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Abstract: Controlling 6-Degree-of-Freedom (6-DOF) robotic arms for
precise manipulation tasks is challenging due to kinematic redundancy
and the complexity of existing simulation environments like MuJoCo or
ROS-Gazebo. This paper presents ArmReach6DOFEnv, a lightweight,
open-source simulation framework built on PyBullet for rapid
Reinforcement Learning (RL) prototyping on 6-DOF robotic arms.
Using a Universal Robot Description Format (URDF) model, the
environment supports a continuous state-action space for a 3D reaching
task, with a reward function balancing accuracy and control effort. We
evaluate two state-of-the-art RL algorithms, Proximal Policy
Optimization (PPO) and Deep Deterministic Policy Gradient (DDPG),
implemented via Stable-Baselines3, comparing their convergence,
success rate, and motion smoothness. Experimental results demonstrate
DDPG’s superior performance (69% success rate vs. PPO’s 34%) and
smoother trajectories, despite PPO’s faster convergence. This
framework enables accessible RL experimentation on resource-
constrained systems, with potential for future sim-to-real transfer.
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and-error, optimizing reward functions that balance
multiple objectives without explicit IK computation
(Levine ef al., 2016). Despite its potential, RL adoption
for 6-DOF arm control is hindered by the lack of
lightweight, user-friendly simulation platforms. To
address this gap, we propose ArmReach6DOFEnv, a
PyBullet-based (Coumans and Bai, 2016), Gym-
compatible environment tailored for rapid RL
prototyping on a 6-DOF reaching task. Integrated with
Stable-Baselines3 (Raffin et al., 2021), our framework
uses a URDF-modeled arm and evaluates two RL
algorithms: PPO (Schulman et al., 2017) and DDPG
(Fujimoto et al., 2018). Our contributions include:

Introduction

Six-Degree-of-Freedom (6-DOF) robotic arms are
essential in applications such as industrial automation,
medical robotics, and service robotics due to their ability
to perform complex manipulation tasks in 3D space
(Chiaverini et al., 2008). However, tasks like reaching a
specific 3D point introduce kinematic redundancy, as the
six revolute joints exceed the three degrees of freedom
required for positioning (Craig, 2017). This redundancy
complicates traditional Inverse Kinematics (IK) solvers,
which struggle with selecting optimal configurations,
handling singularities, and incorporating dynamic
constraints like energy efficiency or joint limits (Aristidou
and Lasenby, 2009). Existing simulation environments,

such as MuJoCo (Todorov et al., 2012) or ROS-Gazebo
(Koenig and Howard, 2004), often require significant
computational resources and complex setups, limiting their
accessibility for rapid RL prototyping (Zhu et al., 2020).
Reinforcement Learning (RL) offers a promising
alternative by learning control policies through trial-
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Publications

(1) An open-source, lightweight environment for 6-DOF
arm reaching tasks

(2) A comparative analysis of PPO and DDPG in
handling kinematic redundancy

(3) A platform for accessible RL experimentation with
potential sim-to-real applications
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This paper is organized as follows: The second
reviews related work on IK, RL, and simulation
environments. The third section details the
ArmReach6DOFEnv  methodology, including the
kinematic model. The forth section presents experimental
results, comparing PPO and DDPG. The fifth section
discusses findings, limitations, and future directions. The
final section concludes with objectives achieved,
limitations, and implications.

Related Work

Kinematic redundancy in 6-DOF robotic arms, where
multiple joint configurations achieve the same end-
effector position, enables optimization of secondary
objectives like energy efficiency or obstacle avoidance
(Chiaverini ef al., 2008). Kinematic redundancy refers to
the excess degrees of freedom in a manipulator relative to
the task requirements (Craig, 2017). Traditional IK
methods include analytical solutions, which require
manual configuration selection (Craig, 2017), and
numerical methods, like Jacobian-based solvers, which are
computationally expensive and sensitive to singularities
(Aristidou and Lasenby, 2009). Advanced techniques, such
as quadratic programming (Kanoun et al., 2011), demand
problem-specific tuning, limiting rapid prototyping.

Reinforcement Learning (RL) is a learning paradigm
where an agent optimizes a reward function through trial-
and-error (Sutton and Barto, 2018). RL has shown promise
in robotic manipulation, with PPO (Schulman ef al., 2017)
offering stability in stochastic environments and DDPG
(Fujimoto et al., 2018) excelling in continuous control
(Zeng et al., 2018). Studies like (Kalakrishnan et al.,
2011) leverage redundancy for tasks like obstacle
avoidance but often use complex setups. Our framework
simplifies this by focusing on a lightweight reaching task.

Simulation environments are critical for RL. MuJoCo
(Todorov et al., 2012) offers accurate physics but high
computational demands. ROS-Gazebo (Koenig and
Howard, 2004) integrates with robotic software but
requires complex configurations (Quigley et al., 2009).
OpenAl Gym (Brockman et al., 2016) lacks lightweight
6-DOF arm options. Robosuite (Zhu et al., 2020) and
PyRobot (Murali ef al., 2019) focus on specific robots,
reducing generalizability. In contrast, PyBullet (Coumans
and Bai, 2016) provides a lightweight, open-source
platform, and Stable-Baselines3 (Raffin et al., 2021)
streamlines RL implementation. Our
ArmReach6DOFEnv combines these for rapid, accessible
RL prototyping.

Materials and Methods

ArmReach6DOFEnv is a custom Gym-compatible
environment built using PyBullet (Coumans and Bai,
2016) for RL prototyping on a 6-DOF robotic arm
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reaching task. This section describes the robot’s kinematic
model, environment design, and RL agents.

Robot Kinematic Model

The 6-DOF arm is modeled using a URDF file,
encapsulating kinematic and dynamic properties. The arm
consists of six revolute joints, each with limits derived
from realistic designs (Craig, 2017). The forward
kinematics map joint angles 8 = [0;, 6,,...,0,] € R® to the
end-effector positionp =[x, y,z ] € R? via:

P, =f0)=T1(01)Tx(6,)...Ts(0) - Py (1)

Where T;(0;) are homogeneous transformation
matrices, and p, is the base frame origin. The state
dynamics are governed by:

0=up,=f0), p,=JO), )

Where u € R is the control input (joint velocities),
and J(6) is the Jacobian matrix. Physical parameters (e.g.,
link masses) are approximated for lightweight arms, with
gravity and contact dynamics enabled in PyBullet
(Coumans and Bai, 2016).

Environment Design: ArmReach6DOFEnv

The environment simulates a reaching task where the
arm’s end-effector moves to a 3D target position.

The RL workflow, illustrated in Fig. 1, shows the
interaction between the RL agent, the PyBullet
environment, and the reward function, providing a clear
overview of the learning process.

Random target:
pER’,

|

Action:
g E[1,1)°

RL Agent Block:
PPO/DDPG
(via Stable-Baselines3)

300 episodes

ArmReach6DOFEnv

ullet;
End-effector position: U2 :
eR’,
Pe State:
8=[8,,0;, ..., 8]
Fig. 1: Reinforcement Learning Workflow in

ArmReach6DOFEnv. The RL agent (PPO or DDPG)
interacts with the PyBullet-based environment, receiving
states (joint angles #, end-effector position p., target
position p;) and outputting actions ( AG ). The
environment updates the 6-DOF arm’s state, and the
reward function computes r,:—d,3 +b, , where
d, =||pe - pt”2 is the Euclidean distance to the target and

b, is a success bonus if d, < 0.05 m
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The environment’s key components are.
State Space: A continuous vector comprising:

- Joint angles: 6 € R®, constrained within limits

- End-effector position: p, € R3, computed via forward
kinematics

- Target position: p, € R?, randomized in a spherical
workspace (radius 0.5m)

- Joint velocities: & € R®, capturing dynamics

Action Space: A continuous 6D vector A8 € [-1, 1]°,
representing relative changes in joint angles, scaled by a
step size and applied via PyBullet’s position control
(Coumans and Bai, 2016).

Further description of the State and Action space can
be found in Table 1.

Reward Function: The reward at timestep ¢ is:

rt:_dt3+bt

(€))

Where d, =|| p,—p t||2 is the Euclidean distance
between the end-effector (p,) and target (p,), and b, = 10.0
is a sparse success bonus if d, < 0.05m (5cm), terminating
the episode. Episodes also terminate after 2048 timesteps
or if joint limits are violated (Levine et al., 2018).

Dynamics: The environment resets with a randomized
target in a 0.5 m-radius spherical workspace, a fixed initial
joint configuration, and zero velocities. PyBullet enforces

collision detection and joint limits (Coumans and Bai,
2016).

RL Agents

PPO and DDPG are implemented using Stable-
Baselines3 (Raffin et al., 2021). PPO uses a Multilayer
Perceptron (MLP) with two 128-unit hidden layers (ReLU
activation), with hyperparameters: Learning rate 3x107%,
discount factor y = 0.99, clipping 0.2, batch size 300, and
updates every 2048 steps (Schulman et al., 2017). DDPG
uses MLPs with two 256-unit hidden layers, with learning
rate 1073, y = 0.99, soft target update 7 = 0.005, batch size
300, and Ornstein-Uhlenbeck noise (o= 0.1) (Fujimoto et al.,
2018). Training runs for 614,400 timesteps (300 episodes,
2048 timesteps each).

Table 1: State and action space components
Component Description

Joint Angles
End-Effector Position
Target Position

6D vector, € R®, within joint limits
3D Cartesian coordinates, p, € R3
3D coordinates, p, € R?, randomized
6D vector, € R®

6D vector, Af € [-1, 1], relative joint
angle changes

Joint Velocities

Action

Experiments
Environment Setup

The 6-DOF arm is simulated in PyBullet (Coumans
and Bai, 2016). The task involves reaching a 3D target
within a 5 cm radius, a tolerance selected to balance
accuracy and convergence speed under our computational
constraints. The state includes joint angles, velocities,
target position, and end-effector-to-target vector. Actions
are relative joint angle changes. Training runs for 300
episodes (justified for sufficient RL exploration
(Schulman et al., 2017)), each capped at 2048 timesteps
(aligned with Stable-Baselines3 defaults (Raffin et al.,
2021)), on an NVIDIA 3060 RTX Mobile GPU using
PyTorch 2.1.

Learning Performance and Convergence

As we can see in Fig. 2, PPO converges faster (episode
177) but achieves a lower final reward (3.0) compared to
DDPG (episode 294, reward 4.95). Convergence is
defined as the moving average reward staying within +5%
of its final value for 100 episodes.

Table 2 shows DDPG’s higher reward but slower
convergence, with PPO exhibiting greater variability.

Success Rate and Goal Reaching

Post-training, policies were tested on 100 episodes with
random targets. Success is defined as reaching within 5 cm.

DDPG achieves a 69% success rate, significantly
outperforming PPO’s 34%, with comparable steps to goal
(Table 3). Figure 3 illustrates a success state of the arm.

PPO vs DDPG - Average Reward

| — ppO
— DDPG

6. meni ll, ,W
it

150
Epochs

®

Performance
>

N)

0 50 100 200 250 300

Fig. 2: Learning curves: Average episode reward vs. training
episodes for PPO (blue) and DDPG (orange)

Table 2: Reward and convergence statistics

Final Average

Algorithm Convergence Episode

Reward
PPO 177+£25 3.0+0.4
DDPG 294418 4.95+0.3
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Joint Trajectory Smoothness

Joint trajectories in successful episodes were analyzed
for smoothness via jerk (time derivative of acceleration).

DDPG maintains lower jerk (0.02 rad/s*) compared to
PPO (0.11 rad/s®), indicating smoother, more physically
plausible trajectories (Fig. 4).

Table 3: Goal-Reaching Performance

Algorithm Success Rate (%)  Average Steps to Goal
PPO 34 15004200
DDPG 69 1450+180

Fig. 3: Simulated 6-DOF arm reaching task in PyBullet,
showing the arm’s trajectory toward a red spherical
target in 3D space

Average Jerk per Episode: PPO vs DDPG

r,/c\'/4\'/'\._‘\ﬂ/4

—e— PPO
DDPG

Average Jerk (rad/s?)

. - . . .
2 4 6 8 10
Episode

Fig. 4: Average joint jerk over time (rad/s*) for PPO (blue) and
DDPG (orange). Lower values indicate smoother
motion

Summary and Insights

The experiments reveal a trade-off between PPO and
DDPG. DDPG outperforms PPO in success rate (69 vs.
34%), final reward (4.95 vs. 3.0), and motion smoothness
(jerk 0.02 vs. 0.11 rad/s*), as summarized in Table 4. PPO
converges faster (episode 177 vs. 294), suitable for rapid
prototyping, but yields suboptimal policies. DDPG’s off-
policy nature and replay buffer enable better exploration
of the sparse reward function, leading to more reliable and
smoother policies (Fujimoto et al., 2018).

Table 4: Goal-Reaching Performance

Alorithm Success Rate Final Reward  Average

£o (%) Jerk (rad/s?)
PPO 34 3.0 0.11
DDPG 69 4.95 0.02
Discussion

The results align with prior RL studies, where off-
policy algorithms like DDPG excel in continuous control due
to experience replay (Fujimoto et al., 2018; Zeng et al.,
2018). Compared to complex simulators like MuJoCo
(Todorov et al., 2012) or IsaacGym, PyBullet’s
lightweight design enables accessible prototyping
(Coumans and Bai, 2016). Limitations include the focus
on a single reaching task, lack of robustness analysis (e.g.,
noise sensitivity), and absence of sim-to-real validation
(Zhu et al., 2020). Future work will extend the framework
to complex tasks (e.g., grasping, obstacle avoidance), test
robustness, and validate on physical arms (Tassa ef al.,
2018).

Conclusion

This study achieved its objectives of developing
ArmReach6DOFEnv and comparing PPO and DDPG,
with DDPG demonstrating superior success rate (69 vs.
34%), reward (4.95 vs. 3.0), and smoothness (jerk 0.02 vs.
0.11 rad/s*). The lightweight framework enables rapid RL
prototyping on resource-constrained systems, with
practical implications for accessible research and
managerial  benefits for  cost-effective  robotic
development. Limitations include the single-task focus
and lack of sim-to-real tests. Future work will explore
multi-task scenarios, robustness, and hardware validation.
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