected. When the focus of the investigation 
is to determine how the covariates' independent effects 
differ from one another, the existence of collinearity 
presents a substantial obstacle. The reason for this 
phenomenon is that when collinearity is present, the 
estimates of regression coefficients become less stable, 
resulting in larger Standard Errors (SEs) for these 
coefficients. In addition to the collinearity problem, 
although multiple linear models are widely used, it is 
well known that atypical observations can have a high 
impact on parameter estimates, predicted values and 
estimates of the covariance matrix; Cook (1977). 
Although there are many procedures used to detect 
collinearity, they are generally based on ad-hoc 
practical rules and are often unreliable with 
unquantifiable error rates. These procedures can be 
categorized as those based on three key aspects to 
consider in this study: (i) The correlation among 
covariates, (ii) The structure of the design matrix and 

(iii) Descriptive indices such as the condition index 
discovered by Belsley et al. (1980) and the factor of 
inflation variance (VIF) as discussed in Kutner et al. 
(2005); Fox and Monette (1992); Hair et al. (2014). 

It is important to note that even these descriptive 
indices are not without their critics (for example, Gunst, 
1984; O’brien, 2007) and new qualitative measures 
continue to be recommended; see, for example, 
Chennamaneni et al. (2016). Farrar and Glauber (1967) 
introduced an inferential technique for evaluating 
collinearity in linear models by examining deviations 
from orthogonality in the design matrix. However, this 
method has faced significant criticism from researchers 
such as O’Hagan and McCabe (1975); Wichers (1975); 
Haitovsky (1969). Based on the current state of 
knowledge, it appears that there are no alternative 
methodologies currently accessible for assessing 
collinearity in linear models. Subjective diagnostics have 
become increasingly prevalent in contemporary research. 
A notable example is the R package mctest, which was 
introduced by Imdadullah et al. (2016). In general, the 
user is left to rely upon rule-of-thumb criteria to judge the 
severity of collinearity. Furthermore, if an observation in 
a linear model has a large value on two or more covariates, 
artificial collinearity may be induced. The effect of such 
collinearity in regression models, especially in biological 
science where covariates are strongly correlated is not 
totally studied. The aforementioned literature, including 
Sengupta and Bhimasankaram (1997); Walker and Birch 
(1988); Mason and Gunst (1985), demonstrates that there 
exists a resemblance between the outcome and an 
estimated linear relationship. 

The objectives of this study are: (i) To evaluate how the 
diagnostic measures (individual and overall) are affected by 
atypical observations; (ii) To assess the performance of the 
collinearity indices by simulations; (iii) To apply the new 
indices to real-world morphological and agricultural data 
sets with different collinearity structures and atypical cases. 
All numerical evaluations carried out in this study were 
implemented in the R software (Core Team, 2016). 

Materials and Methods 
Collinearity Indices 

The collinearity diagnostic measures used and 
implemented in R with the mctest package proposed by 
(Imdadullah et al., 2016), are described by these authors 
as detailed below. 

Overall Collinearity Diagnostic Measures 

Determinant 

The matrix X´X will exhibit singularity if it possesses 
linearly dependent columns or rows. Hence, the 
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determinant of the normalized correlation matrix R, which 
is obtained by multiplying the transpose of matrix X with 
X and excluding the intercept term, might serve as an 
indicator for the presence of collinearity among the 
regressors. Nevertheless, it is remarkable to note that the 
determinant of a matrix does not offer insights into the 
dependency between regressors. Instead, it merely 
indicates the singularity or departure from orthogonality 
of a correlation matrix. According to Cooley and Lohnes 
(1971), the value of X´X on the scale falls within the range 
of 0≤|X´X|≤1. According to Asteriou and Hall (2007), if 
the determinant of the value X´X is around zero, it 
indicates a presence of collinearity among the regressors. 

R-Squared 
R2 is obtained by doing a regression analysis of all x 

variables on y. According to Stock and Watson (2010), R2 
exhibits a monotonically non-decreasing relationship with 
the number of regressors incorporated into the model. In 
other words, R2 serves as an indicator of the extent to 
which the regression accurately captures the data. 
Conversely, when the R2 values increase, there is a greater 
likelihood of the regressors being affected by 
multicollinearity, as the R2 is influenced by the regressors 
sharing their variances (Asteriou and Hall, 2007). 

Farrar 𝜒! 
It is the Chi-square test for detecting the strength of 

collinearity over the complete set of regressors. 𝜒! =
−$𝑛 − 1 − "

#(!%&')' × 𝑙𝑜𝑔)[𝑋´𝑋]~𝜓*+!"%(%,").
!  

Collinearity exists among regressors if 𝜒! >
𝜒!
"%(%,")
! (Farrar and Glauber, 1967). 

Condition Index 

 

𝐶𝐼. = 5
𝑚á𝑥9𝜆.;

𝜆.
	𝑗 = 1,2,… , 𝑝;	𝜆" ≥ 𝜆! ≥ ⋯ ≥ 𝜆% 

 
Collinearity exists if any of CIj >10, 15 or 30 

(Belsley et al., 1980; Chatterjee and Hadi, 2013). 

Sum of Reciprocal of Eigenvalues 

In an orthogonal system ∑ "
/#
= 𝑝%

.+" , therefore, for a 
sample based correlation matrix R with eigenvalues 𝜆!, 
comparing p with ∑ "

/#
%
.+"  can be used to indicate 

collinearity. If ∑ "
/#

%
.+"  is (say) five times larger than the 

number of regressors used in the model then collinearity 
exists among regressors (Chatterjee and Price, 1977; 
Dillon and Goldstein, 1984). 

Theil’s Indicator 
Theil (1971) proposed a measure of collinearity based 

on an incremental contribution 9𝑅! − 𝑅.!; to the squared 
multiple correlation, where 𝑅!" is the 𝑅" from auxiliary 
regression of regressors: 
 

𝑚 = 𝑅! −G9𝑅! − 𝑅,0! ;
%

0+"

 

 
If 𝑚 = 0 then all X’s are mutually uncorrelated (no 

redundancy exists) as the incremental contribution all 
add up to R2. However, if 𝑚~1 then Collinearity exists 
among regressors. 

Red Indicator 
In their study, Kovács et al. (2005) introduced a novel 

and synthetic normalized indicator for diagnosing 
collinearity. This indicator leverages eigenvalues or 
quantifies the average correlation of the data: 
 

𝑅𝑒𝑑 =

K∑ 9𝜆. − 1;
!%

.+"

𝑝
L𝑝 − 1

 

 
In the event that the value of the Red indicator is zero 

(Red = 0), it signifies the lack of redundancy, while a 
value close to 1 (Red ~ 1) indicates the presence of 
maximal redundancy. 

Individual Collinearity Diagnostic Measures  

Klein’s Rule  
If the value of Rj obtained from the auxiliary 

regression exceeds the total R2 obtained from the 
regression of y on all the regressors, it suggests the 
presence of potential issues with multicollinearity. The 
decision rule for the discovery of collinearity is., 
𝑅1#.1!,1",…,1$
! > 𝑅4.1!,1",…,1$

!  (Klein, 1969). 

VIF and Tol 
The Variance Inflation Factor (VIF) quantifies the 

extent to which the variances of the predicted regression 
coefficients are amplified when there is no connection 
among the p regressors. The significance of the diagonal 
elements in the ((𝑋´𝑋),")	matrix for identifying 
multicollinearity is widely recognized:  
 

𝑉𝐼𝐹. = (𝑋´𝑋)..," =
"

",5#
" and 𝑇𝑜𝑙. =

"
678#

= 1 − 𝑅.! 
 

The criticism on VIF is that 𝑣𝑎𝑟9𝛽V.; =
9"

∑1#
" 𝑉𝐼𝐹 depends 

on 𝜎!, ∑𝑥.! and VIF, which shows that a high VIF can be 
counterbalanced by a low 𝜎" or high ∑𝑥.!. So a high VIF 
is neither a necessary nor a sufficient measure of 
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multicollinearity. The value of VIF >3, 5 ,10 or value of 
𝑇𝑜𝑙~0 indicates existence of collinearity among 
regressors (Neter et al., 2004). 

Eigenvalues 
Kendall (1957); Silvey (1969) proposed use the 

eigenvalues of the correlation matrix (X´X) as a means to 
assess the existence of multicollinearity. They established 
that small eigenvalues, which are close to zero, serve as 
an indication of high collinearity. However, they did not 
specify the precise threshold for determining the degree 
of smallness. The presence of one or more lower 
eigenvalues in the matrix X'X or its corresponding 
correlation matrix is indicative of collinearity. 

CVIF 
Curto and Pinto (2011) introduced a novel metric 

for assessing multicollinearity, which aims to quantify 
the influence of intercorrelation among independent 
variables on the variance of the Ordinary Least Squares 
Estimators (OLSEs): 
 

𝐶𝑉𝐼𝐹! = 𝑉𝐼𝐹! ×
1 − 𝑅"

1 − 𝑅#"
 

 
where, 𝑅;! = 𝑅41"! + 𝑅41!! +⋯+𝑅41%! . Collinearity exists if 
𝐶𝑉𝐼𝐹. ≥ 10. 

Leamer’s Methods 
Leamer in Greene (2002) suggested a measure of the 

effect of multicollinearity for the jth variable: 
 

𝐶. = Y
Z∑ 9𝑋0. − 𝑋[.;

!<
0+" \

,"

(𝑋´𝑋)..,"
]

="!>

 

 
This measure is the square root of the ratio of variances 

of estimated coefficients 9𝛽V.; when estimated without and 
with the other regressors. If 𝑋. is uncorrelated with the 
other regressors 𝐶! would be 1 otherwise will be equal to 

91 − 𝑅.!;
!
", i.e., 𝐶.~0 indicates existence of collinearity 

among regressors. 

F and R2 Relation 
The relationship of F-test and R2 from regressing 𝑋! on 

the other remaining regressors can be used to detect 
multicollinearity. The relationship is described as: 
 

𝐹. =

𝑅1#,1!,…,1$
!

𝑝 − 2
1 − 𝑅1#,1!,…,1$

!

𝑛 − 𝑝 + 1

~𝐹(%,!,<,%&"), 

where, 𝐹∗ = 𝐹%,!,<,%&". If 𝐹. > 𝐹∗, then it means that the 
regressor 𝑋! is collinear with other regressors and it should 
be dropped from the model (Gujarati and Porter, 2003). 

Farrar w 
It is an F-test for locating the regressors which are 

collinear with others and it makes use of multiple 
correlation coefficients among regressors: 
 

𝑤. =
𝑅.!

1 − 𝑅.!
_
𝑛 − 𝑝
𝑝 − 1`~𝐹(<,%,%,") 

 
If 𝑤. > 𝐹(<,%,%,"), there is indication of considerable 

collinearity (Farrar and Glauber, 1967). 
Most of the overalland individual measures to detect 

multicollinearity described above are included in the R 
mctest package, which mainly implements functions 
for detecting multicollinearity between covariates 
using the omcdiag () functions in the case of general 
measures and imcdiag () for individual measurements 
(Imdadullah et al., 2016). 

Simulation Studies  

Simulation I 
The primary objective of the initial Monte Carlo 

simulation study is to accomplish the following: (a) 
Demonstrate the application of collinearity tests; (b) 
Determine the accuracy rate of correctly identifying 
collinearity cases using collinearity indices; (c) Compute 
the Mean Squared Error (MSE) of the regression 
coefficient estimators; and (d) Compare various widely-
used overall and individual collinearity measures. The 
commonly utilized comprehensive measures include the 
Farrar-Glauber (FG) test, Determinant of the matrix X’X 
(DE), Red Indicator (RI), Sum of Reciprocals of 
eigenvalues (SR), Theil Indicator (TI) and Condition 
Number (CN). On the other hand, the prevalent individual 
measures consist of VIF, Tolerance Limit (TL), WI and FI 
statistics, Leamer Indicator (LI), Corrected VIF (CVIF) 
and Klein Indicator (KI). It should be noted that the 
standard indices mentioned are implemented in the R 
package mctest. For more comprehensive information, 
please refer to the study conducted by Imdadullah et al. 
(2016) and the references provided therein. The 
simulation is grounded on the linear regression model, 
which is formally stated as: 
 

𝑌 = 𝛽; + 𝛽"𝑋" + 𝛽!𝑋! + 𝛽@𝑋@ + 𝜀 
 
where the random error 𝜀 is generated from the N(0,1) 
distribution. 

Three covariates 𝑋", 𝑋! and 𝑋@, where $𝑋@ = 𝑘𝑋!, with 
𝑘 ∈ {1/4, 2} were considered. Three distributions are used 
to generate 𝑋# and 𝑋": uniform, normal and exponential. 
We set 𝛽; = 0, 𝛽" = 1, 𝛽! = 1 and 𝛽@ = 1, considering 
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10000 simulations and six sample sizes: 𝑛 ∈
{7, 10, 20, 30, 50, 100}. Furthermore, we assume the linear 
model with heteroscedastic and homoscedastic errors. 

Simulation II 
A second simulation study is conducted to consider the 

effects of outlier contamination on the percentage of 
correctly identified collinearity cases by two of the current 
indicators, overall measure FG and individual measure FI. 

In the scenario, a linear model includes three 
covariates, labeled 𝑋", 𝑋! and 𝑋@,. The first two covariates, 
𝑋" and 𝑋!, originate from a normal distribution. The third 
covariate, 𝑋$, is defined as a multiple of 𝑘𝑋!, specifically 
with 𝑘 ∈ {1/4, 2} were considered. 

The random errors 𝜀, are generated from the N(0,1) 
distribution but are contaminated at random with 5, 10, 15 
and 20% of outliers which are generated from the N(0,4) 
distribution. The simulations are carried out for sample 
size 𝑛 ∈ {7, 10, 20, 30, 50, 100}. 

Application to Real-World Data Sets  

Corn Data 
To manage corn production, it is important to estimate 

the yield potential. To do this, the grain yield, 𝑌, is 
considered as a function of the covariates: Distance 
between rows, 𝑋", number of corncobs per m2, 𝑋! and 
number of grains per corncob, 𝑋@. The objective is to build 
a model with the yield of corn as the response and using 
the other measurements as covariates. The fitted model 
can then be used to predict corn yield in future years. 
 

 
 
Fig. 1: Cachama (Colossoma macropomum) 
 

 
 
Fig. 2: Landmarks used for extracting truss measurements from 

C. macropomum 

Table 1: Truss measurements from C. macropomum specimens 
Tip of snout to end of epiphyseal sulcus  
Tip of snout to insertion of pectoral fin 
Anterior edge of the epiphyseal sulcus to the end of the 
epiphyseal sulcus 
Anterior edge of the epiphyseal sulcus at the insertion of the 
pectoral fin 
Anterior edge of the epiphyseal sulcus when articulating 
Articulate to insertion of pectoral fin 
Posterior edge of epiphyseal sulcus to end of dorsal fin 
Posterior edge of the epiphyseal sulcus at the insertion of the 
pelvic fin 
Posterior edge of the epiphyseal sulcus to the insertion of the 
pectoral fin 
Posterior edge of the epiphyseal groove when articulating 
Insertion of pectoral fin to insertion of pelvic fin 
Dorsal fin base 
Anterior edge of dorsal fin to anterior edge of anal fin  
Anterior edge of dorsal fin to insertion of pelvic fin  
Anterior edge of dorsal fin to insertion of pectoral fin 
Insertion of pelvic fin to end of anal fin 
Posterior edge of dorsal fin to the fatty fin 
Posterior edge of dorsal fin to posterior edge of anal fin  
Posterior edge of dorsal fin to anterior edge of anal fin 
Posterior edge of dorsal fin to insertion of pelvic fin 
Anal fin base 
Posterior edge of the fatty fin to the last scale of the lateral line 
Posterior edge of fatty fin to posterior edge of anal fin  
Posterior edge of the fatty fin to the anterior border of the anal 
fin 
Posterior edge of the fatty fin to the anterior border of the anal 
fin 
Eye diameter 
Head length  
Fat fin base 

 
Fish Morphology 

The present study involved the analysis of 92 
specimens of Colossoma macropomum (refer to Fig. 1) 
obtained from artificial ponds located at the Papelón fish 
station in Venezuela. The specimens had an average 
weight of 600 g. The study employed the "Truss protocol" 
or "trusses" approach proposed by Strauss and Bookstein 
(1982). This method enables a comprehensive 
reconstruction of the shape by utilizing the distances 
between homologous anatomical landmarks, as presented 
in Table 1 and Fig. 2. The landmarks are connected by 
distances that create a sequence of uninterrupted 
quadrilaterals, each with its own internal diagonals (refer 
to Fig. 2). This arrangement enables the identification of 
variations in shape along the vertical, horizontal and 
oblique orientations. 
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Results and Discussion 
Simulation I 

Tables 2-7 report the percentage of correctly 
identified collinearity cases for the overall and 
individual collinearity measures, whereas Table 8 
presents the empirical mses of the estimators for the 
regression coefficients. From Tables 2-7, using 
uniform, normal and exponential distributions for 𝑋# 
and 𝑋" and with heteroscedastic and homoscedastic 
errors, note that for the FG (overall) and Fi (individual) 
collinearity indices, the percentage of cases of 
collinearity correctly identified exceeds the values for 
all the other measures and that the percentage increases 
as 𝑛 increases. 

In Table 8, using uniform, normal and exponential 
distributions for 𝑋" and 𝑋!, observe that the empirical 
MSE of the estimators of the regression coefficients 

decreases as the sample size increases, which shows the 
empirical consistency of the OLS estimators of the 
regression coefficients. The three scenarios considered 
(uniform, normal and exponential distributions) produce 
very particular results in relation to the empirical MSE of 
𝛽V@, which measures the effect of the covariate 𝑋$, 
expressed as a linear combination of 𝑋# and 𝑋". This 
estimator (𝛽V@) has an MSE close to zero, in addition to 
being the smallest in comparison to the MSE of the other 
three estimators (𝛽V;, 𝛽V"and 𝛽V!). In summary, this 
simulation study quantifies the effect of the degree of 
collinearity on the collinearity measures. In particular, the 
FG and Fi collinearity indices more robust as both sample 
size and collinearity degree increase. This is a major 
advantage since collinearity is a matter of degree and not 
simply presence or absence of collinearity. Likewise, the 
results show the superiority of these indices compared to 
the other used measures. 

 
Table 2: Percentage of correctly identified Collinearity cases, for various values of 𝑘 and 𝑛, where 𝑋$ and 𝑋" follow uniform distributions, 𝑋% = 𝑘𝑋" 

and with heteroscedastic errors 

   % of correct collinearity    
𝑋% Collinearity  --------------------------------------------------------------------------------------------------------------------- 
= 𝑘𝑋" measurement Index or test n = 7 n = 10 n = 20 n = 30 n = 50 n = 100 

𝑘 = 1/4 Overall FG 0.0057 0.0353 0.1527 0.2677 0.4821 0.8385 
  Det 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 
  Red Ind 0.2621 0.1148 0.0125 0.0013 0.0000 0.0000 
  Sum lambda 0.0494 0.0061 0.0000 0.0000 0.0000 0.0000 
  Theil 0.0422 0.0066 0.0000 0.0000 0.0000 0.0000 
  CN 0.0687 0.0161 0.0003 0.0000 0.0000 0.0000 
 Individual VIF 0.0105 0.0009 0.0000 0.0000 0.0000 0.0000 
  TOL 0.0105 0.0009 0.0000 0.0000 0.0000 0.0000 
  Wi 0.0095 0.0037 0.0009 0.0006 0.0013 0.0082 
  Fi 0.2411 0.3411 0.6017 0.7543 0.9132 0.9940 
  Leamer 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
  CVIF 0.0132 0.0168 0.0295 0.0356 0.0441 0.0495 
  Klein 0.0152 0.0024 0,000 0.0441 0.0495 0.0000 
𝑘 = 2 Overall FG 0.3348 0.9734 1.0000 1.0000 1.0000 1.0000 
  Det 0.0581 0.0078 0.0000 0.0000 0.0000 0.0000 
  Red Ind 0.9822 0.9888 0.9883 0.9997 1.0000 1.0000 
  Sum lambda 0.8534 0.8452 0.8698 0.8819 0.9296 0.9737 
  Theil 0.1886 0.0621 0.0022 0.0000 0.0000 0.0000 
  CN 0.9970 0.9989 1.0000 1.0000 1.0000 1.0000 
 Individual VIF 0.6819 0.6281 0.5488 0.5065 0.4552 0.3862 
  TOL 0.6819 0.6281 0.5488 0.5065 0.4552 0.3862 
  Wi 0.6536 0.8497 0.9990 1.0000 1.0000 1.0000 
  Fi 0.9943 0.9999 1.0000 1.0000 1.0000 1.0000 
  Leamer 0.0295 0.0037 0.0000 0.0000 0.0000 0.0000 
  CVIF 0.0009 0.0002 0.0001 0.0000 0.0000 0.0000 
  Klein 0.1386 0.1052 0.0356 0.0130 0.0013 0.0000 
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Table 3: Percentage of correctly identified Collinearity cases, for various values of 𝑘 and 𝑛, where 𝑋$ and 𝑋" follow uniform distributions, 𝑋% = 𝑘𝑋" 
and with homoscedastic errors 

   % of correct collinearity 
𝑋% =   Collinearity  ------------------------------------------------------------------------------------------------------------------- 
𝑘𝑋" measurement Index or test n = 7 n = 10 n = 20 n = 30 n = 50 n = 100 
𝑘 = 1/4 Overall FG 0.0052 0.0242 0.0862 0.1361 0.2369 0.5006 
  Det 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 
  Red Ind 0.2202 0.0836 0.0067 0.0009 0.0000 0.0000 
  Sum lambda 0.0421 0.0047 0.0000 0.0000 0.0000 0.0000 
  Theil 0.0518 0.0119 0.0002 0.0000 0.0000 0.0000 
  CN 0.0192 0.0024 0.0000 0.0000 0.0000 0.0000 
 Individual VIF 0.0073 0.0006 0.0000 0.0000 0.0000 0.0000 
  TOL 0.0073 0.0006 0.0000 0.0000 0.0000 0.0000 
  Wi 0.0065 0.0027 0.0002 0.0000 0.0002 0.0001 
  Fi 0.1939 0.2541 0.4412 0.5643 0.7347 0.9196 
  Leamer 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  CVIF 0.0177 0.0214 0.0324 0.0388 0.0449 0.0619 
  Klein 0.0230 0.0060 0.0001 0.0000 0.0000 0.0000 
𝑘 = 2 Overall FG 0.1401 0.8255 1.0000 1.0000 1.0000 1.0000 
  Det 0.0177 0.0017 0.0000 0.0000 0.0000 0.0000 
  Red Ind 0.9157 0.9084 0.9085 0.9122 0.9331 0.9684 
  Sum lambda 0.5979 0.4828 0.2997 0.2087 0.1133 0.0313 
  Theil 0.1618 0.0555 0.0023 0.0000 0.0000 0.0000 
  CN 0.8662 0.8411 0.8365 0.8374 0.8769 0.9214 
 Individual VIF 0.3787 0.2427 0.0702 0.0292 0.0040 0.0000 
  TOL 0.3787 0.2427 0.0702 0.0292 0.0040 0.0000 
  Wi 0.3506 0.4866 0.9282 0.9963 1.0000 1.0000 
  Fi 0.9641 0.9970 1.0000 1.0000 1.0000 1.0000 
  Leamer 0.0077 0.0004 0.0000 0.0000 0.0000 0.0000 
  CVIF 0.0063 0.0025 0.0001 0.0000 0.0000 0.0000 
  Klein 0.1274 0.0935 0.0286 0.0097 0.0008 0.0000 
 
Table 4: Percentage of correctly identified Collinearity cases, for various values of 𝑘 and 𝑛, where 𝑋$ and 𝑋" follow normal distributions, 𝑋% = 𝑘𝑋" 

and with heteroscedastic errors 
   % of correct collinearity 
 𝑋% =  Collinearity  ------------------------------------------------------------------------------------------------------------------- 
𝑘𝑋" measurement Index or test n = 7 n = 10 n = 20 n = 30 n = 50 n = 100 
𝑘 = 1/4 Overall FG 0.0248 0.2409 0.8410 0.9745 0.9994 1.0000 
  Det 0.0032 0.0000 0.0000 0.0000 0.0000 0.0000 
  Red Ind 0.5676 0.4372 0.2055 0.1054 0.0296 0.0008 
  Sum lambda 0.1798 0.0635 0.0031 0.0006 0.0000 0.0000 
  Theil 0.0531 0.0074 0.0001 0.0000 0.0000 0.0000 
  CN 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 
 Individual VIF 0.0724 0.0180 0.0003 0.0000 0.0000 0.0000 
  TOL 0.0724 0.0180 0.0003 0.0000 0.0000 0.0000 
  Wi 0.0663 0.0574 0.1277 0.2829 0.7156 0.9984 
  Fi 0.6328 0.8448 0.9920 0.9998 1.0000 1.0000 
  Leamer 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 
  CVIF 0.0030 0.0018 0.0008 0.0002 0.0001 0.0000 
  Klein 0.0049 0.0002 0.0000 0.0000 0.0000 0.0000 
𝑘 = 2 Overall FG 0.9335 0.9998 1.0000 1.0000 1.0000 1.0000 
  Det 0.5883 0.4866 0.2877 0.0230 0.0991 0.0245 
  Red Ind 0.9997 0.9999 1.0000 1.0000 1.0000 1.0000 
  Sum lambda 0.9974 0.9995 1.0000 1.0000 1.0000 1.0000 
  Theil 0.2354 0.0804 0.0027 0.0002 0.0000 0.0000 
  CN 0.2376 0.1287 0.0275 0.0067 0.0003 0.0000 
 Individual VIF 0.9970 0.9977 0.9999 1.0000 1.0000 1.0000 
  TOL 0.9970 0.9977 0.9999 1.0000 1.0000 1.0000 
  Wi 0.9895 0.9995 1.0000 1.0000 1.0000 1.0000 
  Fi 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 
  Leamer 0.4959 0.4111 0.2436 0.1746 0.0842 0.0219 
  CVIF 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
  Klein 0.1533 0.1063 0.0370 0.0168 0.0014 0.0000 
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Table 5: Percentage of correctly identified Collinearity cases, for various values of 𝑘 and 𝑛, where 𝑋$ and 𝑋" follow normal distributions, 𝑋% = 𝑘𝑋" 
and with homoscedastic errors 

   % of correct collinearity    
𝑋% = Collinearity  ------------------------------------------------------------------------------------------------------------------- 
𝑘𝑋" measurement Index or test n = 7 n = 10 n = 20 n = 30 n = 50 n = 100 
𝑘 = 1/4 Overall FG 0.0043 0.0234 0.0844 0.1374 0.2411 0.4974 
  Det 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 
  Red Ind 0.2238 0.0833 0.0059 0.0006 0.0000 0.0008 
  Sum lambda 0.0447 0.0034 0.0000 0.0000 0.0000 0.0000 
  Theil 0.0555 0.0130 0.0001 0.0000 0.0000 0.0000 
  CN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 Individual VIF 0.0079 0.0004 0.0000 0.0000 0.0000 0.0000 
  TOL 0.0079 0.0004 0.0000 0.0000 0.0000 0.0000 
  Wi 0.0072 0.0014 0.0000 0.0003 0.0002 0.0004 
  Fi 0.1918 0.2526 0.4338 0.5633 0.7420 0.9201 
  Leamer 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 
  CVIF 0.0195 0.0217 0.0319 0.0373 0.0418 0.0620 
  Klein 0.0277 0.0063 0.0000 0.0000 0.0000 0.0000 
𝑘 = 2 Overall FG 0.1396 0.7817 0.9994 1.0000 1.0000 1.0000 
  Det 0.0187 0.0011 0.0000 0.0000 0.0000 0.0000 
  Red Ind 0.8805 0.8795 0.8773 0.8887 0.9102 0.9465 
  Sum lambda 0.5559 0.4653 0.3052 0.2232 0.1305 0.0433 
  Theil 0.1631 0.0532 0.0018 0.0002 0.0000 0.0000 
  CN 0.0147 0.0011 0.0000 0.0000 0.0000 0.0000 
 Individual VIF 0.3514 0.2446 0.0912 0.0407 0.0081 0.0001 
  TOL 0.3514 0.2446 0.0912 0.0407 0.0081 0.0001 
  Wi 0.3277 0.4657 0.8842 0.9918 1.0000 1.0000 
  Fi 0.9385 0.9935 1.0000 1.0000 1.0000 1.0000 
  Leamer 0.0090 0.0009 0.0000 0.0000 0.0000 0.0000 
  CVIF 0.0081 0.0058 0.0012 0.0002 0.0000 0.0000 
  Klein 0.1293 0.0862 0.0261 0.0105 0.0008 0.0000 

 
Table 6: Percentage of correctly identified Collinearity cases, for various values of 𝑘 and 𝑛, where 𝑋$ and 𝑋" follow exponential distributions, 𝑋% =

𝑘𝑋" and with heteroscedastic errors 
   % of correct collinearity    
𝑋% = Collinearity  ------------------------------------------------------------------------------------------------------------------ 
𝑘𝑋" measurement Index or test n = 7 n = 10 n = 20 n = 30 n = 50 n = 100 
𝑘 = 1/4 Overall FG 0.0033 0.0175 0.0395 0.0462 0.0510 0.0675 
  Det 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 
  Red Ind 0.1988 0.0582 0.0018 0.0002 0.0000 0.0008 
  Sum lambda 0.0389 0.0030 0.0000 0.0000 0.0000 0.0000 
  Theil 0.1004 0.0315 0.0012 0.0000 0.0000 0.0000 
  CN 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
 Individual VIF 0.0044 0.0001 0.0000 0.0000 0.0000 0.0000 
  TOL 0.0044 0.0001 0.0000 0.0000 0.0000 0.0000 
  Wi 0.0038 0.0007 0.0000 0.0000 0.0002 0.0004 
  Fi 0.1553 0.1682 0.2513 0.2881 0.3397 0.4255 
  Leamer 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  CVIF 0.0312 0.0268 0.0200 0.0101 0.0031 0.0002 
  Klein 0.0663 0.0294 0.0027 0.0000 0.0001 0.0000 
𝑘 = 2 Overall FG 0.0076 0.0608 0.2801 0.4617 0.7446 0.9763 
  Det 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 
  Red Ind 0.3127 0.1548 0.0294 0.0073 0.0003 0.0000 
  Sum lambda 0.0727 0.0106 0.0001 0.0000 0.0000 0.0000 
  Theil 0.1174 0.0411 0.0032 0.0001 0.0000 0.0000 
  CN 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
 Individual VIF 0.0185 0.0015 0.0000 0.0000 0.0000 0.0000 
  TOL 0.0185 0.0015 0.0000 0.0000 0.0000 0.0000 
  Wi 0.0156 0.0061 0.0057 0.0087 0.0211 0.1567 
  Fi 0.3126 0.4388 0.7391 0.8787 0.9728 0.9996 
  Leamer 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 
  CVIF 0.0337 0.0405 0.0502 0.0553 0.0613 0.0676 
  Klein 0.0887 0.0534 0.0118 0.0034 0.0001 0.0000 



Danny Villegas Rivas et al. / OnLine Journal of Biological Sciences 2024, 24 (2): 195.207 
DOI: 10.3844/ojbsci.2024.195.207 
 

203 

Table 7: Percentage of correctly identified Collinearity cases, for various values of 𝑘 and 𝑛, where 𝑋$ and 𝑋" follow exponential distributions, 𝑋% =
𝑘𝑋" and with homoscedastic errors 

   % of correct collinearity 
 𝑋% =  Collinearity  ------------------------------------------------------------------------------------------------------------------- 
𝑘𝑋" measurement Index or test n = 7 n = 10 n = 20 n = 30 n = 50 n = 100 
𝑘 = 1/4 Overall FG 0.0045 0.0250 0.0848 0.1368 0.2364 0.4937 
  Det 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 
  Red Ind 0.2308 0.0791 0.0072 0.0009 0.0000 0.0000 
  Sum lambda 0.0467 0.0041 0.0000 0.0000 0.0000 0.0000 
  Theil 0.0576 0.0109 0.0002 0.0000 0.0000 0.0000 
  CN 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
 Individual VIF 0.0066 0.0002 0.0000 0.0000 0.0000 0.0000 
  TOL 0.0066 0.0002 0.0000 0.0000 0.0000 0.0000 
  Wi 0.0056 0.0012 0.0005 0.0002 0.0002 0.0008 
  Fi 0.2001 0.2490 0.4361 0.5461 0.7195 0.9141 
  Leamer 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
  CVIF 0.0204 0.0229 0.0284 0.0360 0.0419 0.0579 
  Klein 0.0283 0.0069 0.0000 0.0000 0.0000 0.0000 
𝑘 = 2 Overall FG 0.1465 0.6695 0.9901 0.9997 1.0000 1.0000 
  Det 0.0253 0.0024 0.0000 0.0000 0.0000 0.0000 
  Red Ind 0.8083 0.7887 0.7723 0.7793 0.8020 0.8554 
  Sum lambda 0.4885 0.3990 0.2990 0.2527 0.1782 0.1022 
  Theil 0.1611 0.0499 0.0026 0.0002 0.0000 0.0000 
  CN 0.0028 0.0001 0.0000 0.0000 0.0000 0.0000 
 Individual VIF 0.3219 0.2332 0.1287 0.0800 0.0314 0.0062 
  TOL 0.3219 0.2332 0.1287 0.0800 0.0314 0.0062 
  Wi 0.3030 0.3965 0.7696 0.9447 0.9992 1.0000 
  Fi 0.8621 0.9655 0.9998 1.0000 1.0000 1.0000 
  Leamer 0.0129 0.0011 0.0000 0.0000 0.0000 0.0000 
  CVIF 0.0133 0.0092 0.0039 0.0020 0.0002 0.0000 
  Klein 0.1229 0.0870 0.0264 0.0095 0.0008 0.0000 
 
Table 8: Empirical MSE of the indicated parameter estimator in a regression model, using the specified 𝑛 and a distribution for 𝑋" and 𝑋!  
 Uniform    Normal    Exponential 
 ---------------------------------------------- ------------------------------------------ ----------------------------------------------- 
𝑛 𝛽V; 𝛽V" 𝛽V! 𝛽V@ 𝛽V; 𝛽V" 𝛽V! 𝛽V@ 𝛽V; 𝛽V" 𝛽V! 𝛽V@ 
7 1.94 0.64 0.69 0.17 2.45 0.70 0.34 0.15 0.81 0.78 1.11 0.14 
10 1.35 0.58 0.62 0.12 1.88 0.37 0.28 0.11 0.55 0.41 0.82 0.11 
20 0.78 0.35 0.35 0.06 1.10 0.21 0.16 0.06 0.36 0.23 0.47 0.06 
30 0.59 0.28 0.27 0.05 0.83 0.16 0.13 0.05 0.27 0.18 0.34 0.05 
50 0.45 0.20 0.22 0.04 0.67 0.12 0.10 0.03 0.20 0.13 0.25 0.03 
100 0.23 0.09 0.10 0.02 0.46 0.03 0.06 0.01 0.14 0.02 0.14 0.01 
 
Table 9: Percentage of correctly identified collinearity cases in a linear modelo contaminated with the indicated percentage of outliers, for various 

values of 𝑘 and 𝑛, where 𝑋$ and 𝑋" follow normal distributions, 𝑋% = 𝑘𝑋" and with homoscedastic errors 
    % of correct collinearity 
 𝑋% = Collinearity  --------------------------------------------------------------------------------------------------------- 
% Outlier 𝑘𝑋" measurement Index or test n = 7 n = 10 n = 20 n = 30 n = 50 n = 100 
5 𝑘 = 1/4 Overall FG 0.0042 0.0244 0.0832 0.1427 0.2431 0.4933 
  Individual Fi 0.1986 0.2644 0.4361 0.5696 0.7460 0.9214 
 𝑘 = 2 Overall FG 0.1432 0.7867 0.9996 1.0000 1.0000 1.0000 
  Individual Fi 0.9427 0.9937 1.0000 1.0000 1.0000 1.0000 
10 𝑘 = 1/4 Overall FG 0.0042 0.0244 0.0832 0.1427 0.2431 0.4933 
  Individual Fi 0.1986 0.2644 0.4361 0.5696 0.7460 0.9214 
 𝑘 = 2 Overall FG 0.1432 0.7867 0.9996 1.0000 1.0000 1.0000 
  Individual Fi 0.9427 0.9937 1.0000 1.0000 1.0000 1.0000 
15 𝑘 = 1/4 Overall FG 0.0042 0.0244 0.0832 0.1427 0.2431 0.4933 
  Individual Fi 0.1986 0.2644 0.4361 0.5696 0.7460 0.9214 
 𝑘 = 2 Overall FG 0.1432 0.7867 0.9996 1.0000 1.0000 1.0000 
  Individual Fi 0.9427 0.9937 1.0000 1.0000 1.0000 1.0000 
20 𝑘 = 1/4 Overall FG 0.0042 0.0244 0.0832 0.1427 0.2431 0.4933 
  Individual Fi 0.1986 0.2644 0.4361 0.5696 0.7460 0.9214 
 𝑘 = 2 Overall FG 0.1432 0.7867 0.9996 1.0000 1.0000 1.0000 
  Individual Fi 0.9427 0.9937 1.0000 1.0000 1.0000 1.0000 
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Table 10: Collinearity diagnostics in a linear model with corn data 
Collinearity Index or test Value p-value 
Overall FG 60.2073 < .000001 
 Det 0.0197 NS 
 Red Ind 0.8520 * 
 Sum lambda 41.7184 * 

 Theil 0.6679 * 
 CN 7.0974 NS 
Individual F1 38.5740 .0058698 
 F2 370.6573 .0002019 
 F3 287.6991 .0002951 
* and p<.05 (Collinearity identified); ns (unidentified 
collinearity) 
 
Table 11: Overall collinearity diagnosis in patterns of 

morphological covariance in C. macropomum species 
Index or test  Collinearity diagnosis 
Determinante * 
Farrar-Glauber * 
Red indicator * 
Suma de Lambda * 
Theil indicator NS 
Número de codición * 
* (Collinearity identified); NS (unidentified collinearity) 
 
Table 12: Individual collinearity diagnosis in patterns of morphological 

covariance in C. macropomum species 
Landmarks 𝑉𝐼𝐹 𝐹! 
Tip of snout to end of epiphyseal sulcus  * * 
Tip of snout to insertion of pectoral fin * * 
Anterior edge of the epiphyseal sulcus to the end  
of the epiphyseal sulcus * * 
Anterior edge of the epiphyseal sulcus at the  
insertion of the pectoral fin * * 
Anterior edge of the epiphyseal sulcus when  
articulating * * 
Articulate to insertion of pectoral fin * * 
Posterior edge of epiphyseal sulcus to end of dorsal fin * * 
Posterior edge of the epiphyseal sulcus at the insertion  
of the pelvic fin * * 
Posterior edge of the epiphyseal sulcus to the  
insertion of the pectoral fin NS * 
Posterior edge of the epiphyseal groove when  
articulating * * 
Insertion of pectoral fin to insertion of pelvic fin * * 
Dorsal fin base * * 
Anterior edge of dorsal fin to anterior edge of anal fin  NS * 
Anterior edge of dorsal fin to insertion of pelvic fin  * * 
Anterior edge of dorsal fin to insertion of pectoral fin NS * 
Insertion of pelvic fin to end of anal fin NS * 
Posterior edge of dorsal fin to the fatty fin * * 
Posterior edge of dorsal fin to posterior edge of anal fin  * * 
Posterior edge of dorsal fin to anterior edge of anal fin NS * 
Posterior edge of dorsal fin to insertion of pelvic fin * * 
Anal fin base * * 
Posterior edge of the fatty fin to the last scale of the  
lateral line NS * 
Posterior edge of fatty fin to posterior edge of anal fin  * * 
Posterior edge of the fatty fin to the anterior border of  
the anal fin * * 
Posterior edge of the fatty fin to the anterior border of 
the anal fin * * 
Eye diameter * * 
Head length  * * 
Fat fin base NS * 

* (Collinearity identified); NS (unidentified collinearity) 

Simulations II 
The results, shown in Table 9, do not provide any 

evidence for an effect from outliers on collinearity 
identification using the collinearity indices (individual 
and overall) since, as the proportion of outliers increases, 
the percentage of collinearity cases correctly identified 
remains stable. In summary, the results show the 
robustness of the FG (overall) and Fi (individual) 
collinearity indices in presence of outliers. 

Aplication to Real-World Data Sets 

Corn Data 

Figure 3 displays scatter-plots for all the variables 
and their corresponding correlations. This figure 
indicates that 𝑌 has moderate or high correlation with 
each covariate, suggesting that a multiple linear 
regression model is suitable. However, high 
correlations are also found between some covariates, 
indicating the likely presence of collinearity. Table 10 
shows the corresponding values of the collinearity 
diagnostics. We include the currently used general 
collinearity measures and an individual collinearity 
measure 𝐹.. The 𝐹𝐺 test, red indicator, sum lambda and 
Theil confirming the presence of collinearity. 
Similarly, since Fi provides p<.01 for each covariate: 
𝑋", 𝑋! and 𝑋% it is assumed that these covariates are 
collinear, as indicated by Farrar and Glauber (1967). 
This allows us to infer that the three covariates are 
involved in one or more linear dependency 
relationships between them. When comparing the 
indices FG and Fi with the other measures, note that are 
shown as powerful tools for the study of collinearity, 
since they verify the presence of collinearity and at the 
same time identify whether a covariate is collinear or not. 

Morphology Fish (C. macropomun) 

Table 11, most of the diagnostic measures, except 
for the Theil indicator, identify that there are redundant 
characteristics associated with morphological 
covariation patterns in C. macropomum specimens, that 
is, there is multicollinearity, which can contribute to 
the entropy of the models used to identify patterns of 
morphological covariation of this species. Table 12, 
VIFs can modify most of the distances measured on the 
lateral profile of these examples are attributed to 
redundant morphological characteristics. Only 
morphological characteristics tales like; posterior edge 
of the epiphyseal sulcus at the insertion of the fin 
pectoral variables, anterior edge of the dorsal fin to the 
anterior edge of the anal fin, anterior edge of the dorsal 
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fin at the insertion of the pectoral fin, insertion of the 
pelvic fin at the anterior edge anal fin, posterior edge 
of dorsal fin to anterior edge of anal fin, posterior edge 
of fat fin to last scale of lateral line and base of fat fin 
not direct redundant morphological information, saber, 
not son causing multicollinearity (Fig. 4). These 
variables are associated with morphological 
covariation patterns that make the difference in the 
head area, in the area of the bases of the fins of the 
abdomen and in the anterior part of the fish. The results 
of the farra-glauber test (individual diagnostic measure 
of multicollinearity) do not perform well in relation to 
the identification of the origin of multicollinearity, 
since it is not capable of identifying non-redundant 
covariates associated with the morphology of the 
examples C. macropomum. 
 

 
 
Fig. 3: Scatter-plots and their correlations for the indicated 

variables with corn data 
 

 
 
Fig. 4: Non-redundant covariates (landmarks) in the truss 

protocol on C. macropomum 

Conclusion 
The results do not provide any evidence for an effect 

from outliers on collinearity identification using the 
collinearity indices (individual and overall). The 𝐹𝐺 and 𝐹% 
collinearity indices more robust as both sample size and 
collinearity degree increase. On the fitted models on corn 
data and fish morphology the most of overall collinearity 
indices confirmed the presence of collinearity. However, 
the VIF (individual measure) had a better performance on 
the fitted model on the morphology of C. macropomum. 
These results suggest an effect of the number of model 
parameters (p) on the performance of the collinearity 
indices (individual and general), therefore a more 
exhaustive study that considers models with a greater 
number of parameters is recommended. 
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Appendix 1 

R code for collinearity diagnosis (individual and 
overall) in agricultural trials. 
 
> library('mctest') 
> x <- Data.morfometria[, -1] 
> y <- Data.morfometria[, 1] 
> omcdiag (x, y, detr = 0.001, red = 0.6, conf = 0.99, 
theil = 0.6, cn = 15) 
> omcdiag (x, y, Inter = FALSE) 
> omcdiag (x, y) 
> imcdiag(x, y, corr = TRUE) 
> imcdiag(x, y) 
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