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Abstract: Controlling 6-Degree-of-Freedom (6-DOF) robotic arms for 

precise manipulation tasks is challenging due to kinematic redundancy 

and the complexity of existing simulation environments like MuJoCo or 

ROS-Gazebo. This paper presents ArmReach6DOFEnv, a lightweight, 

open-source simulation framework built on PyBullet for rapid 

Reinforcement Learning (RL) prototyping on 6-DOF robotic arms. 

Using a Universal Robot Description Format (URDF) model, the 

environment supports a continuous state-action space for a 3D reaching 

task, with a reward function balancing accuracy and control effort. We 

evaluate two state-of-the-art RL algorithms, Proximal Policy 

Optimization (PPO) and Deep Deterministic Policy Gradient (DDPG), 

implemented via Stable-Baselines3, comparing their convergence, 

success rate, and motion smoothness. Experimental results demonstrate 

DDPG’s superior performance (69% success rate vs. PPO’s 34%) and 

smoother trajectories, despite PPO’s faster convergence. This 

framework enables accessible RL experimentation on resource-

constrained systems, with potential for future sim-to-real transfer.  
 
Keywords: Reinforcement Learning, 6-DOF Robotic Arm, PyBullet, 

PPO, DDPG, Rapid Prototyping 
 

Introduction 

Six-Degree-of-Freedom (6-DOF) robotic arms are 

essential in applications such as industrial automation, 

medical robotics, and service robotics due to their ability 

to perform complex manipulation tasks in 3D space 

(Chiaverini et al., 2008). However, tasks like reaching a 

specific 3D point introduce kinematic redundancy, as the 

six revolute joints exceed the three degrees of freedom 

required for positioning (Craig, 2017). This redundancy 

complicates traditional Inverse Kinematics (IK) solvers, 

which struggle with selecting optimal configurations, 

handling singularities, and incorporating dynamic 

constraints like energy efficiency or joint limits (Aristidou 

and Lasenby, 2009). Existing simulation environments, 

such as MuJoCo (Todorov et al., 2012) or ROS-Gazebo 

(Koenig and Howard, 2004), often require significant 

computational resources and complex setups, limiting their 

accessibility for rapid RL prototyping (Zhu et al., 2020). 

Reinforcement Learning (RL) offers a promising 

alternative by learning control policies through trial-

and-error, optimizing reward functions that balance 

multiple objectives without explicit IK computation 

(Levine et al., 2016). Despite its potential, RL adoption 

for 6-DOF arm control is hindered by the lack of 

lightweight, user-friendly simulation platforms. To 

address this gap, we propose ArmReach6DOFEnv, a 

PyBullet-based (Coumans and Bai, 2016), Gym-

compatible environment tailored for rapid RL 

prototyping on a 6-DOF reaching task. Integrated with 

Stable-Baselines3 (Raffin et al., 2021), our framework 

uses a URDF-modeled arm and evaluates two RL 

algorithms: PPO (Schulman et al., 2017) and DDPG 

(Fujimoto et al., 2018). Our contributions include: 

 

(1) An open-source, lightweight environment for 6-DOF 

arm reaching tasks 

(2) A comparative analysis of PPO and DDPG in 

handling kinematic redundancy 

(3) A platform for accessible RL experimentation with 

potential sim-to-real applications 
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This paper is organized as follows: The second 

reviews related work on IK, RL, and simulation 

environments. The third section details the 

ArmReach6DOFEnv methodology, including the 

kinematic model. The forth section presents experimental 

results, comparing PPO and DDPG. The fifth section 

discusses findings, limitations, and future directions. The 

final section concludes with objectives achieved, 

limitations, and implications. 

Related Work 

Kinematic redundancy in 6-DOF robotic arms, where 

multiple joint configurations achieve the same end-

effector position, enables optimization of secondary 

objectives like energy efficiency or obstacle avoidance 

(Chiaverini et al., 2008). Kinematic redundancy refers to 

the excess degrees of freedom in a manipulator relative to 

the task requirements (Craig, 2017). Traditional IK 

methods include analytical solutions, which require 

manual configuration selection (Craig, 2017), and 

numerical methods, like Jacobian-based solvers, which are 

computationally expensive and sensitive to singularities 

(Aristidou and Lasenby, 2009). Advanced techniques, such 

as quadratic programming (Kanoun et al., 2011), demand 

problem-specific tuning, limiting rapid prototyping. 

Reinforcement Learning (RL) is a learning paradigm 

where an agent optimizes a reward function through trial-

and-error (Sutton and Barto, 2018). RL has shown promise 

in robotic manipulation, with PPO (Schulman et al., 2017) 

offering stability in stochastic environments and DDPG 

(Fujimoto et al., 2018) excelling in continuous control 

(Zeng et al., 2018). Studies like (Kalakrishnan et al., 

2011) leverage redundancy for tasks like obstacle 

avoidance but often use complex setups. Our framework 

simplifies this by focusing on a lightweight reaching task. 

Simulation environments are critical for RL. MuJoCo 

(Todorov et al., 2012) offers accurate physics but high 

computational demands. ROS-Gazebo (Koenig and 

Howard, 2004) integrates with robotic software but 

requires complex configurations (Quigley et al., 2009). 

OpenAI Gym (Brockman et al., 2016) lacks lightweight 

6-DOF arm options. Robosuite (Zhu et al., 2020) and 

PyRobot (Murali et al., 2019) focus on specific robots, 

reducing generalizability. In contrast, PyBullet (Coumans 

and Bai, 2016) provides a lightweight, open-source 

platform, and Stable-Baselines3 (Raffin et al., 2021) 

streamlines RL implementation. Our 

ArmReach6DOFEnv combines these for rapid, accessible 

RL prototyping. 

Materials and Methods 

ArmReach6DOFEnv is a custom Gym-compatible 

environment built using PyBullet (Coumans and Bai, 

2016) for RL prototyping on a 6-DOF robotic arm 

reaching task. This section describes the robot’s kinematic 

model, environment design, and RL agents. 

Robot Kinematic Model 

The 6-DOF arm is modeled using a URDF file, 

encapsulating kinematic and dynamic properties. The arm 

consists of six revolute joints, each with limits derived 

from realistic designs (Craig, 2017). The forward 

kinematics map joint angles θ = [θ1, θ2,…,θ6] ∈ ℝ6 to the 

end-effector positionp
e
= [x, y, z ] ∈ ℝ3 via: 

 

p
e
 = f(θ) = T1(θ1)T2(θ2)…T6(θ6) . p

0
, (1) 

 
Where T𝑖(θ𝑖)  are homogeneous transformation 

matrices, and p
0

 is the base frame origin. The state 

dynamics are governed by: 
 

θ̇ = u,p
e
 = f(θ),  ṗ

e
 = J(θ)θ̇, (2) 

 

Where u ∈ ℝ6  is the control input (joint velocities), 

and J(θ) is the Jacobian matrix. Physical parameters (e.g., 

link masses) are approximated for lightweight arms, with 

gravity and contact dynamics enabled in PyBullet 

(Coumans and Bai, 2016). 

Environment Design: ArmReach6DOFEnv 

The environment simulates a reaching task where the 

arm’s end-effector moves to a 3D target position. 

The RL workflow, illustrated in Fig. 1, shows the 

interaction between the RL agent, the PyBullet 

environment, and the reward function, providing a clear 

overview of the learning process. 

 

 
 
Fig. 1: Reinforcement Learning Workflow in 

ArmReach6DOFEnv. The RL agent (PPO or DDPG) 

interacts with the PyBullet-based environment, receiving 

states (joint angles θ , end-effector position pₑ, target 

position pₜ) and outputting actions ( Δθ ). The 

environment updates the 6-DOF arm’s state, and the 

reward function computes rt = − dt
 3

 + bt , where 

dt =‖p
e

− p
t
‖

2
 is the Euclidean distance to the target and 

bt is a success bonus if dt < 0.05 m 
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The environment’s key components are. 

State Space: A continuous vector comprising: 

 

- Joint angles: θ ∈ ℝ6, constrained within limits 

- End-effector position: p
e

∈ ℝ3, computed via forward 

kinematics 

- Target position: p
t

∈ ℝ3 , randomized in a spherical 

workspace (radius 0.5m) 

- Joint velocities: θ̇ ∈ ℝ6, capturing dynamics 

 

Action Space: A continuous 6D vector Δθ ∈ [-1, 1]6, 

representing relative changes in joint angles, scaled by a 

step size and applied via PyBullet’s position control 

(Coumans and Bai, 2016).  

Further description of the State and Action space can 

be found in Table 1. 

Reward Function: The reward at timestep t is: 

 

rt = − dt
 3

 + bt (3) 

 

Where dt =‖p
e

− p
t
‖

2
 is the Euclidean distance 

between the end-effector (p
e
) and target (p

t
), and bt = 10.0 

is a sparse success bonus if dt < 0.05m (5cm), terminating 

the episode. Episodes also terminate after 2048 timesteps 

or if joint limits are violated (Levine et al., 2018). 

Dynamics: The environment resets with a randomized 

target in a 0.5 m-radius spherical workspace, a fixed initial 

joint configuration, and zero velocities. PyBullet enforces 

collision detection and joint limits (Coumans and Bai, 

2016). 

RL Agents 

PPO and DDPG are implemented using Stable-

Baselines3 (Raffin et al., 2021). PPO uses a Multilayer 

Perceptron (MLP) with two 128-unit hidden layers (ReLU 

activation), with hyperparameters: Learning rate 3×10⁻⁴, 

discount factor γ = 0.99, clipping 0.2, batch size 300, and 

updates every 2048 steps (Schulman et al., 2017). DDPG 

uses MLPs with two 256-unit hidden layers, with learning 

rate 10⁻³, γ = 0.99, soft target update τ = 0.005, batch size 

300, and Ornstein-Uhlenbeck noise (σ = 0.1) (Fujimoto et al., 

2018). Training runs for 614,400 timesteps (300 episodes, 

2048 timesteps each). 

 

Table 1: State and action space components 
Component Description 

Joint Angles 6D vector, θ ∈ ℝ6, within joint limits 

End-Effector Position 3D Cartesian coordinates, p
e

∈ ℝ3 

Target Position 3D coordinates, p
t

∈ ℝ3, randomized 

Joint Velocities 6D vector, θ̇ ∈ ℝ6 

Action 
6D vector, Δθ ∈ [-1, 1]6, relative joint 

angle changes 

Experiments 

Environment Setup 

The 6-DOF arm is simulated in PyBullet (Coumans 

and Bai, 2016). The task involves reaching a 3D target 

within a 5 cm radius, a tolerance selected to balance 

accuracy and convergence speed under our computational 

constraints. The state includes joint angles, velocities, 

target position, and end-effector-to-target vector. Actions 

are relative joint angle changes. Training runs for 300 

episodes (justified for sufficient RL exploration 

(Schulman et al., 2017)), each capped at 2048 timesteps 

(aligned with Stable-Baselines3 defaults (Raffin et al., 

2021)), on an NVIDIA 3060 RTX Mobile GPU using 

PyTorch 2.1. 

Learning Performance and Convergence 

As we can see in Fig. 2, PPO converges faster (episode 

177) but achieves a lower final reward (3.0) compared to 

DDPG (episode 294, reward 4.95). Convergence is 

defined as the moving average reward staying within ±5% 

of its final value for 100 episodes. 

Table 2 shows DDPG’s higher reward but slower 

convergence, with PPO exhibiting greater variability. 

Success Rate and Goal Reaching 

Post-training, policies were tested on 100 episodes with 

random targets. Success is defined as reaching within 5 cm. 

DDPG achieves a 69% success rate, significantly 

outperforming PPO’s 34%, with comparable steps to goal 

(Table 3). Figure 3 illustrates a success state of the arm. 
 

 
 
Fig. 2: Learning curves: Average episode reward vs. training 

episodes for PPO (blue) and DDPG (orange) 
 
Table 2: Reward and convergence statistics 

Algorithm Convergence Episode 
Final Average 

Reward 

PPO 177±25 3.0±0.4 

DDPG 294±18 4.95±0.3 
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Joint Trajectory Smoothness 

Joint trajectories in successful episodes were analyzed 

for smoothness via jerk (time derivative of acceleration). 

DDPG maintains lower jerk (0.02 rad/s³) compared to 

PPO (0.11 rad/s³), indicating smoother, more physically 

plausible trajectories (Fig. 4). 
 
Table 3: Goal-Reaching Performance 

Algorithm Success Rate (%) Average Steps to Goal 

PPO 34 1500±200 

DDPG 69 1450±180 
 

 
 
Fig. 3: Simulated 6-DOF arm reaching task in PyBullet, 

showing the arm’s trajectory toward a red spherical 

target in 3D space 
 

 
 
Fig. 4: Average joint jerk over time (rad/s³) for PPO (blue) and 

DDPG (orange). Lower values indicate smoother 

motion 

Summary and Insights 

The experiments reveal a trade-off between PPO and 

DDPG. DDPG outperforms PPO in success rate (69 vs. 

34%), final reward (4.95 vs. 3.0), and motion smoothness 

(jerk 0.02 vs. 0.11 rad/s³), as summarized in Table 4. PPO 

converges faster (episode 177 vs. 294), suitable for rapid 

prototyping, but yields suboptimal policies. DDPG’s off-

policy nature and replay buffer enable better exploration 

of the sparse reward function, leading to more reliable and 

smoother policies (Fujimoto et al., 2018). 

 

Table 4: Goal-Reaching Performance 

Algorithm 
Success Rate 

(%) 

Final Reward Average 

Jerk (rad/s³) 

PPO 34 3.0 0.11 

DDPG 69 4.95 0.02 

 

Discussion 

The results align with prior RL studies, where off-

policy algorithms like DDPG excel in continuous control due 

to experience replay (Fujimoto et al., 2018; Zeng et al., 

2018). Compared to complex simulators like MuJoCo 

(Todorov et al., 2012) or IsaacGym, PyBullet’s 

lightweight design enables accessible prototyping 

(Coumans and Bai, 2016). Limitations include the focus 

on a single reaching task, lack of robustness analysis (e.g., 

noise sensitivity), and absence of sim-to-real validation 

(Zhu et al., 2020). Future work will extend the framework 

to complex tasks (e.g., grasping, obstacle avoidance), test 

robustness, and validate on physical arms (Tassa et al., 

2018). 

Conclusion 

This study achieved its objectives of developing 

ArmReach6DOFEnv and comparing PPO and DDPG, 

with DDPG demonstrating superior success rate (69 vs. 

34%), reward (4.95 vs. 3.0), and smoothness (jerk 0.02 vs. 

0.11 rad/s³). The lightweight framework enables rapid RL 

prototyping on resource-constrained systems, with 

practical implications for accessible research and 

managerial benefits for cost-effective robotic 

development. Limitations include the single-task focus 

and lack of sim-to-real tests. Future work will explore 

multi-task scenarios, robustness, and hardware validation. 
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