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Abstract: The abnormal growth of brain cells leads to tumor formation, which
can be fatal if not detected and treated promptly. Given the complexity of brain
tumors, early detection is critical in healthcare. Traditional radiology-based
tumor detection is prone to human error and delays. Hence, a computer-
assisted method is needed for accurate and efficient diagnosis. With the rapid
advancements in the medical science; integrating machine learning, deep
learning, artificial intelligence demonstrated great potential in diagnosing
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diseases and overcome the existing drawbacks while focusing on appropriate
treatment plans and improved patient outcomes. A pre-trained model namely
Residual Network i.e., ResNet101V2 has been leveraged in the proposed
model to extract significant features following supervised algorithm for
differentiating different brain MRI scans to detect and classify presence of
brain tumor. As a result, the proposed model achieved 98% accuracy and

outperformed the existing methods in the process of diagnosing and
classifying brain tumor. The novelty lies in the integration of a deep
convolutional feature extractor with a traditional SVM classifier, followed by
one of the explainable approach namely Gradient weighted class activation
mapping for achieving transparent outcomes based on the two different
datasets for enhancing generalization and comparison with other approaches
is also done to ensure effectiveness of the proposed model to gain trust of
medical experts for speeding up the process of making decisions while
diagnosing brain tumor.

Keywords: Brain Tumor, Automated Diagnosis, Healthcare, Increased Life
Expectancy, Neural Network, Explainability

Introduction Although radiologists utilize traditional approaches
such as Magnetic Resonance Imaging (MRI) for acquiring
detailed images lying within brain based on strong
magnetic field and analysis of histopathological
parameters; computer tomography to generate cross-
sectional images lying within brain based on x-rays for
diagnosing hemorrhages and abnormalities if any;
Positron emission tomography for displaying metabolic
activities of tissues lying within brain via injecting
radioactive substance into body which helps in
differentiating benign as well as malignant tumors etc.

The brain comprises of numerous nerve cells (Louis
et al., 2016) responsible for performing functions such as
thinking, acting, visualizing, breathing, experiencing
hunger, monitoring behavioral actions, etc. Thus, it can
also be considered as a central hub for performing and
monitoring an individuals’ act throughout their life-span.
Due to such sensitive properties, any damage to brain
tissues can cause major impact on an individual health as
injuries can cause variations in size of cells lying within
brain which can lead to benign or malignant tumor where

consideration of benign tumor comes in non-cancerous
category and malignant tumor comes in the category of
cancerous ones. These life-threatening diseases cause
risks to an individuals’ life in case symptoms are not
identified at an early stage or lack in timely treatment.
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Figure 1 shows a few samples of healthy brain and tumor
within brain which occurs due to injury or genetic issues
and results in increased size of tissues in abnormal manner
within brain. More than 94,000 people are estimated to
suffer from benign tumor and approximately 67,000
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people will suffer from malignant in 2023 according to the
National Brain Tumor Society (NBTS) (2023).

Thus, characterization of infected and healthy brain is
generally done on the basis of benign or malignant where
healthy brain tissues don’t come in contact of infected
ones at a fast pace in benign category. On the contrary,
healthy tissues are affected by infected cells at large scale
quickly in case of malignant tumor. Due to lack of
identification of its symptoms at an early stage, most of
the patients are not provided with timely treatment. As a
result, brain tumor is spreading among large population
and non-curable yet. Although medical professionals are
trying hard to diagnose it with the help of existing
approaches but these approaches are time-consuming and
there is a probability of making incorrect observations too
as these techniques are completely reliable on medical
experts’ decisions. Deep learning performed brilliantly in
analysing medical images for diagnosing diseases if any
based on input data. This potential feature can assist
radiologists (Liu et al., 2018) while making any decisions
to achieve improved results. (Tandel et al., 2019) provided
a review on distinct approaches for analysis of vast
amount of medical data to predict and classify brain
cancer as these techniques play significant role in
extracting meaningful features from images to make
decisions in the healthcare industry. Thapa et al. (2021)
also provided brief review of pathophysiological process
of traumatic brain injury and several biochemical
pathways associated with brain injury along with the
respective ways of providing treatment to the patients.

Although, there are several methods such as magnetic
resonance imaging, computed tomography, positron
emission tomography etc. used by medical professionals
especially radiologists for diagnosing brain tumor disease,
these approaches come with a few limitations. These
limitations include subjectivity as conventional
approaches rely on subjective interpretation of medical
images by medical professionals with distinct perceptions
which can further lead to variation in their decisions.

(®)

Fig. 1: Brain scans: (a) Healthy MRI, (b) Infected MRI

Moreover, human error can lead to delayed or false
diagnosis due to misinterpretation and oversight, limited
sensitivity can cause missed diagnosis which can result in
delayed treatment and timely recommendations to the
patients. Conventional methods can also consume a lot of
time in interpreting medical images and result in delayed
treatment and it is quite challenging for the skilled
radiologists to become available in each and every region
which can again cause delay in identifying abnormal
tissues and experience delayed treatment and
recommendations which are mandatory for patients to
enhance their life-span. Thus, Artificial intelligence in
integration with other techniques can give major
contributions in healthcare sector while diagnosing
disease based on input data acquired from publicly
available source to provide accurate as well as efficient
outcomes. Moreover, deep learning techniques in
collaboration with classifiers can enhance accuracy and
other parameters to be considered while detecting
diseases to assist medical professionals in their decisions.

While achieving high model accuracy is essential,
practical challenges such as hardware limitations, model
latency, and compatibility with current radiology
workflows make real-world implementation in radiology
departments difficult. Rapid inference and facilitation of
clinician interpretability are essential for real-world
clinical adoption. Our model architecture is designed to
be efficient and employs transfer learning and support
vector classification to reduce computational cost while
not sacrificing performance.

While several studies have explored deep learning for
brain tumor classification, most do not integrate
explainability for clinical trust, neither they prevent
overfitting on small datasets through robust augmentation
nor demonstrate generalizability across multiple public
datasets. Additionally, hybrid approaches using deep
networks with classical classifiers remain underexplored
in this domain. The proposed study addresses these
limitations by  incorporating  Grad-CAM-based
explainability, strong data augmentation, evaluation on
two public datasets (Sartaj and BraTS), and a
ResNetl01V2-SVM  hybrid that balances depth with
generalization.

Key Contributions of Paper

The main contributions of this study are summarized
as follows:

e  Ahybrid model combining ResNet101V2 for feature
extraction and SVM for classification is proposed

e Grad-CAM is integrated to gain trust of medical
experts via providing interpretable and transparent
outcomes

e Data augmentation and dropout are applied to prevent
overfitting and improve robustness
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e  The model is evaluated on both the Sartaj and BraTS
datasets to demonstrate generalizability

Comparative analysis with state-of-the-art models
shows superior accuracy of 98% and Fl-score of
98.82%

Applied an explainable approach to ensure
transparent outcomes and enhance clinical trust

The hybrid approach offers improved generalization
and interpretability over traditional softmax
classifiers

Related Work

The convergence of deep learning, machine learning
and other algorithms towards healthcare has created
new opportunities for real-time, smart medical
systems. Bolhasani et al. (2021) presented a systematic
review that underscored DL’s role in IoT-based
healthcare settings. The research identified the ways in
which convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and combined
models enhance disease diagnosis, health monitoring,
and medical data analysis. Although the authors
highlighted the advantages of real-time processing and
automating medical tasks, they also pointed out
constraints due to scarcity of standardized datasets,
issues of interoperability, and privacy concerns. Areas
of future research were proposed in the context of
secure, scalable, and energy-efficient IoT-DL
architectures for clinical use. Similarly, Malasinghe et
al. (2019) presented an extensive review of remote
patient monitoring (RPM) systems, emphasizing their
potential in chronic disease management and elderly
care. The study discussed sensor-based wearable
devices, wireless communication, and integration with
mobile health platforms. Though these technologies
enhance healthcare accessibility and enable continuous
monitoring, challenges such as data security, system
reliability, and regulatory constraints remain. The
authors suggested incorporating artificial intelligence
and machine learning for predictive analytics to
improve patient outcomes.

In the field of cancer research, Jagga and Gupta
(2015) investigated the use of machine learning for
biomarker discovery important to early cancer
detection and precision medicine. They wused
supervised learning methods like Support Vector
Machines (SVMs), decision trees, and random forests
to study genomic and proteomic data. The review
highlighted ML’s promise in identifying useful patterns
for non-invasive diagnostics but highlighted issues
with model validation because of heterogeneous data
and no clinical trials. The authors recommended that
future research pursue the combination of ML with
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multi-omics data and improving model interpretability
for clinical approval. Applicable to brain tumor
analysis, various researches have utilized DL methods
for MRI segmentation and classification. Havaei et al.
(2017) suggested a two-pathway CNN for
segmentation of brain tumors, which used both the
local and global contextual information. With the use
of the BRATS benchmark dataset, the model performed
high accuracy in segmentation but had lower
performance on low-contrast cases. The authors
suggested future enhancement in the form of multi-
modal data integration. In a similar manner, Sajid et al.
(2019) applied deep learning to automatically detect
and segment brain tumors from MR images. Their
CNN-based approach showed strong detection but was
constrained by the presence of varied training data,
necessitating more generalized architectures.

The standard dataset for most brain tumor research,
BRATS, was presented by Menze et al. (2015). The
dataset contains multi-institutional MRI scans
manually annotated and has since become the standard
for testing segmentation algorithms. Its power is
through standardization and high-quality labeling, yet
the authors saw the necessity of extending it to
incorporate unusual tumor types and more
heterogeneous imaging modalities. Pereira et al. (2016)
extended this dataset by using a CNN with a small
receptive field for tumor segmentation. Although good
at segmenting tumor boundaries, their patch-based
approach did not have enough contextual knowledge,
which they suggested overcoming by using deeper
networks and multi-scale features. Kamnitsas et al.
(2017) extended this thread of work by presenting a 3D
multi-scale CNN together with a fully connected
Conditional Random Field (CRF) model. This model
effectively learned spatial relations and performed
accurate lesion segmentation in both BRATS and
ISLES datasets. Yet it cost a lot in terms of
computational power, leading to further investigation
of model compression and optimization for deployment
into clinics. Isensee et al. (2019) defied the upward
trend in model complexity by introducing No New-Net,
a U-Net-like architecture with subtle changes yet still
competitive performance. The ease of implementation
of their design emphasized how baseline models, if
adequately fine-tuned, could achieve comparable
performance with more complex architectures.

For enhancing segmentation precision, (Ali et al.,
2022) introduced a hybrid approach using sequential
machine learning and attention mechanisms. Evaluated
on BRATS data, the proposed model used contextual
information for precise segmentation. Although its
enhanced performance was encouraging, the increased
model complexity created doubts about interpretability
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and computational cost. Directions for future work
involved using attention in lean models for real-time
deployment. Later on, Hossain et al. (2024) proposed a
systematic framework using Vision Transformers
(ViT), ensemble models, and transfer learning along
with  Explainable Artificial Intelligence (XAI)
methods. The method gave high accuracy in
classification and interpretability to overcome the
black-box problem of DL models. Nevertheless, this
method demanded high computational power and pre-
training, and hence it is not directly applicable in
clinical scenarios. Victor et al. (2023) attempted to
address privacy issues in healthcare through FL-PSO,
a federated learning framework with particle swarm
optimization applied to stroke prediction. Their
distributed solution ensured data privacy among
institutions but was plagued by communication
overhead and convergence issues. There is potential to
expand this technique to brain tumor prediction in a
federated setting. Khemchandani et al. (2022) utilized
a hybrid approach incorporating the Particle Imperialist
Competitive Algorithm (PICA) with a deep CNN for
brain tumor segmentation. Convergence rates and
accuracy were enhanced, albeit at the cost of
interpretability challenges. The model’s explainability
and deployment in clinical practice were suggested as
future work.

Going in a different direction, (Kumaar et al., 2024)
proposed a style-based Generative Adversarial
Network (GAN) classifier with pre-trained auxiliary
classifiers. The classifier worked well for class
imbalance and produced high-quality synthetic MRI
images. GANs are notoriously difficult to train,
however, and their clinical validity is being tested.
Srinivas et al. (2022) experimented with deep transfer
learning architectures like ResNet, VGG, and Inception
for classifying brain tumors. These models were highly
accurate with shorter training times, but their
dependence on pre-trained weights curtailed domain-
specific flexibility. Fine-tuning on expert medical
datasets was proposed as a future enhancement.
Finally, Anaya-Isaza and Mera-Jime'nez (2022)
addressed data insufficiency in detecting brain tumors
through data augmentation and transfer learning. Their
CNN model enhanced classification generalization and
performance, especially on small datasets.
Nevertheless, the augmented data may not always
capture clinical wvariability. The authors suggested
using semi-supervised learning and domain adaptation
methods to reinforce robustness and usability in
practical  environments. While recent works
demonstrate promising performance, the majority
suffer from non-diverse datasets, lack of
interpretability, and absence of techniques against
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overfitting. These highly accurate models like
ResNet50 and 3D CNNs are not explainable or overly
computation-expensive for direct deployment. Our
approach resolves these challenges through the
utilization of a deep residual network with SVM for
domain generalizability and the addition of Grad-CAM
for explainability, and all on top of data augmentation
to prevent overfitting.

Materials and Methods

To identify brain tumor, a hybrid model has been
suggested based on deep neural network consisting of
residual network 101V2 (ResNet 101V2) and transfer
learning technique to draw out features based on input
data from the open-access dataset. Moreover,
implemented supervised algorithm i.e., support vector
classifier identifies different classes of input images.
Since training deep models from scratch using medical
image datasets can be time consuming and
computationally expensive. Hence, transfer learning
accelerates the training process via utilization of the
pre-trained model for extracting important features to
minimize the time and computational power needed in
building an efficient diagnostic model for brain tumor
detection. Figure 2 is the working principle of the
developed automated system while Figure 3 shows its
architecture.

Dataset Collection

The data collection for the experiment includes two
primary sources: the Sartaj brain MRI dataset from
Kaggle and the BraTS (Brain Tumor Segmentation)
dataset, playing two different functions in model

training and testing.
Accuracy and

Dataset Collection Confusion-Matrix
based on data fusion

parameters calculation
Capturing and

conversion of input
data into list

Prediction of
Reponses to
diagnose disease

l_+

Support Vector
Classifier for

Classification Purpose|

One-hot encoding
and Normalization

Encoding and
Splitting Operation

I_+

ResNet101V2 Model
for feature
Extraction

Fig. 2: Illustration of Flowchart for detection of Brain Tumor
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Fig. 3: Proposed model architecture

The Sartaj (Bhuvaji, 2023) dataset, which is hosted on
Kaggle, comprises 3,264 T1-weighted grayscale MRI
images. Of these, 2,764 are marked as” tumor” and 500
as” healthy,” making it ideal for binary classification
exercises. The images are available in standard JPEG
format with proper labels that make preprocessing easy
and allow the use of deep learning models efficiently.
Because of its ease of availability, compact size, and the
clear separation between tumor and non-tumor cases, this
dataset is widely utilized for training CNN architectures
for tumor detection. Its ease enables quick
experimentation with classification algorithms, data
augmentation strategies, and explainability techniques. To
measure the proposed model’s generalizability, we also
included the BraTS (Brain Tumor Segmentation) dataset
(Menze et al.,, 2015), the 2020 version. BraTS is a
clinically annotated dataset created for the Brain Tumor
Segmentation Challenge and has multimodal MRI scans,
including T1, Tle, T2, and FLAIR sequences. For
equitable comparison with Sartaj dataset, in this work,
300 T1-weighted slices only were utilized. Similar to
Sartaj, BraTS only offers 3D volumetric information and
pixel-level tumor annotations for glioma types, but it is an
industry-standard benchmark for segmentation and
classification tasks in neuroimaging. Its inclusion within
this study adds strength to a more thorough assessment of
model performance and assists in proving the model’s
generalizability across datasets of various clinical
derivation and design.

By using both datasets together, this research provides
a thorough test of the model’s classification on carefully
curated, well-tagged images (Sartaj) and its resilience
when given clinically annotated, real-world medical
imaging data (BraTS). This two-dataset approach
mitigates issues of model overfitting and makes results
more believable in real-world applications. Figure 4
shows images count having detailed images after
performing split operation for trained and test images.
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Fig. 4: Illustration of Split images count: (a) Trained Images, (b)
Tested Images

Pre-Processing

Pre-processing was carried out to improve image
quality and robustness of the model. First, all the images
were resized to a standard size and scaled to the range 0
tol. For the prevention of overfitting caused by the small
size of the dataset (3264 images), extensive data
augmentation was  performed. The following
augmentation methods were implemented:

Rotation: Random rotations between £15°
Flipping: Horizontal and vertical flip
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Contrast Adjustment: Random changes in brightness
and contrast

Zooming and Cropping: Random zooming and
cropping to zoom on salient features

Figure 5 shows ten augmented MRI images created
from a single source brain MRI scan. The augmentations
mimic the preprocessing pipeline meant to improve model
robustness and prevent overfitting. Each image

(a) Original T1-weighted MRI (b) Rotated +15°

(f) Zoomed & Cropped

(g) Rotated + Flipped

(c) Horizontally Flipped

(h) Zoom + Brightness/Contrast

incorporates variations from primary augmentation
techniques: Random rotations with +15°, horizontal and
vertical flips, random brightness and contrast changes,
and random zoom with cropping to concentrate on salient
areas of the brain. This approach brings substantial
variability to the training set, enabling the deep model,
such as ResNetl01V2 including dropout and batch
normalization layers, to generalize better to new, unseen
tumor images.

(d) Vertically Flipped (e) Brightness & Contrast Adjusted

(i) Rotation + Cropping (j) Combined: Rotate, Flip, Contrast, Zoom

Fig. 5: Augmented Brain MRI Samples

These transformations during training resulted in well
generalization towards new or unseen data. Moreover,
dropout layers with a 0.5 dropout rate were implemented
following major convolutional blocks in the
ResNet101V2 network to continue decreasing overfitting.
Batch normalization and ReLU activation were also
preserved in order to balance training as well as promote
non-linearity within the learned features.

Proposed Model

He et al. (2016) presented Residual Network (ResNet)
101V2 for bringing about improvement in the current
network to its depth. Residual network has already been
pre-trained on ImageNet and includes residual blocks as
well as skip connections. Convolutional layers shrink
spatial size of input image and extracts high-level features
while max-pooling layer downsample feature maps to
extract important features where the term *"Downsample’
describes an operation of reducing spatial sizes like width
and height of feature maps while training the proposed
network. Therefore, it maintains maximum value in every
pooling area and eliminates values with less importance.
Therefore, it leads to reducing the computational
complexity of subsequent layers and reduces overfitting
problems to attain efficient results. Batch normalization
and ReLU activation functions are very necessary
elements in order to train ResNet101V2 model effectively
because batch normalization plays a crucial role in
regularizing the designed network as it applies
normalization to the layer activations by considering the
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mean of activations for a mini-batch of data and dividing
it by the standard deviation. Therefore, it leads to more
stable training by removing the vanishing gradient issue
and ReLU allows it to learn intricate relations and
representations with regard to assumed data by adding.

Non-linearity. Therefore, both elements improve
network performance while detecting brain tumor
disease.

Multi sub-stages in the subsequent stage includes
convolutional blocks for processing obtained feature
maps and residual blocks in conjunction with skip
connections skip layers and provide real input to
output. Then global Average pooling layer assists in
feature map reduction of spatial dimensions to fixed
dimension and output of this layer is passed to SVM,
such as the linear Classifier, a category of supervised
machine learning algorithm, utilized for classification
operations particularly possessing small dataset to
supply effective result as they are less susceptible to
overfitting because of their margin-based nature while
fully connected layers and softmax of residual network
can be prone to overfitting as we are working on 3264
images only and it can also demand Ilarge
computational resources for making predictions. Figure
6 presents the ResNet101V2.

Architecture, emphasizing its major elements
including residual blocks and skip connections that
facilitate deep feature extraction. Batch normalization and
ReLU functions enhance stabilizing gradients and model
convergence.
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Initial Convolutional Layer
(7°7, 64 filters, Stride 2)
.

Batch
Normalization

Max-Pooling
(3"3. Stride 2)

Stage 3

Stage 1
Residual Block (3x3, 64 filters, stride 1)
(Repeat the above residual block three times)

Residual Block (3x3, 256 fiters, stride 2)
(Repeat the above residual block twenty-three times)

Stage 2
Residual Block (3x3, 128 filters, stride 2)

TRepeat the above residual block four times)
(Repeat the above residual block three times)

< Fully
Softmax Connected [€—___| Global Average’
Activation faors Pooling

Fig. 6: Flowchart Representation of ResNet101V2

Stage 4

Residual Block (3x3, 512
filters, stride 2)

Therefore, ResNet101V2 network consists of different
residual networks as well as skip connections in order to
outperform while brain tumor is diagnosed. To distinguish
between different classes of given medical dataset,
support vector machines are most appropriate to carry out
classification task. Because these machines possess
capability to identify optimal hyperplane to separate data
points of varying classes as hyperplane dictates that
margin among distinct classes’ closest points should be
greatest. Additionally, the dimension of the hyperplane is
based on the input feature numbers. For example, it is a
line for input features with two classes while 2D plane is
obtained for input features with three classes. Because of
this characteristic of such machines, linear support vector
machines are opted for differentiating various images. In
addition, Support Vector Machine (SVM) has been
utilized in place of a fully connected deep classifier
because it performs better on small- to medium-sized sets.
SVM is more resistant to overfitting, particularly with a
high-dimensional feature space as created by
ResNet101V2, and works well even with unbalanced
datasets. Moreover, employing SVM drastically
minimizes trainable parameters in the last layers,
enhancing learning speed and efficiency.

Considered classes have also been labelled in the
proposed model as ‘0’ and ‘1°, where 0 shows healthy
brain images and ‘1’ shows infected brain images.
Afterwards, split operation resulted in trained as well as
tested data which have been represented in the following
Equations 1 and 2:
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Trained Set = (Xtrn, Ytrn) (1

Tested Set = (Xtst, Ytst) 2)

These training and tested parameters are forwarded to
the proposed network to extract one of the most important
features as illustrated in Equation 3:
(Ftrn = FResNet101V 2(Xtrn)) 3)

Based on the decision boundary made by the proposed
network for performing classification task has further
been illustrated in the form of respective weights \we” and
bias\bs” followed by test image feature as shown in
Equation 4. The terms “weights” and “bias” refer to the
key components of linear support vector classifier where
weights determine the contribution of each feature to the
decision boundary for making predictions and bias allows
the linear support classifier to shift the decision boundary
away from origin and significant to fit the model with
respect to its data correctly. Thus, both weights and bias
help the support vector classifier to differentiate
considered classes accurately during training and
maximize margin between distinct classes:

(Ftst = FResNet101V 2(Xtst)) 4)

Thus, resultant predictions can be seen in Equation 5 as:

Y predict = sign (w° * Ftst + bs) &)

Thus, w® shows transpose of weight vector. Sign
function is used to represent differentiation between
considered classes as healthy or infected brain MRI
images followed by predicted and actual labels which
have been illustrated in equation 6 and 7 after evaluating
performance of outcomes achieved by the proposed
network:

Predicted Labels = (Y predict) (6)

Actual Labels = (Ytst) @)

Based on the outcomes of the proposed network,
radiologists can consider this method (Rehni et al., 2008)
in their decision-making process of predicting brain tumor
for avoiding false decisions in short duration which will
further result in increased life span of patients and
improved patient care.

To improve model interpretability and trustworthiness,
we also integrated Gradient-weighted Class Activation
Mapping (Grad-CAM) into the pipeline. Grad-CAM
produces class-specific heatmaps that indicate the areas of
the input image that had the most impact on the decision
of the model. Hyperparameters like learning rate (tested
values: le-3, le-4, 5e-5), batch size (16, 32), and dropout
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rate (0.3-0.5) were optimized for model performance
through grid search. For SVM classifier, regularization
parameter C and kernel type (linear, RBF) were optimized
using 5-fold cross-validation on the training set. The
configuration chosen finally was: Dropout = 0.5, learning
rate = le-4, and SVM with linear kernel and C = 1.0.

Results and Discussion

For detecting and classifying brain tumor, automated
hybrid is proposed and implemented in spyder tool having
python 3.10 version. Pre-processing has been performed
on the acquired data from publicly available data source
which goes under normalization to have uniformity
among all images between ’0’ and ’1° and encoding is
performed to provide description of input images. Thus,
extended form of residual network i.e., ResNet101V2
extracts important features further forwarded to the
supervised machine to distinguish different images.
Results of proposed model can be seen in the following
Figures where Fig. 7 represents the outcome of test labels
given in text form i.e., healthy and tumor classes
respectively.

Figure 8 represents outcomes of one-hot encoding
where 0’ represents the healthy images, ’1° represents the
tumor found within brain images. One-hot encoder
transforms categorical variables into numerical form to
make them suitable for better understanding by deep
neural networks to perform the desired operation as this
process does not imply any ordinal relationship between
categorical variables while considering them for
extracting features. As illustrated in Figure 9, the
confusion matrix illustrates the model’s strong capability
to correctly differentiate between tumor and normal brain
images. Of 653 test images, 548 were correctly labeled as
tumor (true positives) and 92 as healthy (true negatives).
The model incorrectly labeled only 8 healthy scans as
tumors (false positives) and 5 tumor scans as healthy
(false negatives). This reflects high classification
capability and minimal error rates.

This matrix is basically used to obtain true or false
predictions made by the proposed model with respect to
healthy and infected brain MRI images. Thus, classes
categorization is based on actual and predicted labels that
summarizes count of test images while performing
prediction and classification of brain tumor. Here, total
count of test images i.e., 653’ images have been
categorized into four parts. TP has *548° images, TN has
’92’ images, FP has ’8’ images and FN has’5’ images
respectively. Analysis of misclassified instances indicates
that the vast majority of false positives in images with
motion artifacts or low-contrast conditions rendered them
visually comparable to tumor-infected scans. False
negatives occurred primarily with highly minuscule or
diffuse areas of tumors that can fail to demonstrate robust.
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Fig. 8: Outcomes of one-hot encoder

Confusion Matrix - Proposed Model

True Labels

Predicted Labels

Fig. 9: Confusion-Matrix Result
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Contrast relative to the surrounding tissues. These
findings indicate that integration of multi-modal MRI
inputs or attention-based designs can further improve
detection accuracy. Figure 10 shows outcome of
performance-metrics obtained for the proposed model.
The model was assessed using standard classification
metrics: Accuracy, precision, recall, Fl-score, and
specificity. Table 1 shows an in-depth comparison of the
introduced ResNet101V2-SVM model with some of the
most popular deep models for brain tumor classification,
tested on a uniform dataset. Out of the compared models,
EfficientNetB1-SVM had the lowest total accuracy of
87.90% with very high recall (98.19%) but comparatively
lower precision (88.73%), which implies more false
positives. ResNet50-SVM showed better performance
with accuracy of 95.56% and precision and recall value
close to each other and in excess of 97%. InceptionV4 had
slightly higher accuracy of 96.80% with similar
performance for all the metrics. The Vision Transformer
(ViT-B16), a recent transformer architecture, showed even
higher accuracy of 97.20%, reflecting its ability in
capturing global dependencies of imaging data. But the
suggested hybrid model, ResNet101V2-SVM, performed
the best among all the models with 98.00% accuracy,
98.56% precision, 99.09% recall, and an Fl-score of
98.82%.

Performance-Metrics of Proposed Model

1.00

0.98 4

0.96

0.94

Values

0.92 4

0.90 4

0.88

Accuracy Recall F1-Score

Metrics

Precision Specificity

Fig. 10: Outcome of Performance-Metrics

Such high performance proves the strength of using a
deep residual feature extractor in conjunction with a
margin-based classifier such as SVM, particularly in the
case of medical image classification where sensitivity and
balanced decision boundaries are too crucial. These all
scores outperform models such as EfficientNetB1-SVM
(87.90%) and ResNet50-SVM (95.56%). The performance
of the proposed ResNet101V2-SVM was measured on two
different datasets, namely the Kaggle Sartaj dataset and the
BraTS2020 dataset. As evident from results, the model
performed an accuracy of 98.00% on the Sartaj dataset,
with a precision of 98.56%, recall of 99.09%, and F1-score
of 98.82%. This robust performance indicates the model
can successfully learn discriminative features from the
Sartaj dataset, which is comprised of high-quality, well-
labeled MRI images carefully selected for brain tumor
classification tasks. Its performance on the BraTS2020
dataset was slightly lower but also strong: 94.50%
accuracy, 93.20% precision, 95.10% recall, and 94.14% F1-
score. This decrease in performance is owed to the BraTS
dataset’s greater complexity, involving multi-modal MRI
scans (T1, T2, FLAIR) and tumor types and sizes diversity.
These results suggest that although the model generalizes
well across datasets, refinements such as integration of
multi-modal features or fine-tuning on BraTS-specific
features may improve performance on clinically diverse
datasets. However, the model proposed shows excellent
adaptability on the different datasets, which recommends it
for practical medical imaging purposes.

To validate efficacy behind the use of SVM against a
standard softmax-based model, we conducted an
exploratory experiment with the same ResNetl01V2
feature extractor but instead of SVM with a fully
connected dense layer and softmax activation. As shown
by Table 2, SVM-based model outperformed, especially
in precision and Fl-score, reflecting its capability on
small datasets and lesser overfitting bias. The increase in
Fl-score and precision indicates that SVM’s margin-
based decision boundary assists in reducing false
positives a key issue in medical diagnosis tasks. In
addition, SVM minimizes the number of parameters in the
classification head, leading to faster training and better
convergence on small data sets. The ResNet101V2
architecture provides more residual connections and
better batch normalization techniques than ResNet50.
These improvements enable more effective acquisition of
detailed spatial information

Table 1: Comparison of model performance on tumor classification across datasets

Model Dataset Accuracy Precision Recall F1-Score
EfficientNetB1-SVM Sartaj 87.90% 88.73% 98.19% 93.22%
ResNet50-SVM Sartaj 95.56% 97.46% 97.29% 97.38%
InceptionV4 Sartaj 96.80% 96.20% 96.91% 96.55%
ViT-B16 Sartaj 97.20% 97.00% 97.50% 97.25%
Proposed Model (ResNet101V2-SVM) Sartaj 98.00% 98.56% 99.09% 98.82%
Proposed Model (ResNet101V2-SVM) BraTS 94.50% 93.20% 95.10% 94.14%
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Table 2: Comparison of ResNet101V2-SVM vs. ResNet101V2-

Softmax
Classifier Accuracy Precision Recall F1-Score
ResNetl01V2+  96.75%  96.02% 97.75% 96.88%
Softmax 98.00% 98.82%  98.56% 99.09%
ResNet101V2
+SVM Proposed)

In brain MRI scans and prevent vanishing gradient
problems, resulting in higher classification performance.
Misclassified image analysis reveals that false positives in
low-contrast or artifact-present scans were commonplace.
False negatives in cases of faint or diffuse tumor areas
were also common. These findings emphasize the
importance of improving input quality and propose ways
to do so through multi-modal inputs or attention
mechanisms in subsequent studies.

Table 3 presents a comparative overview of prior
methods of brain tumor classification, which include
model types, data employed, and achieved performance

metrics. The majority of the previous work used deep
learning architectures like 3D CNNs, generative
adversarial networks (GANs), convolutional LSTMs, and
deep belief networks. The BraTS dataset, which is
clinically annotated brain tumor images, was used to train
several models, whereas other models were based on
private MRI datasets or the TCGA-GBM dataset. The
reported performance metrics are diverse, with the Dice
similarity coefficient between 0.84 and 0.88 and the
classification accuracy near 97%. It is worth pointing out
that the best reported F1-score for these models is 98.28%,
obtained using a deep neural network on a private dataset.
By contrast, the suggested ResNet101V2 + SVM hybrid
model, which was trained on both the Sartaj and BraTS
datasets, attained a competitive accuracy of 98% and an
Fl-score of 98.82%, thus surpassing previous methods
with regard to balanced recall and precision. This proves
the efficacy and generalizability of the suggested
approach for both benchmark and real-world data.

Table 3: Comparison of existing approaches on brain tumor classification

Reference Approach Dataset Metric(s)
(Havaei et al., 2017) 3D CNN BraTS Dice: 0.87
(Pereira et al., 2016) Deep Belief Network Private MRI set Accuracy: 97%
(Lietal., 2017) ConvLSTM BraTS Dice: 0.85
(Akkus et al., 2017) GAN BraTS Dice: 0.84
(Shin et al., 2016) Transfer Learning CNN Private Dice: 0.88
(Chang et al., 2019) 3D CNN TCGA-GBM Dice: 0.917
(Moeskops et al., 2016) GAN Private Dice: 0.87
(Guetal., 2021) CDLLC-CNN Private Accuracy: 96.39%
(Almadhoun and Abu-Naser, 2022) DNN Private F1-score: 98.28%
Proposed Model ResNet101V2 + SVM Sartaj Accuracy: 98%, F1: 98.82%

Here, Havaei et al. (2017) suggested a model of 3-
dimensional CNN to perform brain tumor segmentation and
achieved dice coefficient of 0.87. This model has robustness
to spatial information and provided improved feature
extraction but it requires large training datasets due to which
this model experiences high computational complexity.
Pereira et al. (2016) uses deep belief networks to classify
brain tumor and achieved 97% accuracy. The proposed
model has ability to capture complicated patterns and
robustness towards noisy images but takes a lot of time to
train networks. In the same way, Li et al. (2017) utilized
convolutional Long Short-Term Memory networks for
segmentation of brain tumor which incorporated temporal
information and tackle data available in sequences and
achieved 0.85 dice similarity coefficient but these networks
are expensive in nature and also require large amount of time
for training networks. Akkus et al. (2017) also suggested a
model comprising generative adversarial networks for
segmentation of brain tumor and achieved 0.84 dice
similarity coefficient. This model has advantage of handling
class imbalancing issues and ability to generate high-quality
segmented masks but unstable training and sensitivity to
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fine-tuning parameters are demerits of this model. Shin et al.
(2016) also suggested transfer learning model for
segmenting brain tumor using deep neural networks and
achieved 0.88 dice similarity coefficient. This model has
ability to train itself in less time but classification is also
required to predict the true and false responses.

Chang et al. (2019) suggested a model comprising of 3-
dimensional convolutional neural networks for automated
segmentation of brain tumor which can capture spatial as
well as contextual information and achieved intraclass
correlation coefficient of 0.917 that may vary depending
upon the considered dataset. This model is highly expensive
to be considered in the healthcare sector. Moeskops et al.
(2016) utilized generative adversarial networks for
segmentation of brain tumor which can generate synthetic
tumor images for augmenting data and achieved 0.87 dice
coefficient. The model has drawback of unstable training
provided to the network. (Gu et al., 2021) has proposed a
model for classifying brain MRI images and considered
convolutional dictionary learning with local constraint. The
authors gained 96.39% accuracy. Almadhoun and Abu-Naser
(2022) utilized deep neural networks and achieved F1-Score
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accuracy of 98.28% while detecting and classifying brain
tumor. Moreover, comparison of the other techniques such as
ResNet50 which comprises of bottleneck design for building
respective blocks to reduce parameters as well as matrix
multiplications and EfficientNetBl which provides
uniformity among pixel values of considered data by
deploying compound coefficient are integrated with SVM to
evaluate the models’ effectiveness based on the their
respective performance-metrics achieved while considering
hyperparameters and outcomes of confusion-matrix as
shown in Table 4.

It is observed that model contained large number of
parameters, i.e., 42,626,560 whereas 23,587,712 parameters
were contained by ResNet50-SVM and 6,575,239
parameters were contained by EfficientNetB1-SVM. The
number of epochs considered were 82 while training and 21
while testing the models. The estimated time of arrival for
providing training to the considered images is 139 seconds
with respect to 2 seconds per steps per step for
EfficientNetB1-SVM, 218 seconds with respect to 3 seconds
per steps for ResNet50-SVM and 306 seconds with respect
to 4 seconds per steps for the proposed model.

Table 4: Comparison of achieved results

However, the estimated time of arrival while testing the
model is 30 seconds with respect to 1 second per step for
EfficientNetB1-SVM, 55 seconds with respect to 3 seconds
per step for ResNet50-SVM and 75 seconds with respect to
4 seconds per step for the proposed model. Based on the
confusion-matrix outcomes, the count of *True Positive’ for
EfficientNetB1-SVM, ResNet50 and the proposed model is
543, 538 and 548. The count of ’False Positive’ for
EfficientNetB1-SVM, ResNet50 and the proposed model is
69, 14 and 8. The count of ’True Negative’ for
EfficientNetB1-SVM, ResNet50 and the proposed model is
31, 86 and 92. The count of ’False Negative’ for
EfficientNetB1-SVM, ResNet50 and the proposed model is
10, 15 and 5 as shown in Figures 11 and 12.

These outcomes further resulted in the respective
performance-metrics of EfficientNetB1-SVM, ResNet50-
SVM and the proposed model as accuracy of 87.90, 95.56
and 98%; Precision of 88.73, 97.46 and 98.56%; Recall of
98.19, 97.29 and 99.09%; F1-Score of 93.22, 97.38 and
98.82% respectively as shown in Figure 13. Figure 14 shows
outcomes based on the training and testing metrics across
different models.

Parameters EfficientNetB1-SVM ResNet50-SVM Proposed Model
Total count of Parameters 6,575,239 23,587,712 42,626,560
Duration of Training images (Per step) 139seconds 2s/step 218s 3s/step 306seconds 4s/step
Count of Epochs while training 82 82 82

Duration of Testing images (Per step) 30 seconds 1s/step 55s 3s/step 75s 4s/step
Count of Epochs while testing 21 21 21

Count of True Positive 543 538 548

Count of False Positive 69 14 8

Count of True Negative 31 86 92

Count of False Negative 10 15 5

Accuracy (%) 87.90 95.56 98

Precision (%) 88.73 97.46 98.56

Recall (%) 98.19 97.29 99.09

F1-Score (%) 93.22 97.38 98.82

Confusion Matrix - EfficientNetB1-SVM

31

69

True Labels
True Labels

10

Predicted Labels

Fig. 11: Confusion-Matrix Result
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Confusion Matrix - ResNet50-SVM

86

14

True Labels

15

Predicted Labels

Fig. 12: Confusion-Matrix Result
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Performance-Metrics based Comparison of Different Models
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Fig. 13: Performance-Metrics based Comparison of Different
Models
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Fig. 14: Training and Testing Metrics Across Models

Based on the achieved outcomes, it is observed that
developing automated systems in the healthcare,
specifically for radiologists, can offer multiple benefits
such as fast image analysis which will minimize the
time consumption process in performing diagnosis and
providing timely recommendations to the patients.
Moreover, routine tasks such as diagnosing anomaly
can be automated which will reduce workload of
human radiologists and help them to focus on more
complex cases and patient-care. Other than this, such
automated system will reduce risk of human errors in
interpreting images which can be critical for achieving
accurate diagnosis. Thus, these systems can assist
experts in detection of brain tumor to avoid inaccurate
decisions. Integrating hybrid models in terms of
extended form of residual networks ResNet101V2 with
support vector classifier gives efficient and accurate
outcomes as model got accuracy of 98 ,98.56 precision,
99.09 recall, 92 specificity and 98.82% F1-score that
outperformed the existing techniques while detecting
brain tumor.
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Figure 15 shows the Grad-CAM visualizations for
three correctly classified” tumor” cases from the MRI
scans. In all images, the superimposed red heatmap
indicates the areas in which the model focused its
attention when it extracted the prediction. The areas
coincide with the apparent tumor masses, suggesting
that the model is attending to clinically important
features and not structures without relevance. This
focused attention makes the decision-making process
more interpretable and shows that the deep learning
model is not acting as a black box. Rather, it offers a
degree of transparency that is most important in
medical Al use cases, enabling radiologists and
clinicians to visually confirm behind
predictions.

reasons

(a)

(b)

Fig. 15: (a) Input Brain MRI Samples, (b) GRAD-CAM
Visualizations

Figure 16 presents training dynamics of the
suggested ResNetl01V2-SVM model throughout 82
epochs. The training and validation loss curves are
presented in the left subplot, and the training and
validation accuracy are in the right subplot. Both
training and validation losses decrease steadily with
time, reflecting successful learning and model
convergence. The distance between the two curves is
low, indicating minor overfitting. On the training
accuracy plot, the training accuracy increments
smoothly and saturates at over 98%, and the validation
accuracy tracks smoothly in a similar upward direction,
plateauing at around 97.5%. The similarity between the
training and validation curves on the two plots
indicates strong generalization power and proper
regularization through methods such as data
augmentation and dropout. These trends affirm that the
model is picking up on significant features and not
overfitting, more strengthening the model’s credibility
for use in brain tumor detection in real-life.
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Fig. 16: Representation of Training and Validation Curves

Conclusion and Future Scope

Unlike conventional deep learning pipelines that end
with softmax-based dense layers, this research presents a
hybrid model that fuses a deep residual network with a
support vector classifier. Although both have been
explored in other studies, both together in this medical
imaging setting present an original contribution. Not only
does the architecture improve classification resistance, but
model overfitting on small sets of data is also minimized.

This work introduced an automated system for brain
tumor detection based on deep learning utilizing a hybrid
ResNet101V2-SVM model. The model was optimized
and tested on two open datasets (Sartaj and BraTS) and
performed better classification with accuracy as 98% and
Fl-score as 98.82%. Data augmentation, dropout
regularization, model interpretability with Grad-CAM,
and incorporation of a lightweight SVM classifier are
major contributions. In comparison to existing research,
the developed model has improved generalizability,
interpretability, and computational speed. Its capability of
concentrating on the important areas in MRI images
proves that it can be perfectly implemented in real
scenarios in clinical settings. Future research directions
involve including multi-modal MRI information (e.g., T2,
FLAIR) to enhance robustness, adding attention mechanisms
to localize small tumor areas more accurately, investigating
federated learning for privacy-enhanced training over
hospital networks, and exploring mobile or edge-based
deployment options for point-of-care diagnosis.
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