

© 2025 Ngoc Kim Khanh Nguyen, Anh Thu Mang and Quang Nguyen. This open-access article is distributed under a

Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Mechatronics and Robotics

Research Article

A Lightweight PyBullet-Based Framework for Fast

Reinforcement Learning Prototyping on 6-DOF Robotic Arms

Ngoc Kim Khanh Nguyen1, Anh Thu Mang2 and Quang Nguyen3,4

1Faculty of Basic Sciences, Van Lang University, Ho Chi Minh City, Vietnam
2eWalk Co. Ltd., Ho Chi Minh City, Vietnam
3Department of Physics, International University, VNU-HCM, Ho Chi Minh City, Vietnam
4Viet Nam National University, Ho Chi Minh City, Vietnam

Article history

Received: 28-08-2025

Revised: 16-12-2025

Accepted: 20-01-2026

Corresponding Author:

Ngoc Kim Khanh Nguyen

Faculty of Basic Sciences, Van Lang

University, Ho Chi Minh City,

Vietnam

Email: khanh.nnk@vlu.edu.vn

Abstract: Controlling 6-Degree-of-Freedom (6-DOF) robotic arms for

precise manipulation tasks is challenging due to kinematic redundancy

and the complexity of existing simulation environments like MuJoCo or

ROS-Gazebo. This paper presents ArmReach6DOFEnv, a lightweight,

open-source simulation framework built on PyBullet for rapid

Reinforcement Learning (RL) prototyping on 6-DOF robotic arms.

Using a Universal Robot Description Format (URDF) model, the

environment supports a continuous state-action space for a 3D reaching

task, with a reward function balancing accuracy and control effort. We

evaluate two state-of-the-art RL algorithms, Proximal Policy

Optimization (PPO) and Deep Deterministic Policy Gradient (DDPG),

implemented via Stable-Baselines3, comparing their convergence,

success rate, and motion smoothness. Experimental results demonstrate

DDPG’s superior performance (69% success rate vs. PPO’s 34%) and

smoother trajectories, despite PPO’s faster convergence. This

framework enables accessible RL experimentation on resource-

constrained systems, with potential for future sim-to-real transfer.

Keywords: Reinforcement Learning, 6-DOF Robotic Arm, PyBullet,

PPO, DDPG, Rapid Prototyping

Introduction

Six-Degree-of-Freedom (6-DOF) robotic arms are

essential in applications such as industrial automation,

medical robotics, and service robotics due to their ability

to perform complex manipulation tasks in 3D space

(Chiaverini et al., 2008). However, tasks like reaching a

specific 3D point introduce kinematic redundancy, as the

six revolute joints exceed the three degrees of freedom

required for positioning (Craig, 2017). This redundancy

complicates traditional Inverse Kinematics (IK) solvers,

which struggle with selecting optimal configurations,

handling singularities, and incorporating dynamic

constraints like energy efficiency or joint limits (Aristidou

and Lasenby, 2009). Existing simulation environments,

such as MuJoCo (Todorov et al., 2012) or ROS-Gazebo

(Koenig and Howard, 2004), often require significant

computational resources and complex setups, limiting their

accessibility for rapid RL prototyping (Zhu et al., 2020).

Reinforcement Learning (RL) offers a promising

alternative by learning control policies through trial-

and-error, optimizing reward functions that balance

multiple objectives without explicit IK computation

(Levine et al., 2016). Despite its potential, RL adoption

for 6-DOF arm control is hindered by the lack of

lightweight, user-friendly simulation platforms. To

address this gap, we propose ArmReach6DOFEnv, a

PyBullet-based (Coumans and Bai, 2016), Gym-

compatible environment tailored for rapid RL

prototyping on a 6-DOF reaching task. Integrated with

Stable-Baselines3 (Raffin et al., 2021), our framework

uses a URDF-modeled arm and evaluates two RL

algorithms: PPO (Schulman et al., 2017) and DDPG

(Fujimoto et al., 2018). Our contributions include:

(1) An open-source, lightweight environment for 6-DOF

arm reaching tasks

(2) A comparative analysis of PPO and DDPG in

handling kinematic redundancy

(3) A platform for accessible RL experimentation with

potential sim-to-real applications

Ngoc Kim Khanh Nguyen et al. / Journal of Mechatronics and Robotics 2025, Volume 9: 35.39

DOI: 10.3844/jmrsp.2025.35.39

36

This paper is organized as follows: The second

reviews related work on IK, RL, and simulation

environments. The third section details the

ArmReach6DOFEnv methodology, including the

kinematic model. The forth section presents experimental

results, comparing PPO and DDPG. The fifth section

discusses findings, limitations, and future directions. The

final section concludes with objectives achieved,

limitations, and implications.

Related Work

Kinematic redundancy in 6-DOF robotic arms, where

multiple joint configurations achieve the same end-

effector position, enables optimization of secondary

objectives like energy efficiency or obstacle avoidance

(Chiaverini et al., 2008). Kinematic redundancy refers to

the excess degrees of freedom in a manipulator relative to

the task requirements (Craig, 2017). Traditional IK

methods include analytical solutions, which require

manual configuration selection (Craig, 2017), and

numerical methods, like Jacobian-based solvers, which are

computationally expensive and sensitive to singularities

(Aristidou and Lasenby, 2009). Advanced techniques, such

as quadratic programming (Kanoun et al., 2011), demand

problem-specific tuning, limiting rapid prototyping.

Reinforcement Learning (RL) is a learning paradigm

where an agent optimizes a reward function through trial-

and-error (Sutton and Barto, 2018). RL has shown promise

in robotic manipulation, with PPO (Schulman et al., 2017)

offering stability in stochastic environments and DDPG

(Fujimoto et al., 2018) excelling in continuous control

(Zeng et al., 2018). Studies like (Kalakrishnan et al.,

2011) leverage redundancy for tasks like obstacle

avoidance but often use complex setups. Our framework

simplifies this by focusing on a lightweight reaching task.

Simulation environments are critical for RL. MuJoCo

(Todorov et al., 2012) offers accurate physics but high

computational demands. ROS-Gazebo (Koenig and

Howard, 2004) integrates with robotic software but

requires complex configurations (Quigley et al., 2009).

OpenAI Gym (Brockman et al., 2016) lacks lightweight

6-DOF arm options. Robosuite (Zhu et al., 2020) and

PyRobot (Murali et al., 2019) focus on specific robots,

reducing generalizability. In contrast, PyBullet (Coumans

and Bai, 2016) provides a lightweight, open-source

platform, and Stable-Baselines3 (Raffin et al., 2021)

streamlines RL implementation. Our

ArmReach6DOFEnv combines these for rapid, accessible

RL prototyping.

Materials and Methods

ArmReach6DOFEnv is a custom Gym-compatible

environment built using PyBullet (Coumans and Bai,

2016) for RL prototyping on a 6-DOF robotic arm

reaching task. This section describes the robot’s kinematic

model, environment design, and RL agents.

Robot Kinematic Model

The 6-DOF arm is modeled using a URDF file,

encapsulating kinematic and dynamic properties. The arm

consists of six revolute joints, each with limits derived

from realistic designs (Craig, 2017). The forward

kinematics map joint angles θ = [θ1, θ2,…,θ6] ∈ ℝ6 to the

end-effector positionp
e
= [x, y, z] ∈ ℝ3 via:

p
e
 = f(θ) = T1(θ1)T2(θ2)…T6(θ6) . p

0
, (1)

Where T𝑖(θ𝑖) are homogeneous transformation

matrices, and p
0

 is the base frame origin. The state

dynamics are governed by:

θ̇ = u,p
e
 = f(θ), ṗ

e
 = J(θ)θ̇, (2)

Where u ∈ ℝ6 is the control input (joint velocities),

and J(θ) is the Jacobian matrix. Physical parameters (e.g.,

link masses) are approximated for lightweight arms, with

gravity and contact dynamics enabled in PyBullet

(Coumans and Bai, 2016).

Environment Design: ArmReach6DOFEnv

The environment simulates a reaching task where the

arm’s end-effector moves to a 3D target position.

The RL workflow, illustrated in Fig. 1, shows the

interaction between the RL agent, the PyBullet

environment, and the reward function, providing a clear

overview of the learning process.

Fig. 1: Reinforcement Learning Workflow in

ArmReach6DOFEnv. The RL agent (PPO or DDPG)

interacts with the PyBullet-based environment, receiving

states (joint angles θ , end-effector position pₑ, target

position pₜ) and outputting actions (Δθ). The

environment updates the 6-DOF arm’s state, and the

reward function computes rt = − dt
 3

 + bt , where

dt =‖p
e

− p
t
‖

2
 is the Euclidean distance to the target and

bt is a success bonus if dt < 0.05 m

Ngoc Kim Khanh Nguyen et al. / Journal of Mechatronics and Robotics 2025, Volume 9: 35.39

DOI: 10.3844/jmrsp.2025.35.39

37

The environment’s key components are.

State Space: A continuous vector comprising:

- Joint angles: θ ∈ ℝ6, constrained within limits

- End-effector position: p
e

∈ ℝ3, computed via forward

kinematics

- Target position: p
t

∈ ℝ3 , randomized in a spherical

workspace (radius 0.5m)

- Joint velocities: θ̇ ∈ ℝ6, capturing dynamics

Action Space: A continuous 6D vector Δθ ∈ [-1, 1]6,

representing relative changes in joint angles, scaled by a

step size and applied via PyBullet’s position control

(Coumans and Bai, 2016).

Further description of the State and Action space can

be found in Table 1.

Reward Function: The reward at timestep t is:

rt = − dt
 3

 + bt (3)

Where dt =‖p
e

− p
t
‖

2
 is the Euclidean distance

between the end-effector (p
e
) and target (p

t
), and bt = 10.0

is a sparse success bonus if dt < 0.05m (5cm), terminating

the episode. Episodes also terminate after 2048 timesteps

or if joint limits are violated (Levine et al., 2018).

Dynamics: The environment resets with a randomized

target in a 0.5 m-radius spherical workspace, a fixed initial

joint configuration, and zero velocities. PyBullet enforces

collision detection and joint limits (Coumans and Bai,

2016).

RL Agents

PPO and DDPG are implemented using Stable-

Baselines3 (Raffin et al., 2021). PPO uses a Multilayer

Perceptron (MLP) with two 128-unit hidden layers (ReLU

activation), with hyperparameters: Learning rate 3×10⁻⁴,

discount factor γ = 0.99, clipping 0.2, batch size 300, and

updates every 2048 steps (Schulman et al., 2017). DDPG

uses MLPs with two 256-unit hidden layers, with learning

rate 10⁻³, γ = 0.99, soft target update τ = 0.005, batch size

300, and Ornstein-Uhlenbeck noise (σ = 0.1) (Fujimoto et al.,

2018). Training runs for 614,400 timesteps (300 episodes,

2048 timesteps each).

Table 1: State and action space components
Component Description

Joint Angles 6D vector, θ ∈ ℝ6, within joint limits

End-Effector Position 3D Cartesian coordinates, p
e

∈ ℝ3

Target Position 3D coordinates, p
t

∈ ℝ3, randomized

Joint Velocities 6D vector, θ̇ ∈ ℝ6

Action
6D vector, Δθ ∈ [-1, 1]6, relative joint

angle changes

Experiments

Environment Setup

The 6-DOF arm is simulated in PyBullet (Coumans

and Bai, 2016). The task involves reaching a 3D target

within a 5 cm radius, a tolerance selected to balance

accuracy and convergence speed under our computational

constraints. The state includes joint angles, velocities,

target position, and end-effector-to-target vector. Actions

are relative joint angle changes. Training runs for 300

episodes (justified for sufficient RL exploration

(Schulman et al., 2017)), each capped at 2048 timesteps

(aligned with Stable-Baselines3 defaults (Raffin et al.,

2021)), on an NVIDIA 3060 RTX Mobile GPU using

PyTorch 2.1.

Learning Performance and Convergence

As we can see in Fig. 2, PPO converges faster (episode

177) but achieves a lower final reward (3.0) compared to

DDPG (episode 294, reward 4.95). Convergence is

defined as the moving average reward staying within ±5%

of its final value for 100 episodes.

Table 2 shows DDPG’s higher reward but slower

convergence, with PPO exhibiting greater variability.

Success Rate and Goal Reaching

Post-training, policies were tested on 100 episodes with

random targets. Success is defined as reaching within 5 cm.

DDPG achieves a 69% success rate, significantly

outperforming PPO’s 34%, with comparable steps to goal

(Table 3). Figure 3 illustrates a success state of the arm.

Fig. 2: Learning curves: Average episode reward vs. training

episodes for PPO (blue) and DDPG (orange)

Table 2: Reward and convergence statistics

Algorithm Convergence Episode
Final Average

Reward

PPO 177±25 3.0±0.4

DDPG 294±18 4.95±0.3

Ngoc Kim Khanh Nguyen et al. / Journal of Mechatronics and Robotics 2025, Volume 9: 35.39

DOI: 10.3844/jmrsp.2025.35.39

38

Joint Trajectory Smoothness

Joint trajectories in successful episodes were analyzed

for smoothness via jerk (time derivative of acceleration).

DDPG maintains lower jerk (0.02 rad/s³) compared to

PPO (0.11 rad/s³), indicating smoother, more physically

plausible trajectories (Fig. 4).

Table 3: Goal-Reaching Performance

Algorithm Success Rate (%) Average Steps to Goal

PPO 34 1500±200

DDPG 69 1450±180

Fig. 3: Simulated 6-DOF arm reaching task in PyBullet,

showing the arm’s trajectory toward a red spherical

target in 3D space

Fig. 4: Average joint jerk over time (rad/s³) for PPO (blue) and

DDPG (orange). Lower values indicate smoother

motion

Summary and Insights

The experiments reveal a trade-off between PPO and

DDPG. DDPG outperforms PPO in success rate (69 vs.

34%), final reward (4.95 vs. 3.0), and motion smoothness

(jerk 0.02 vs. 0.11 rad/s³), as summarized in Table 4. PPO

converges faster (episode 177 vs. 294), suitable for rapid

prototyping, but yields suboptimal policies. DDPG’s off-

policy nature and replay buffer enable better exploration

of the sparse reward function, leading to more reliable and

smoother policies (Fujimoto et al., 2018).

Table 4: Goal-Reaching Performance

Algorithm
Success Rate

(%)

Final Reward Average

Jerk (rad/s³)

PPO 34 3.0 0.11

DDPG 69 4.95 0.02

Discussion

The results align with prior RL studies, where off-

policy algorithms like DDPG excel in continuous control due

to experience replay (Fujimoto et al., 2018; Zeng et al.,

2018). Compared to complex simulators like MuJoCo

(Todorov et al., 2012) or IsaacGym, PyBullet’s

lightweight design enables accessible prototyping

(Coumans and Bai, 2016). Limitations include the focus

on a single reaching task, lack of robustness analysis (e.g.,

noise sensitivity), and absence of sim-to-real validation

(Zhu et al., 2020). Future work will extend the framework

to complex tasks (e.g., grasping, obstacle avoidance), test

robustness, and validate on physical arms (Tassa et al.,

2018).

Conclusion

This study achieved its objectives of developing

ArmReach6DOFEnv and comparing PPO and DDPG,

with DDPG demonstrating superior success rate (69 vs.

34%), reward (4.95 vs. 3.0), and smoothness (jerk 0.02 vs.

0.11 rad/s³). The lightweight framework enables rapid RL

prototyping on resource-constrained systems, with

practical implications for accessible research and

managerial benefits for cost-effective robotic

development. Limitations include the single-task focus

and lack of sim-to-real tests. Future work will explore

multi-task scenarios, robustness, and hardware validation.

Acknowledgment

The authors gratefully acknowledge Van Lang

University (Ho Chi Minh City, Vietnam) for proving their

necessary support for this study.

Funding Information

This research was funded by eWalk.vn.

Ngoc Kim Khanh Nguyen et al. / Journal of Mechatronics and Robotics 2025, Volume 9: 35.39

DOI: 10.3844/jmrsp.2025.35.39

39

Author’s Contributions

Ngoc Kim Khanh Nguyen: Analysis, methodology,

visualization, writing.

Anh Thu Mang: Data collection, analysis,

visualization, writing.

Quang Nguyen: Supervision, project administration,

reviewing, methodology.

Ethics

All of the other authors have read and approved the

manuscript, and no ethical issues are involved.

References

Aristidou, A., & Lasenby, J. (2009). Inverse kinematics:
a review of existing techniques and introduction of a
new fast iterative solver.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., & Zaremba, W. (2016).
OpenAI Gym. ArXiv Preprint, 1, 1–6.

 https://doi.org/https://doi.org/10.48550/arXiv.1606.0
1540

Chiaverini, S., Oriolo, G., & Walker, I. D. (2008).
Kinematically Redundant Manipulators. Springer
Handbook of Robotics, 245–268.

 https://doi.org/10.1007/978-3-540-30301-5_12
Coumans, E., & Bai, Y. (2016). PyBullet, a Python

module for physics simulation for games, robotics
and machine learning. OpenAI / Community
Contributors.

 https://docs.google.com/document/d/10sXEhzFRSn
vFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA.

Craig, J. J. (2017). Introduction to Robotics: Mechanics
and Control.

Fujimoto, S., Hoof, H., & Meger, D. (2018). Addressing
function approximation error in actor-critic methods.
Proceedings of the 35th International Conference on
Machine Learning (ICML, 1587–1596.

 https://doi.org/10.48550/arXiv.1802.09477
Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., &

Schaal, S. (2011). Learning, planning, and control for
quadruped locomotion over challenging terrain. The
International Journal of Robotics Research, 30(2), 236–
258. https://doi.org/10.1177/0278364910388677

Kanoun, O., Lamiraux, F., & Wieber, P.-B. (2011).
Kinematic Control of Redundant Manipulators:
Generalizing the Task-Priority Framework to
Inequality Task. IEEE Transactions on Robotics,
27(4), 785–792.

 https://doi.org/10.1109/tro.2011.2142450
Koenig, N., & Howard, A. (2004). Design and use

paradigms for gazebo, an open-source multi-robot
simulator. Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), 2149–2154.

 https://doi.org/10.1109/iros.2004.1389727

Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016).

End-to-end training of deep visuomotor policies.

Journal of Machine Learning Research, 17(1), 1334–

1373. https://doi.org/10.5555/2946645.2946684

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen,

D. (2018). Learning hand-eye coordination for

robotic grasping with deep learning and large-scale

data collection. The International Journal of Robotics

Research, 37(4–5), 421–436.

 https://doi.org/10.1177/0278364917710318

Murali, A., Chen, T., Alwala, K. V., Gandhi, D., Pinto, L.,

Gupta, S., & Gupta, A. (2019). PyRobot: An open-

source robotics framework for research and

benchmarking. ArXiv:1906.08236, 1, 1–10.

 https://doi.org/https://doi.org/10.48550/arXiv.1906.0

8236

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T.,

Leibs, J., Berger, E., Wheeler, R., & Andrew, N.

(2009). ROS: An open-source Robot Operating

System. Proceedings of the IEEE International

Conference on Robotics and Automation, 229–234.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,

M., & Dormann, N. (2021). Stable-Baselines3:

Reliable reinforcement learning implementations.

Journal of Machine Learning Research, 22(1),

12348–12355.

 https://doi.org/10.5555/3546258.3546526

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., &

Klimov, O. (2017). Proximal policy optimization

algorithms. ArXiv Preprint, 1, 1–13.

 https://doi.org/10.48550/arXiv.1707.06347

Todorov, E., Erez, T., & Tassa, Y. (2012). MuJoCo: A

physics engine for model-based control. Proceeding

of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, 5026–5033.

 https://doi.org/10.1109/iros.2012.6386109

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Las

Casas, D. de, Guy, D., & Jaderberg, M. (2018).

DeepMind control suite. ArXiv Preprint

ArXiv:1801.00690, 1, 1–20.

 https://doi.org/10.48550/arXiv.1801.00690

Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., &

Funkhouser, T. (2018). Learning Synergies Between

Pushing and Grasping with Self-Supervised Deep

Reinforcement Learning. Proceeding of the

IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 4238–4245.

 https://doi.org/10.1109/iros.2018.8593986

Zhu, Y., Wong, J., Mandlekar, Ajay, Martin, R. M., Joshi,

A., Lin, K., Maddukuri, A., Nasiriany, S., & Zhu, Y.

(2020). Robosuite: A modular simulation framework

and benchmark for robot learning. ArXiv Preprint

ArXiv:2009.12293, 1, 1–15.

 https://doi.org/10.48550/arXiv.2009.12293

https://doi.org/https:/doi.org/10.48550/arXiv.1606.01540
https://doi.org/https:/doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.1007/978-3-540-30301-5_12
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA
https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.1177/0278364910388677
https://doi.org/10.1109/tro.2011.2142450
https://doi.org/10.1109/iros.2004.1389727
https://doi.org/10.5555/2946645.2946684
https://doi.org/10.1177/0278364917710318
https://doi.org/https:/doi.org/10.48550/arXiv.1906.08236
https://doi.org/https:/doi.org/10.48550/arXiv.1906.08236
https://doi.org/10.5555/3546258.3546526
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1109/iros.2012.6386109
https://doi.org/10.48550/arXiv.1801.00690
https://doi.org/10.1109/iros.2018.8593986
https://doi.org/10.48550/arXiv.2009.12293

