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Abstract: The abnormal growth of brain cells leads to tumor formation, which 

can be fatal if not detected and treated promptly. Given the complexity of brain 

tumors, early detection is critical in healthcare. Traditional radiology-based 

tumor detection is prone to human error and delays. Hence, a computer- 

assisted method is needed for accurate and efficient diagnosis. With the rapid 

advancements in the medical science; integrating machine learning, deep 

learning, artificial intelligence demonstrated great potential in diagnosing 

diseases and overcome the existing drawbacks while focusing on appropriate 

treatment plans and improved patient outcomes. A pre-trained model namely 

Residual Network i.e., ResNet101V2 has been leveraged in the proposed 

model to extract significant features following supervised algorithm for 

differentiating different brain MRI scans to detect and classify presence of 

brain tumor. As a result, the proposed model achieved 98% accuracy and 

outperformed the existing methods in the process of diagnosing and 

classifying brain tumor. The novelty lies in the integration of a deep 

convolutional feature extractor with a traditional SVM classifier, followed by 

one of the explainable approach namely Gradient weighted class activation 

mapping for achieving transparent outcomes based on the two different 

datasets for enhancing generalization and comparison with other approaches 

is also done to ensure effectiveness of the proposed model to gain trust of 

medical experts for speeding up the process of making decisions while 

diagnosing brain tumor. 
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Introduction 

The brain comprises of numerous nerve cells (Louis 

et al., 2016) responsible for performing functions such as 

thinking, acting, visualizing, breathing, experiencing 

hunger, monitoring behavioral actions, etc. Thus, it can 

also be considered as a central hub for performing and 

monitoring an individuals’ act throughout their life-span. 

Due to such sensitive properties, any damage to brain 

tissues can cause major impact on an individual health as 

injuries can cause variations in size of cells lying within 

brain which can lead to benign or malignant tumor where 

consideration of benign tumor comes in non-cancerous 

category and malignant tumor comes in the category of 

cancerous ones. These life-threatening diseases cause 

risks to an individuals’ life in case symptoms are not 

identified at an early stage or lack in timely treatment. 

Although radiologists utilize traditional approaches 

such as Magnetic Resonance Imaging (MRI) for acquiring 

detailed images lying within brain based on strong 

magnetic field and analysis of histopathological 

parameters; computer tomography to generate cross-

sectional images lying within brain based on x-rays for 

diagnosing hemorrhages and abnormalities if any; 

Positron emission tomography for displaying metabolic 

activities of tissues lying within brain via injecting 

radioactive substance into body which helps in 

differentiating benign as well as malignant tumors etc. 

Figure 1 shows a few samples of healthy brain and tumor 

within brain which occurs due to injury or genetic issues 

and results in increased size of tissues in abnormal manner 

within brain. More than 94,000 people are estimated to 

suffer from benign tumor and approximately 67,000 
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people will suffer from malignant in 2023 according to the 

National Brain Tumor Society (NBTS) (2023). 

Thus, characterization of infected and healthy brain is 
generally done on the basis of benign or malignant where 

healthy brain tissues don’t come in contact of infected 
ones at a fast pace in benign category. On the contrary, 
healthy tissues are affected by infected cells at large scale 
quickly in case of malignant tumor. Due to lack of 
identification of its symptoms at an early stage, most of 
the patients are not provided with timely treatment. As a 

result, brain tumor is spreading among large population 
and non-curable yet. Although medical professionals are 
trying hard to diagnose it with the help of existing 
approaches but these approaches are time-consuming and 
there is a probability of making incorrect observations too 
as these techniques are completely reliable on medical 

experts’ decisions. Deep learning performed brilliantly in 
analysing medical images for diagnosing diseases if any 
based on input data. This potential feature can assist 
radiologists (Liu et al., 2018) while making any decisions 
to achieve improved results. (Tandel et al., 2019) provided 
a review on distinct approaches for analysis of vast 

amount of medical data to predict and classify brain 
cancer as these techniques play significant role in 
extracting meaningful features from images to make 
decisions in the healthcare industry. Thapa et al. (2021) 
also provided brief review of pathophysiological process 
of traumatic brain injury and several biochemical 

pathways associated with brain injury along with the 
respective ways of providing treatment to the patients. 

Although, there are several methods such as magnetic 
resonance imaging, computed tomography, positron 
emission tomography etc. used by medical professionals 
especially radiologists for diagnosing brain tumor disease, 

these approaches come with a few limitations. These 
limitations include subjectivity as conventional 
approaches rely on subjective interpretation of medical 
images by medical professionals with distinct perceptions 
which can further lead to variation in their decisions. 

 

 
   (a) 

 

 
  (b) 

 

Fig. 1: Brain scans: (a) Healthy MRI, (b) Infected MRI 

Moreover, human error can lead to delayed or false 

diagnosis due to misinterpretation and oversight, limited 

sensitivity can cause missed diagnosis which can result in 

delayed treatment and timely recommendations to the 

patients. Conventional methods can also consume a lot of 

time in interpreting medical images and result in delayed 

treatment and it is quite challenging for the skilled 

radiologists to become available in each and every region 

which can again cause delay in identifying abnormal 

tissues and experience delayed treatment and 

recommendations which are mandatory for patients to 

enhance their life-span. Thus, Artificial intelligence in 

integration with other techniques can give major 

contributions in healthcare sector while diagnosing 

disease based on input data acquired from publicly 

available source to provide accurate as well as efficient 

outcomes. Moreover, deep learning techniques in 

collaboration with classifiers can enhance accuracy and 

other parameters to be considered while detecting 

diseases to assist medical professionals in their decisions. 

While achieving high model accuracy is essential, 

practical challenges such as hardware limitations, model 

latency, and compatibility with current radiology 

workflows make real-world implementation in radiology 

departments difficult. Rapid inference and facilitation of 

clinician interpretability are essential for real-world 

clinical adoption. Our model architecture is designed to 

be efficient and employs transfer learning and support 

vector classification to reduce computational cost while 

not sacrificing performance. 

While several studies have explored deep learning for 

brain tumor classification, most do not integrate 

explainability for clinical trust, neither they prevent 

overfitting on small datasets through robust augmentation 

nor demonstrate generalizability across multiple public 

datasets. Additionally, hybrid approaches using deep 

networks with classical classifiers remain underexplored 

in this domain. The proposed study addresses these 

limitations by incorporating Grad-CAM-based 

explainability, strong data augmentation, evaluation on 

two public datasets (Sartaj and BraTS), and a 

ResNet101V2-SVM hybrid that balances depth with 

generalization. 

Key Contributions of Paper 

The main contributions of this study are summarized 

as follows: 
 

• A hybrid model combining ResNet101V2 for feature 

extraction and SVM for classification is proposed 

• Grad-CAM is integrated to gain trust of medical 

experts via providing interpretable and transparent 

outcomes 

• Data augmentation and dropout are applied to prevent 

overfitting and improve robustness 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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• The model is evaluated on both the Sartaj and BraTS 

datasets to demonstrate generalizability 

• Comparative analysis with state-of-the-art models 

shows superior accuracy of 98% and F1-score of 

98.82% 

• Applied an explainable approach to ensure 

transparent outcomes and enhance clinical trust 

• The hybrid approach offers improved generalization 

and interpretability over traditional softmax 

classifiers 

 

Related Work 

The convergence of deep learning, machine learning 

and other algorithms towards healthcare has created 

new opportunities for real-time, smart medical 

systems. Bolhasani et al. (2021) presented a systematic 

review that underscored DL’s role in IoT-based 

healthcare settings. The research identified the ways in 

which convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and combined 

models enhance disease diagnosis, health monitoring, 

and medical data analysis. Although the authors 

highlighted the advantages of real-time processing and 

automating medical tasks, they also pointed out 

constraints due to scarcity of standardized datasets, 

issues of interoperability, and privacy concerns. Areas 

of future research were proposed in the context of 

secure, scalable, and energy-efficient IoT-DL 

architectures for clinical use. Similarly, Malasinghe et 

al. (2019) presented an extensive review of remote 

patient monitoring (RPM) systems, emphasizing their 

potential in chronic disease management and elderly 

care. The study discussed sensor-based wearable 

devices, wireless communication, and integration with 

mobile health platforms. Though these technologies 

enhance healthcare accessibility and enable continuous 

monitoring, challenges such as data security, system 

reliability, and regulatory constraints remain. The 

authors suggested incorporating artificial intelligence 

and machine learning for predictive analytics to 

improve patient outcomes. 

In the field of cancer research, Jagga and Gupta 

(2015) investigated the use of machine learning for 

biomarker discovery important to early cancer 

detection and precision medicine. They used 

supervised learning methods like Support Vector 

Machines (SVMs), decision trees, and random forests 

to study genomic and proteomic data. The review 

highlighted ML’s promise in identifying useful patterns 

for non-invasive diagnostics but highlighted issues 

with model validation because of heterogeneous data 

and no clinical trials. The authors recommended that 

future research pursue the combination of ML with 

multi-omics data and improving model interpretability 

for clinical approval. Applicable to brain tumor 

analysis, various researches have utilized DL methods 

for MRI segmentation and classification. Havaei et al. 

(2017) suggested a two-pathway CNN for 

segmentation of brain tumors, which used both the 

local and global contextual information. With the use 

of the BRATS benchmark dataset, the model performed 

high accuracy in segmentation but had lower 

performance on low-contrast cases. The authors 

suggested future enhancement in the form of multi-

modal data integration. In a similar manner, Sajid et al. 

(2019) applied deep learning to automatically detect 

and segment brain tumors from MR images. Their 

CNN-based approach showed strong detection but was 

constrained by the presence of varied training data, 

necessitating more generalized architectures. 

The standard dataset for most brain tumor research, 

BRATS, was presented by Menze et al. (2015). The 

dataset contains multi-institutional MRI scans 

manually annotated and has since become the standard 

for testing segmentation algorithms. Its power is 

through standardization and high-quality labeling, yet 

the authors saw the necessity of extending it to 

incorporate unusual tumor types and more 

heterogeneous imaging modalities. Pereira et al. (2016) 

extended this dataset by using a CNN with a small 

receptive field for tumor segmentation. Although good 

at segmenting tumor boundaries, their patch-based 

approach did not have enough contextual knowledge, 

which they suggested overcoming by using deeper 

networks and multi-scale features. Kamnitsas et al. 

(2017) extended this thread of work by presenting a 3D 

multi-scale CNN together with a fully connected 

Conditional Random Field (CRF) model. This model 

effectively learned spatial relations and performed 

accurate lesion segmentation in both BRATS and 

ISLES datasets. Yet it cost a lot in terms of 

computational power, leading to further investigation 

of model compression and optimization for deployment 

into clinics. Isensee et al. (2019) defied the upward 

trend in model complexity by introducing No New-Net, 

a U-Net-like architecture with subtle changes yet still 

competitive performance. The ease of implementation 

of their design emphasized how baseline models, if 

adequately fine-tuned, could achieve comparable 

performance with more complex architectures. 

For enhancing segmentation precision, (Ali et al., 

2022) introduced a hybrid approach using sequential 

machine learning and attention mechanisms. Evaluated 

on BRATS data, the proposed model used contextual 

information for precise segmentation. Although its 

enhanced performance was encouraging, the increased 

model complexity created doubts about interpretability 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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and computational cost. Directions for future work 

involved using attention in lean models for real-time 

deployment. Later on, Hossain et al. (2024) proposed a 

systematic framework using Vision Transformers 

(ViT), ensemble models, and transfer learning along 

with Explainable Artificial Intelligence (XAI) 

methods. The method gave high accuracy in 

classification and interpretability to overcome the 

black-box problem of DL models. Nevertheless, this 

method demanded high computational power and pre-

training, and hence it is not directly applicable in 

clinical scenarios. Victor et al. (2023) attempted to 

address privacy issues in healthcare through FL-PSO, 

a federated learning framework with particle swarm 

optimization applied to stroke prediction. Their 

distributed solution ensured data privacy among 

institutions but was plagued by communication 

overhead and convergence issues. There is potential to 

expand this technique to brain tumor prediction in a 

federated setting. Khemchandani et al. (2022) utilized 

a hybrid approach incorporating the Particle Imperialist 

Competitive Algorithm (PICA) with a deep CNN for 

brain tumor segmentation. Convergence rates and 

accuracy were enhanced, albeit at the cost of 

interpretability challenges. The model’s explainability 

and deployment in clinical practice were suggested as 

future work. 

Going in a different direction, (Kumaar et al., 2024) 

proposed a style-based Generative Adversarial 

Network (GAN) classifier with pre-trained auxiliary 

classifiers. The classifier worked well for class 

imbalance and produced high-quality synthetic MRI 

images. GANs are notoriously difficult to train, 

however, and their clinical validity is being tested. 

Srinivas et al. (2022) experimented with deep transfer 

learning architectures like ResNet, VGG, and Inception 

for classifying brain tumors. These models were highly 

accurate with shorter training times, but their 

dependence on pre-trained weights curtailed domain-

specific flexibility. Fine-tuning on expert medical 

datasets was proposed as a future enhancement. 

Finally, Anaya-Isaza and Mera-Jime´nez (2022) 

addressed data insufficiency in detecting brain tumors 

through data augmentation and transfer learning. Their 

CNN model enhanced classification generalization and 

performance, especially on small datasets. 

Nevertheless, the augmented data may not always 

capture clinical variability. The authors suggested 

using semi-supervised learning and domain adaptation 

methods to reinforce robustness and usability in 

practical environments. While recent works 

demonstrate promising performance, the majority 

suffer from non-diverse datasets, lack of 

interpretability, and absence of techniques against 

overfitting. These highly accurate models like 

ResNet50 and 3D CNNs are not explainable or overly 

computation-expensive for direct deployment. Our 

approach resolves these challenges through the 

utilization of a deep residual network with SVM for 

domain generalizability and the addition of Grad-CAM 

for explainability, and all on top of data augmentation 

to prevent overfitting. 

Materials and Methods 

To identify brain tumor, a hybrid model has been 

suggested based on deep neural network consisting of 

residual network 101V2 (ResNet 101V2) and transfer 

learning technique to draw out features based on input 

data from the open-access dataset. Moreover, 

implemented supervised algorithm i.e., support vector 

classifier identifies different classes of input images. 

Since training deep models from scratch using medical 

image datasets can be time consuming and 

computationally expensive. Hence, transfer learning 

accelerates the training process via utilization of the 

pre-trained model for extracting important features to 

minimize the time and computational power needed in 

building an efficient diagnostic model for brain tumor 

detection. Figure 2 is the working principle of the 

developed automated system while Figure 3 shows its 

architecture. 

Dataset Collection 

The data collection for the experiment includes two 

primary sources: the Sartaj brain MRI dataset from 

Kaggle and the BraTS (Brain Tumor Segmentation) 

dataset, playing two different functions in model 

training and testing. 

 

 
 
Fig. 2: Illustration of Flowchart for detection of Brain Tumor 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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Fig. 3: Proposed model architecture 

 
The Sartaj (Bhuvaji, 2023) dataset, which is hosted on 

Kaggle, comprises 3,264 T1-weighted grayscale MRI 

images. Of these, 2,764 are marked as” tumor” and 500 

as” healthy,” making it ideal for binary classification 

exercises. The images are available in standard JPEG 

format with proper labels that make preprocessing easy 

and allow the use of deep learning models efficiently. 

Because of its ease of availability, compact size, and the 

clear separation between tumor and non-tumor cases, this 

dataset is widely utilized for training CNN architectures 

for tumor detection. Its ease enables quick 

experimentation with classification algorithms, data 

augmentation strategies, and explainability techniques. To 

measure the proposed model’s generalizability, we also 

included the BraTS (Brain Tumor Segmentation) dataset 

(Menze et al., 2015), the 2020 version. BraTS is a 

clinically annotated dataset created for the Brain Tumor 

Segmentation Challenge and has multimodal MRI scans, 

including T1, T1c, T2, and FLAIR sequences. For 

equitable comparison with Sartaj dataset, in this work, 

300 T1-weighted slices only were utilized. Similar to 

Sartaj, BraTS only offers 3D volumetric information and 

pixel-level tumor annotations for glioma types, but it is an 

industry-standard benchmark for segmentation and 

classification tasks in neuroimaging. Its inclusion within 

this study adds strength to a more thorough assessment of 

model performance and assists in proving the model’s 

generalizability across datasets of various clinical 

derivation and design. 

By using both datasets together, this research provides 

a thorough test of the model’s classification on carefully 

curated, well-tagged images (Sartaj) and its resilience 

when given clinically annotated, real-world medical 

imaging data (BraTS). This two-dataset approach 

mitigates issues of model overfitting and makes results 

more believable in real-world applications. Figure 4 

shows images count having detailed images after 

performing split operation for trained and test images. 

 
 (a) 

 
(b) 

 

Fig. 4: Illustration of Split images count: (a) Trained Images, (b) 

Tested Images 

 

Pre-Processing 

Pre-processing was carried out to improve image 

quality and robustness of the model. First, all the images 

were resized to a standard size and scaled to the range 0 

to1. For the prevention of overfitting caused by the small 

size of the dataset (3264 images), extensive data 

augmentation was performed. The following 

augmentation methods were implemented: 

 

• Rotation: Random rotations between ±15° 

• Flipping: Horizontal and vertical flip 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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• Contrast Adjustment: Random changes in brightness 

and contrast 

• Zooming and Cropping: Random zooming and 

cropping to zoom on salient features 

 

Figure 5 shows ten augmented MRI images created 

from a single source brain MRI scan. The augmentations 

mimic the preprocessing pipeline meant to improve model 

robustness and prevent overfitting. Each image 

incorporates variations from primary augmentation 

techniques: Random rotations with ±15°, horizontal and 

vertical flips, random brightness and contrast changes, 

and random zoom with cropping to concentrate on salient 

areas of the brain. This approach brings substantial 

variability to the training set, enabling the deep model, 

such as ResNet101V2 including dropout and batch 

normalization layers, to generalize better to new, unseen 

tumor images. 

 

 
 

Fig. 5: Augmented Brain MRI Samples 

 

These transformations during training resulted in well 

generalization towards new or unseen data. Moreover, 

dropout layers with a 0.5 dropout rate were implemented 

following major convolutional blocks in the 

ResNet101V2 network to continue decreasing overfitting. 

Batch normalization and ReLU activation were also 

preserved in order to balance training as well as promote 

non-linearity within the learned features. 

Proposed Model 

He et al. (2016) presented Residual Network (ResNet) 

101V2 for bringing about improvement in the current 

network to its depth. Residual network has already been 

pre-trained on ImageNet and includes residual blocks as 

well as skip connections. Convolutional layers shrink 

spatial size of input image and extracts high-level features 

while max-pooling layer downsample feature maps to 

extract important features where the term ’Downsample’ 

describes an operation of reducing spatial sizes like width 

and height of feature maps while training the proposed 

network. Therefore, it maintains maximum value in every 

pooling area and eliminates values with less importance. 

Therefore, it leads to reducing the computational 

complexity of subsequent layers and reduces overfitting 

problems to attain efficient results. Batch normalization 

and ReLU activation functions are very necessary 

elements in order to train ResNet101V2 model effectively 

because batch normalization plays a crucial role in 

regularizing the designed network as it applies 

normalization to the layer activations by considering the 

mean of activations for a mini-batch of data and dividing 

it by the standard deviation. Therefore, it leads to more 

stable training by removing the vanishing gradient issue 

and ReLU allows it to learn intricate relations and 

representations with regard to assumed data by adding. 

Non-linearity. Therefore, both elements improve 

network performance while detecting brain tumor 

disease. 

Multi sub-stages in the subsequent stage includes 

convolutional blocks for processing obtained feature 

maps and residual blocks in conjunction with skip 

connections skip layers and provide real input to 

output. Then global Average pooling layer assists in 

feature map reduction of spatial dimensions to fixed 

dimension and output of this layer is passed to SVM, 

such as the linear Classifier, a category of supervised 

machine learning algorithm, utilized for classification 

operations particularly possessing small dataset to 

supply effective result as they are less susceptible to 

overfitting because of their margin-based nature while 

fully connected layers and softmax of residual network 

can be prone to overfitting as we are working on 3264 

images only and it can also demand large 

computational resources for making predictions. Figure 

6 presents the ResNet101V2. 

Architecture, emphasizing its major elements 

including residual blocks and skip connections that 

facilitate deep feature extraction. Batch normalization and 

ReLU functions enhance stabilizing gradients and model 

convergence. 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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Fig. 6: Flowchart Representation of ResNet101V2 

 

Therefore, ResNet101V2 network consists of different 

residual networks as well as skip connections in order to 

outperform while brain tumor is diagnosed. To distinguish 

between different classes of given medical dataset, 

support vector machines are most appropriate to carry out 

classification task. Because these machines possess 

capability to identify optimal hyperplane to separate data 

points of varying classes as hyperplane dictates that 

margin among distinct classes’ closest points should be 

greatest. Additionally, the dimension of the hyperplane is 

based on the input feature numbers. For example, it is a 

line for input features with two classes while 2D plane is 

obtained for input features with three classes. Because of 

this characteristic of such machines, linear support vector 

machines are opted for differentiating various images. In 

addition, Support Vector Machine (SVM) has been 

utilized in place of a fully connected deep classifier 

because it performs better on small- to medium-sized sets. 

SVM is more resistant to overfitting, particularly with a 

high-dimensional feature space as created by 

ResNet101V2, and works well even with unbalanced 

datasets. Moreover, employing SVM drastically 

minimizes trainable parameters in the last layers, 

enhancing learning speed and efficiency. 

Considered classes have also been labelled in the 

proposed model as ‘0’ and ‘1’, where 0 shows healthy 

brain images and ‘1’ shows infected brain images. 

Afterwards, split operation resulted in trained as well as 

tested data which have been represented in the following 

Equations 1 and 2: 

Trained Set = (Xtrn, Ytrn) (1) 

 

Tested Set = (Xtst, Ytst) (2) 

 

These training and tested parameters are forwarded to 

the proposed network to extract one of the most important 

features as illustrated in Equation 3: 

 

(Ftrn = FResNet101V 2(Xtrn)) (3) 

 

Based on the decision boundary made by the proposed 

network for performing classification task has further 

been illustrated in the form of respective weights \we” and 

bias\bs” followed by test image feature as shown in 

Equation 4. The terms “weights” and “bias” refer to the 

key components of linear support vector classifier where 

weights determine the contribution of each feature to the 

decision boundary for making predictions and bias allows 

the linear support classifier to shift the decision boundary 

away from origin and significant to fit the model with 

respect to its data correctly. Thus, both weights and bias 

help the support vector classifier to differentiate 

considered classes accurately during training and 

maximize margin between distinct classes: 
 
(Ftst = FResNet101V 2(Xtst)) (4) 
 

Thus, resultant predictions can be seen in Equation 5 as: 

 

Y predict = sign (we ∗ Ftst + bs) (5) 

 

Thus, we shows transpose of weight vector. Sign 

function is used to represent differentiation between 

considered classes as healthy or infected brain MRI 

images followed by predicted and actual labels which 

have been illustrated in equation 6 and 7 after evaluating 

performance of outcomes achieved by the proposed 

network: 

 

Predicted Labels = (Y predict) (6) 

 

Actual Labels = (Ytst) (7) 

 

Based on the outcomes of the proposed network, 

radiologists can consider this method (Rehni et al., 2008) 

in their decision-making process of predicting brain tumor 

for avoiding false decisions in short duration which will 

further result in increased life span of patients and 

improved patient care. 

To improve model interpretability and trustworthiness, 

we also integrated Gradient-weighted Class Activation 

Mapping (Grad-CAM) into the pipeline. Grad-CAM 

produces class-specific heatmaps that indicate the areas of 

the input image that had the most impact on the decision 

of the model. Hyperparameters like learning rate (tested 

values: 1e-3, 1e-4, 5e-5), batch size (16, 32), and dropout 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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rate (0.3–0.5) were optimized for model performance 

through grid search. For SVM classifier, regularization 

parameter C and kernel type (linear, RBF) were optimized 

using 5-fold cross-validation on the training set. The 

configuration chosen finally was: Dropout = 0.5, learning 

rate = 1e-4, and SVM with linear kernel and C = 1.0. 

Results and Discussion 

For detecting and classifying brain tumor, automated 

hybrid is proposed and implemented in spyder tool having 

python 3.10 version. Pre-processing has been performed 

on the acquired data from publicly available data source 

which goes under normalization to have uniformity 

among all images between ’0’ and ’1’ and encoding is 

performed to provide description of input images. Thus, 

extended form of residual network i.e., ResNet101V2 

extracts important features further forwarded to the 

supervised machine to distinguish different images. 

Results of proposed model can be seen in the following 

Figures where Fig. 7 represents the outcome of test labels 

given in text form i.e., healthy and tumor classes 

respectively. 

Figure 8 represents outcomes of one-hot encoding 

where ’0’ represents the healthy images, ’1’ represents the 

tumor found within brain images. One-hot encoder 

transforms categorical variables into numerical form to 

make them suitable for better understanding by deep 

neural networks to perform the desired operation as this 

process does not imply any ordinal relationship between 

categorical variables while considering them for 

extracting features. As illustrated in Figure 9, the 

confusion matrix illustrates the model’s strong capability 

to correctly differentiate between tumor and normal brain 

images. Of 653 test images, 548 were correctly labeled as 

tumor (true positives) and 92 as healthy (true negatives). 

The model incorrectly labeled only 8 healthy scans as 

tumors (false positives) and 5 tumor scans as healthy 

(false negatives). This reflects high classification 

capability and minimal error rates. 

This matrix is basically used to obtain true or false 

predictions made by the proposed model with respect to 

healthy and infected brain MRI images. Thus, classes 

categorization is based on actual and predicted labels that 

summarizes count of test images while performing 

prediction and classification of brain tumor. Here, total 

count of test images i.e., ’653’ images have been 

categorized into four parts. TP has ’548’ images, TN has 

’92’ images, FP has ’8’ images and FN has’5’ images 

respectively. Analysis of misclassified instances indicates 

that the vast majority of false positives in images with 

motion artifacts or low-contrast conditions rendered them 

visually comparable to tumor-infected scans. False 

negatives occurred primarily with highly minuscule or 

diffuse areas of tumors that can fail to demonstrate robust. 

 
 
Fig. 7: Outcomes of test labels 

 

 
 
Fig. 8: Outcomes of one-hot encoder 

 

 
 
Fig. 9: Confusion-Matrix Result 
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Contrast relative to the surrounding tissues. These 

findings indicate that integration of multi-modal MRI 

inputs or attention-based designs can further improve 

detection accuracy. Figure 10 shows outcome of 

performance-metrics obtained for the proposed model. 

The model was assessed using standard classification 

metrics: Accuracy, precision, recall, F1-score, and 

specificity. Table 1 shows an in-depth comparison of the 

introduced ResNet101V2-SVM model with some of the 

most popular deep models for brain tumor classification, 

tested on a uniform dataset. Out of the compared models, 

EfficientNetB1-SVM had the lowest total accuracy of 

87.90% with very high recall (98.19%) but comparatively 

lower precision (88.73%), which implies more false 

positives. ResNet50-SVM showed better performance 

with accuracy of 95.56% and precision and recall value 

close to each other and in excess of 97%. InceptionV4 had 

slightly higher accuracy of 96.80% with similar 

performance for all the metrics. The Vision Transformer 

(ViT-B16), a recent transformer architecture, showed even 

higher accuracy of 97.20%, reflecting its ability in 

capturing global dependencies of imaging data. But the 

suggested hybrid model, ResNet101V2-SVM, performed 

the best among all the models with 98.00% accuracy, 

98.56% precision, 99.09% recall, and an F1-score of 

98.82%. 

 

 
 

Fig. 10: Outcome of Performance-Metrics 

Such high performance proves the strength of using a 

deep residual feature extractor in conjunction with a 

margin-based classifier such as SVM, particularly in the 

case of medical image classification where sensitivity and 

balanced decision boundaries are too crucial. These all 

scores outperform models such as EfficientNetB1-SVM 

(87.90%) and ResNet50-SVM (95.56%). The performance 

of the proposed ResNet101V2-SVM was measured on two 

different datasets, namely the Kaggle Sartaj dataset and the 

BraTS2020 dataset. As evident from results, the model 

performed an accuracy of 98.00% on the Sartaj dataset, 

with a precision of 98.56%, recall of 99.09%, and F1-score 

of 98.82%. This robust performance indicates the model 

can successfully learn discriminative features from the 

Sartaj dataset, which is comprised of high-quality, well-

labeled MRI images carefully selected for brain tumor 

classification tasks. Its performance on the BraTS2020 

dataset was slightly lower but also strong: 94.50% 

accuracy, 93.20% precision, 95.10% recall, and 94.14% F1-

score. This decrease in performance is owed to the BraTS 

dataset’s greater complexity, involving multi-modal MRI 

scans (T1, T2, FLAIR) and tumor types and sizes diversity. 

These results suggest that although the model generalizes 

well across datasets, refinements such as integration of 

multi-modal features or fine-tuning on BraTS-specific 

features may improve performance on clinically diverse 

datasets. However, the model proposed shows excellent 

adaptability on the different datasets, which recommends it 

for practical medical imaging purposes. 

To validate efficacy behind the use of SVM against a 

standard softmax-based model, we conducted an 

exploratory experiment with the same ResNet101V2 

feature extractor but instead of SVM with a fully 

connected dense layer and softmax activation. As shown 

by Table 2, SVM-based model outperformed, especially 

in precision and F1-score, reflecting its capability on 

small datasets and lesser overfitting bias. The increase in 

F1-score and precision indicates that SVM’s margin-

based decision boundary assists in reducing false 

positives a key issue in medical diagnosis tasks. In 

addition, SVM minimizes the number of parameters in the 

classification head, leading to faster training and better 

convergence on small data sets. The ResNet101V2 

architecture provides more residual connections and 

better batch normalization techniques than ResNet50. 

These improvements enable more effective acquisition of 

detailed spatial information 
 
Table 1: Comparison of model performance on tumor classification across datasets 

Model Dataset Accuracy Precision Recall F1-Score 

EfficientNetB1-SVM Sartaj 87.90% 88.73% 98.19% 93.22% 

ResNet50-SVM Sartaj 95.56% 97.46% 97.29% 97.38% 

InceptionV4 Sartaj 96.80% 96.20% 96.91% 96.55% 

ViT-B16 Sartaj 97.20% 97.00% 97.50% 97.25% 

Proposed Model (ResNet101V2-SVM) Sartaj 98.00% 98.56% 99.09% 98.82% 

Proposed Model (ResNet101V2-SVM) BraTS 94.50% 93.20% 95.10% 94.14% 
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Table 2: Comparison of ResNet101V2-SVM vs. ResNet101V2-

Softmax 

Classifier Accuracy Precision Recall F1-Score 

ResNet101V2 + 

Softmax 

ResNet101V2 

+SVM Proposed) 

96.75% 

98.00% 

96.02% 

98.82% 

97.75% 

98.56% 

96.88% 

99.09% 

 
In brain MRI scans and prevent vanishing gradient 

problems, resulting in higher classification performance. 

Misclassified image analysis reveals that false positives in 

low-contrast or artifact-present scans were commonplace. 

False negatives in cases of faint or diffuse tumor areas 

were also common. These findings emphasize the 

importance of improving input quality and propose ways 

to do so through multi-modal inputs or attention 

mechanisms in subsequent studies. 

Table 3 presents a comparative overview of prior 

methods of brain tumor classification, which include 

model types, data employed, and achieved performance 

metrics. The majority of the previous work used deep 

learning architectures like 3D CNNs, generative 

adversarial networks (GANs), convolutional LSTMs, and 

deep belief networks. The BraTS dataset, which is 

clinically annotated brain tumor images, was used to train 

several models, whereas other models were based on 

private MRI datasets or the TCGA-GBM dataset. The 

reported performance metrics are diverse, with the Dice 

similarity coefficient between 0.84 and 0.88 and the 

classification accuracy near 97%. It is worth pointing out 

that the best reported F1-score for these models is 98.28%, 

obtained using a deep neural network on a private dataset. 

By contrast, the suggested ResNet101V2 + SVM hybrid 

model, which was trained on both the Sartaj and BraTS 

datasets, attained a competitive accuracy of 98% and an 

F1-score of 98.82%, thus surpassing previous methods 

with regard to balanced recall and precision. This proves 

the efficacy and generalizability of the suggested 

approach for both benchmark and real-world data. 

 
Table 3: Comparison of existing approaches on brain tumor classification 

Reference  Approach  Dataset  Metric(s) 

(Havaei et al., 2017)  3D CNN  BraTS  Dice: 0.87 

(Pereira et al., 2016) Deep Belief Network Private MRI set  Accuracy: 97% 

(Li et al., 2017)  ConvLSTM  BraTS  Dice: 0.85 

(Akkus et al., 2017)  GAN  BraTS  Dice: 0.84 

(Shin et al., 2016) Transfer Learning CNN  Private  Dice: 0.88 

(Chang et al., 2019)  3D CNN TCGA-GBM  Dice: 0.917 

(Moeskops et al., 2016)  GAN  Private  Dice: 0.87 

(Gu et al., 2021) CDLLC-CNN  Private  Accuracy: 96.39% 

(Almadhoun and Abu-Naser, 2022)  DNN  Private  F1-score: 98.28% 

Proposed Model ResNet101V2 + SVM  Sartaj Accuracy: 98%, F1: 98.82% 

 

Here, Havaei et al. (2017) suggested a model of 3-

dimensional CNN to perform brain tumor segmentation and 

achieved dice coefficient of 0.87. This model has robustness 

to spatial information and provided improved feature 

extraction but it requires large training datasets due to which 

this model experiences high computational complexity. 

Pereira et al. (2016) uses deep belief networks to classify 

brain tumor and achieved 97% accuracy. The proposed 

model has ability to capture complicated patterns and 

robustness towards noisy images but takes a lot of time to 

train networks. In the same way, Li et al. (2017) utilized 

convolutional Long Short-Term Memory networks for 

segmentation of brain tumor which incorporated temporal 

information and tackle data available in sequences and 

achieved 0.85 dice similarity coefficient but these networks 

are expensive in nature and also require large amount of time 

for training networks. Akkus et al. (2017) also suggested a 

model comprising generative adversarial networks for 

segmentation of brain tumor and achieved 0.84 dice 

similarity coefficient. This model has advantage of handling 

class imbalancing issues and ability to generate high-quality 

segmented masks but unstable training and sensitivity to 

fine-tuning parameters are demerits of this model. Shin et al. 

(2016) also suggested transfer learning model for 

segmenting brain tumor using deep neural networks and 

achieved 0.88 dice similarity coefficient. This model has 

ability to train itself in less time but classification is also 

required to predict the true and false responses. 

Chang et al. (2019) suggested a model comprising of 3-

dimensional convolutional neural networks for automated 

segmentation of brain tumor which can capture spatial as 

well as contextual information and achieved intraclass 

correlation coefficient of 0.917 that may vary depending 

upon the considered dataset. This model is highly expensive 

to be considered in the healthcare sector. Moeskops et al. 

(2016) utilized generative adversarial networks for 

segmentation of brain tumor which can generate synthetic 

tumor images for augmenting data and achieved 0.87 dice 

coefficient. The model has drawback of unstable training 

provided to the network. (Gu et al., 2021) has proposed a 

model for classifying brain MRI images and considered 

convolutional dictionary learning with local constraint. The 

authors gained 96.39% accuracy. Almadhoun and Abu-Naser 

(2022) utilized deep neural networks and achieved F1-Score 
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accuracy of 98.28% while detecting and classifying brain 

tumor. Moreover, comparison of the other techniques such as 

ResNet50 which comprises of bottleneck design for building 

respective blocks to reduce parameters as well as matrix 

multiplications and EfficientNetB1 which provides 

uniformity among pixel values of considered data by 

deploying compound coefficient are integrated with SVM to 

evaluate the models’ effectiveness based on the their 

respective performance-metrics achieved while considering 

hyperparameters and outcomes of confusion-matrix as 

shown in Table 4. 

It is observed that model contained large number of 

parameters, i.e., 42,626,560 whereas 23,587,712 parameters 

were contained by ResNet50-SVM and 6,575,239 

parameters were contained by EfficientNetB1-SVM. The 

number of epochs considered were 82 while training and 21 

while testing the models. The estimated time of arrival for 

providing training to the considered images is 139 seconds 

with respect to 2 seconds per steps per step for 

EfficientNetB1-SVM, 218 seconds with respect to 3 seconds 

per steps for ResNet50-SVM and 306 seconds with respect 

to 4 seconds per steps for the proposed model.  

However, the estimated time of arrival while testing the 

model is 30 seconds with respect to 1 second per step for 

EfficientNetB1-SVM, 55 seconds with respect to 3 seconds 

per step for ResNet50-SVM and 75 seconds with respect to 

4 seconds per step for the proposed model. Based on the 

confusion-matrix outcomes, the count of ’True Positive’ for 

EfficientNetB1-SVM, ResNet50 and the proposed model is 

543, 538 and 548. The count of ’False Positive’ for 

EfficientNetB1-SVM, ResNet50 and the proposed model is 

69, 14 and 8. The count of ’True Negative’ for 

EfficientNetB1-SVM, ResNet50 and the proposed model is 

31, 86 and 92. The count of ’False Negative’ for 

EfficientNetB1-SVM, ResNet50 and the proposed model is 

10, 15 and 5 as shown in Figures 11 and 12. 

These outcomes further resulted in the respective 

performance-metrics of EfficientNetB1-SVM, ResNet50-

SVM and the proposed model as accuracy of 87.90, 95.56 

and 98%; Precision of 88.73, 97.46 and 98.56%; Recall of 

98.19, 97.29 and 99.09%; F1-Score of 93.22, 97.38 and 

98.82% respectively as shown in Figure 13. Figure 14 shows 

outcomes based on the training and testing metrics across 

different models. 
 

Table 4: Comparison of achieved results 

Parameters  EfficientNetB1-SVM ResNet50-SVM Proposed Model 

Total count of Parameters  6,575,239  23,587,712  42,626,560 

Duration of Training images (Per step) 139seconds 2s/step  218s 3s/step  306seconds 4s/step 

Count of Epochs while training  82  82  82 

Duration of Testing images (Per step) 30 seconds 1s/step  55s 3s/step  75s 4s/step 

Count of Epochs while testing  21  21  21 

Count of True Positive  543  538  548 

Count of False Positive  69  14  8 

Count of True Negative  31  86  92 

Count of False Negative  10  15  5 

Accuracy (%)  87.90  95.56  98 

Precision (%)  88.73  97.46  98.56 

Recall (%)  98.19  97.29  99.09 

F1-Score (%)  93.22  97.38  98.82 

 

 
 
Fig. 11: Confusion-Matrix Result 

 
 
Fig. 12: Confusion-Matrix Result 
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Fig. 13: Performance-Metrics based Comparison of Different 

Models 

 

 

 

Fig. 14: Training and Testing Metrics Across Models 

 

Based on the achieved outcomes, it is observed that 

developing automated systems in the healthcare, 

specifically for radiologists, can offer multiple benefits 

such as fast image analysis which will minimize the 

time consumption process in performing diagnosis and 

providing timely recommendations to the patients. 

Moreover, routine tasks such as diagnosing anomaly 

can be automated which will reduce workload of 

human radiologists and help them to focus on more 

complex cases and patient-care. Other than this, such 

automated system will reduce risk of human errors in 

interpreting images which can be critical for achieving 

accurate diagnosis. Thus, these systems can assist 

experts in detection of brain tumor to avoid inaccurate 

decisions. Integrating hybrid models in terms of 

extended form of residual networks ResNet101V2 with 

support vector classifier gives efficient and accurate 

outcomes as model got accuracy of 98 ,98.56 precision, 

99.09 recall, 92 specificity and 98.82% F1-score that 

outperformed the existing techniques while detecting 

brain tumor. 

Figure 15 shows the Grad-CAM visualizations for 

three correctly classified” tumor” cases from the MRI 

scans. In all images, the superimposed red heatmap 

indicates the areas in which the model focused its 

attention when it extracted the prediction. The areas 

coincide with the apparent tumor masses, suggesting 

that the model is attending to clinically important 

features and not structures without relevance. This 

focused attention makes the decision-making process 

more interpretable and shows that the deep learning 

model is not acting as a black box. Rather, it offers a 

degree of transparency that is most important in 

medical AI use cases, enabling radiologists and 

clinicians to visually confirm reasons behind 

predictions. 

 

 
    (a) 

 

 
    (b) 

 
Fig. 15: (a) Input Brain MRI Samples, (b) GRAD-CAM 

Visualizations 
 

Figure 16 presents training dynamics of the 

suggested ResNet101V2-SVM model throughout 82 

epochs. The training and validation loss curves are 

presented in the left subplot, and the training and 

validation accuracy are in the right subplot. Both 

training and validation losses decrease steadily with 

time, reflecting successful learning and model 

convergence. The distance between the two curves is 

low, indicating minor overfitting. On the training 

accuracy plot, the training accuracy increments 

smoothly and saturates at over 98%, and the validation 

accuracy tracks smoothly in a similar upward direction, 

plateauing at around 97.5%. The similarity between the 

training and validation curves on the two plots 

indicates strong generalization power and proper 

regularization through methods such as data 

augmentation and dropout. These trends affirm that the 

model is picking up on significant features and not 

overfitting, more strengthening the model’s credibility 

for use in brain tumor detection in real-life. 
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Fig. 16: Representation of Training and Validation Curves 
 

Conclusion and Future Scope 

Unlike conventional deep learning pipelines that end 

with softmax-based dense layers, this research presents a 

hybrid model that fuses a deep residual network with a 

support vector classifier. Although both have been 

explored in other studies, both together in this medical 

imaging setting present an original contribution. Not only 

does the architecture improve classification resistance, but 

model overfitting on small sets of data is also minimized. 

This work introduced an automated system for brain 

tumor detection based on deep learning utilizing a hybrid 

ResNet101V2-SVM model. The model was optimized 

and tested on two open datasets (Sartaj and BraTS) and 

performed better classification with accuracy as 98% and 

F1-score as 98.82%. Data augmentation, dropout 

regularization, model interpretability with Grad-CAM, 

and incorporation of a lightweight SVM classifier are 

major contributions. In comparison to existing research, 

the developed model has improved generalizability, 

interpretability, and computational speed. Its capability of 

concentrating on the important areas in MRI images 

proves that it can be perfectly implemented in real 

scenarios in clinical settings. Future research directions 

involve including multi-modal MRI information (e.g., T2, 

FLAIR) to enhance robustness, adding attention mechanisms 

to localize small tumor areas more accurately, investigating 

federated learning for privacy-enhanced training over 

hospital networks, and exploring mobile or edge-based 

deployment options for point-of-care diagnosis. 
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