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Abstract: Adversarial attacks in medical imaging refer to subtle 

modifications to images that mislead diagnostic systems, resulting in 

inaccurate diagnoses and assessments. These attacks exploit vulnerabilities 

in image processing, leading to misclassification or altered visual features 

that often go unnoticed. This raises serious concerns about the security and 

reliability of medical diagnosis, directly impacting clinical decision-making 

and patient safety. This research proposes a Generative Adversarial Network 

with Residual Multi-Layer Aggregation-based Contrastive Loss Function 

(GRMLA-CLF) to effectively identify adversarial attacks using medical 

images. In the generator, Residual Multi-Layer Aggregation (RMLA) is 

incorporated to capture fine-grained information and structural patterns of 

adversarial attacks, improving the model’s adaptability. The Contrastive 

Loss Function (CLF) enhances adversarial attack detection by increasing the 

distance between genuine and adversarial samples, ensuring a clear 

distinction in latent space, and ensuring distinct representation. This 

enhances model robustness by reducing sensitivity to small perturbations 

while preserving significant features necessary for accurate decision-making. 

The proposed GRMLA-CLF achieves high accuracy rates of 99.81, 99.64, 

and 98.65% on the ISIC2019, Chest X-ray, and APTOS2019 datasets, 

respectively, outperforming existing methods like Global Attention Noise 

(GATN). 
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Introduction  

Medical image classification is crucial in modern 

healthcare, enabling efficient and accurate diagnosis 

across numerous conditions. This process involves the 

analysis and classification of medical images based on 

various factors like imaging modalities and clinical 

information (Hussain et al., 2025). Deep Learning 

(DL), a subset of Artificial Intelligence (AI), has 

gained significant popularity in medical image analysis 

due to its strong performance in classifying and 

interpreting complex patterns. It enhances the ability to 

extract essential features and offers flexibility in 

addressing intricate diagnostic challenges. 

Nevertheless, DL methods possess inherent 

vulnerabilities that make them susceptible to 

adversarial perturbations, which can lead to 

misclassification by exploiting model vulnerabilities 

(Alzubaidi et al., 2024; Haque and Zafar, 2024). 

Adversarial Deep Learning (ADL) aims to compromise 

DL models by generating deceptive data with subtle 

modifications. These adversarial examples exploit DL 

vulnerabilities, raising concerns about model integrity 

and reliability (Ng and Hargreaves, 2023; Sheikh and 

Zafar, 2024). Therefore, addressing such attacks is 

essential to ensure the security and robustness of DL-

based medical image analysis systems (Jiang et al., 

2024). 

Security threats are typically categorized into two 

groups: Causal and probing attacks. During training, 

causal attacks degrade model performance by 

introducing adversarial samples that disrupt the learning 

process (Kanca Gulsoy et al., 2024; Kanca et al., 2025). 

Several defense strategies have been developed, 
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including adversarial training, FreeLB, and robust 

optimization. Among these, Adversarial Propagation 

(AdvProp) is an effective training method that 

enhances robustness by learning from both clean and 

adversarial examples. Unlike traditional training, 

AdvProp (Xu et al., 2023) introduces separate Batch 

Normalization (BN) layers to minimize conflicts 

between learning tasks. However, AdvProp increases 

computational overhead due to the generation of 

adversarial samples and the management of additional 

BN layers, making it less suitable for resource-

constrained environments. 

Some of the primary causal attacks include 

backdoor and poisoning attacks, which are designed to 

produce specific effects. A probing attack, categorized 

as an evasive attack, alters test data after training, 

thereby outperforming detection mechanisms (Vaddadi 

et al., 2024; Pervin et al., 2023). Recent advancements 

in generative methods have revolutionized image 

manipulation and generation, enabling the creation of 

highly realistic images that are nearly indistinguishable 

from authentic counterparts (Pasqualino et al., 2024; 

Anand et al., 2024). Adversarial attacks not only raise 

critical concerns but also have potentially life-

threatening consequences, particularly in the medical 

field (Chanakya et al., 2024; Gbashi et al., 2023; Priya 

and Dinesh Peter, 2025). By exploiting vulnerabilities 

in image processing, these attacks introduce visual 

alterations that often remain undetected. To address 

this issue, a Generative Adversarial Network with 

Residual Multi-Layer Aggregation-based Contrastive 

Loss Function is proposed to enhance adversarial 

attack detection in medical images. Unlike traditional 

GANs, the proposed GRMLA-CLF employs Residual 

Multi-Layer Aggregation (RMLA) in the generator to 

fuse deep and shallow features, effectively capturing 

both global patterns and fine-grained information in 

perturbed inputs. The Contrastive Loss Function (CLF) 

ensures better separation between genuine and 

adversarial features, thereby enhancing model 

robustness. This process not only improves adversarial 

resistance but also strengthens feature representation 

across diverse medical image datasets. Consequently, 

the proposed method increases the reliability of 

medical diagnoses and supports accurate clinical 

decisions, ultimately improving patient safety. 

The key contributions of this research are explained 

below: 

 

• RMLA is incorporated into the generator to enhance 

its ability to produce more realistic and structurally 

consistent adversarial examples by fusing deep and 

shallow residual features. This multi-layer 

aggregation enables the generator to better capture 

the complex patterns present in medical images 

• CLF enforces greater separation between clean and 

adversarial features in the embedding space, 

enhancing class discriminability. This helps the 

model learn robust feature representations, thereby 

improving resistance to adversarial attacks 

• Contrast Limited Adaptive Histogram Equalization 

(CLAHE) is applied to enhance low-contrast images 

by preventing over-amplification of noise, making 

features more distinguishable for the model 

 

Literature Survey 

Dai et al. (2023) introduced a Global Attention 

Noise (GATN) injection by containing global and 

attention noise into the feature layers. Global noise-

enhanced lesion features in medical images by 

preserving sharp areas where the model was 

vulnerable. Attention noise locally smoothed the 

model, mitigating the effect of small perturbations. Based 

on medical images, GATN-Related noise (GATN-R) was 

introduced with clearer lesion boundaries. Trainable 

attention noise was subsequently included in the feature 

layers to further smooth the model locally and highlight 

salient regions, thereby enhancing model resistance to 

small perturbations. Tsai et al. (2023) proposed one- and 

multi-pixel level attacks using Deep Neural Networks 

(DNNs) to classify medical images. The primary multi-

class and multi-label datasets were utilized to conduct 

one-pixel attacks. Multiple experiments were conducted 

by varying the number of altered pixels, which enhanced 

both the model’s performance and the robustness of the 

DNN-based method. 

Annamalai et al. (2023) developed a Convolutional 

Neural Network (CNN) by integrating an Auction-

Based Optimization Approach (ABOA) and Dice 

Similarity Coefficient (DSC) to predict pulmonary 

disease. The CNN eliminated irrelevant features during 

feature extraction. This limitation was effectively 

addressed by incorporating ABOA and DSC for 

improved classification of pulmonary disease types. An 

autoencoder block was employed to transfer image 

features across multiple convolutional layers. 

However, the non-convex nature of DSC resulted in 

unstable gradients, requiring additional training 

iterations to achieve optimal performance. 

Nazir et al. (2024) established a weighted average 

ensemble method by integrating Inception-V3, 

VGG16, and CNN to classify severity levels in diabetic 

cases. An automated detection system was designed to 

assist in early disease diagnosis and reduce the 

incidence of vision loss across diverse patient groups. 

The established weighted average ensemble model 

proved to be efficient, robust, and accurate. Ben 

Graham’s method was adopted to address various 

lighting resolution issues, and OpenCV Gaussian blur 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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was applied to smooth image corners. Harini et al. 

(2024) presented a Self-Attention-based Cycle-

Consistent GAN–Archerfish Hunting Optimization 

Approach for Melanoma Classification on 

Dermoscopic Images (SACCGAN-AHOA-MC-DI). 

Dermoscopic images were pre-processed by utilizing 

Adjusted Quick Shift Phase with Dynamic Range 

Compression (AQSP-DRC) to remove noise and 

enhance image quality. These pre-processed images 

were then segmented using Piecewise Fuzzy C-Means 

Clustering (PF-CMC) to isolate the Region of Interest 

(ROI). The segmented ROI was further processed using 

the Hexadecimal Local Adaptive Binary Pattern 

(HLABP) to extract radiomic features. Finally, 

SACCGAN was employed to classify skin cancer 

effectively and accurately.  

Zhao et al. (2025) developed a Scale Enriching 

Method (SEM) to improve the transferability of 

adversarial examples by applying an input scale-enriching 

model. SEM enhanced significant regions and increased 

tolerance to variations across different target models, 

thereby improving the transferability of adversarial 

examples. During perturbation, SEM prevented the 

introduction of noise, preserving textural features across 

varying scales. Rahman et al. (2025) proposed a Deep 

Neural Network (DNN) for analyzing adversarial attack 

methods such as Projected Gradient Descent (PGD), Fast 

Gradient Sign Method (FGSM), Basic Iterative Method 

(BIM), and others for image classification. Additionally, 

two adversarial ensemble strategies, Mean and Weighted 

ensemble, were employed to generate adversarial 

examples using different attack techniques. The DNN 

demonstrated improved performance after applying 

defensive measures. Table 1 provides a summary of 

existing methods, highlighting their key advantages and 

limitations. 

From the overall analysis, existing methods exhibit 

limitations such as reduced model interpretability, poor 

generalization, instability, overfitting, and mode collapse, 

which hinder the generation of diverse outputs. 

Additionally, adversarial attacks exploit vulnerabilities in 

image processing, leading to misclassification. To address 

these issues, the GRMLA-CLF is proposed to identify 

adversarial attacks by incorporating Residual Multi-Layer 

Aggregation (RMLA) and Contrastive Loss Function 

(CLF). These components enhance feature learning, 

ensure better stability and generalization, and prevent 

model collapse. CLF maximizes the separation between 

adversarial and genuine samples in the feature space. As 

a result, the proposed approach improves model 

robustness, enhances reliability, and reduces 

misclassification in the presence of adversarial attacks. 
 
Table 1: Summary of existing methods by representing the advantages and limitations 

Author, Year Methods Advantages Limitations 

Dai et al. (2023) GATN It enhances model resistance to 

small perturbations 

GATN led to excessive feature 

distortion, which minimized 

interpretability, generalization, and 

instability 

Tsai et al. (2023)  DNN It automatically learn complex 

patterns due to depth and non-

linearity 

Exploiting less perturbation leads to 

suboptimal performance 

Annamalai et al. 

(2023)  

CNN-ABOA-DSC This method optimally selects 

discriminative features and 

minimizes redundancy 

The non-convex nature of DSC leads to 

unstable gradients and model 

performance 

Nazir et al. (2024)  weighted average 

ensemble method 

Minimize the number of vision 

losses for diverse patients.  

Suffers from overfitting due to 

combining multiple DL methods 

Harini et al. (2024)  SACCGAN-AHOA-

MC-DI 

This method provides high-quality 

and realistic dermoscopic images. 

CGAN suffers from mode collapse, 

where it fails to generate diverse output 

because of inconsistencies in attention 

mapping 
 

Materials and Methods 

This research proposes GRMLA-CLF to effectively 

identify adversarial attacks. Initially, the ISIC2019 

(link: https://challenge.isic-archive.com/landing/2019/ 

(Accessed on 10 April 2025)), Chest X-ray, and 

APTOS2019 datasets are used to evaluate the model’s 

performance. The obtained images are pre-processed 

using resizing and CLAHE to standardize input 

dimensions and enhance low-contrast images. Finally, 

GRMLA-CLF is applied to detect adversarial attacks in 

medical images. Figure 1 illustrates the workflow of 

the proposed methodology. 

 

 
 
Fig. 1: Workflow process of the proposed methodology 

https://thescipub.com/as/report.php?state=0.0&journal=2633
https://challenge.isic-archive.com/landing/2019/
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Datasets 

This research employs ISIC-2019, NIH Chest X-

ray, and APTOS 2019 (Nazir et al., 2024) datasets to 
determine the model performance. These datasets 
include diverse medical imaging challenges for 
ensuring robustness across different modalities. By 
leveraging the available clinical data, the research 
enhances the model’s reliability. Additionally, the 

Derma dataset (Tsai et al., 2023) is used to analyze the 
generalization capability of the proposed method. A 
detailed description of these datasets is provided 
below. 

Derma: This is a multi-class dermatoscopic colored 
dataset containing pigmented skin lesions. It includes 

10,015 images across 7 classes, each sized 3 600 450 

, and is used for generalization analysis. 
ISIC2019: This dataset is used to classify primary 

pigmented skin diseases and contains a total of 25,331 
dermoscopic images categorized into 9 classes. It 
supports comprehensive analysis by providing diverse 

cases that facilitate the development of more accurate 
models. 

Chest X-ray: This is a binary-class, multi-label 
frontal view X-ray dataset consisting of grayscale 
images with 14 classes and a total of 112,120 images. 
Each image has an original size of 1×1024×1024 

pixels, featuring 247 diverse label combinations. 
However, most classes contain fewer than 100 images, 
with some having fewer than 10. 

APTOS2019: The images were analyzed by an 

expert team and categorized into five stages: No 

Diabetic Retinopathy (DR), mild, moderate, severe, 

and proliferative DR. The dataset contains 3,662 

training and 1,992 testing images. The images are split 

into 80% training and 20% testing sets and then fed into 

the pre-processing stage. 

Pre-Processing 

The obtained images are pre-processed through 

resizing and CLAHE (Mohammadi and Nguyen, 2024) 

to ensure uniform input dimensions and enhanced 

contrast, which improves overall quality for accurate 

analysis. The images are then resized to 224 224  for 

standardizing input dimensions, achieving 

compatibility with DL. This resolution balances 

computational effectiveness and preserves essential 

visual features for accurate classification. 

After resizing, CLAHE is utilized to enhance the 

DR image’s intricate details, low contrast, and textures 

by adjusting the input image’s lightness value. Unlike 

conventional histogram equalization, which stretches 

intensity levels over the entire dynamic range, CLAHE 

addresses artifacts in low-texture regions and prevents 

over-amplification of noise by splitting the image into 

small, overlapping tiles. Each tile undergoes histogram 

equalization with a clip limit through five phases: 

Excess calculation, computation, mapping, scaling, and 

redistribution using the Cumulative Distribution 

Function (CDF). To enhance contrast, bilinear 

interpolation stitches the tiles together, enhancing local 

contrast and making edges and borders more distinct. 

Finally, the pre-processed images are passed to the 

model for adversarial attack identification. 

Adversarial Attack 

Projected Gradient Descent (PGD) is an iterative 

adversarial attack that perturbs an input sample to 

increase the model’s loss while ensuring the 

perturbation remains within a defined bound. It 

enhances upon the Fast Gradient Sign Method (FGSM) 

by using multiple small steps instead of a single large 

step, making it more effective against DL models. PGD 

is selected over other attacks like FGSM and DeepFool 

because it performs iterative perturbations within a 

bounded region, making it more effective for analyzing 

model robustness. Unlike FGSM, which uses a single-

step update, PGD explores the loss surface more 

thoroughly. Compared to Deep Fool, PGD is simpler to 

implement and more suitable for adversarial training. 

Its widespread adoption as a benchmark attack makes 

it ideal for assessing the performance of defense 

mechanisms. 

At each iteration, the perturbation is projected into 

the e-ball around the original input to ensure validity. 

PGD is considered a robust first-order adversarial attack 

and is widely employed as a benchmark for evaluating 

model robustness. It is particularly important in 

adversarial training, where models are trained to defend 

against attacks by being exposed to adversarial 

examples. By incorporating PGD attacks, vulnerabilities 

in neural networks can be effectively assessed, and 

corresponding defenses can be developed to improve 

security in applications such as medical imaging. The 

adversarial training process exposes the model to 

perturbed inputs generated using white-box PGD 

attacks, which allow full access to gradients for crafting 

effective adversarial examples. During training, learning 

from these examples enhances the model's ability to 

distinguish between manipulated and clean inputs. This 

significantly improves overall robustness against 

adversarial threats. 

Generative Adversarial Network With Residual 

Multi-Layer Aggregation Based Contrastive Loss 

Function (GRMLA-CLF) 

After pre-processing, GRMLA-CLF is employed to 

identify adversarial attacks by learning the distribution 

of clean images and detecting deviations caused by 

perturbations. The proposed GRMLA-CLF is chosen 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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for its strengths in feature representation, class 

separability, and sample diversity. GAN (Devarajan 

and Khader, 2023) is used to reconstruct clean images 

from perturbed inputs, thereby minimizing the impact 

of attacks and continuously improving the model's 

ability to distinguish between real and adversarial 

samples. GAN consists of two neural networks: A 

generator and a discriminator, which compete against 

each other. The generator captures the training data 

distribution, while the discriminator differentiates 

between real and generated images. In the generator, 

Residual Multi-Layer Aggregation (RMLA) is 

incorporated to strengthen feature representation by 

aggregating deep and shallow features across layers. 

This enables the model to capture both fine-grained 

details and global context, which is essential in 

adversarial scenarios. Furthermore, the integration of 

the Contrastive Loss Function (CLF) enforces clear 

separation between clean and adversarial 

representations in the embedding space, ensuring the 

network learns to distinguish subtle differences 

effectively. Together, these components form an 

effective model that not only defends against 

adversarial attacks but also enhances feature robustness 

and class separability. A detailed explanation of 

GRMLA-CLF is provided below. 

Generator: The generator is a neural network 

responsible for producing synthetic data samples that 

resemble real data. It takes a random noise vector as 

input and transforms it into realistic data through a 

series of learned transformations. An equilibrium state 

is achieved when the generator produces samples that 

the discriminator cannot distinguish from real data, 

assigning nearly equal probabilities to both real and 

generated samples. In an adversarial manner, both 

networks are trained together via error backpropagation 

of the loss function. The generator input is a pre-

processed image that acts as noise from a prior 

distribution with variables pz(z). In this way, the 

generator produces varying samples from the data 

distribution x via mapping G(z). The generator 

architecture consists of 7 down-sampling modules, 1 

up-sampling convolutional layer, and 6 up-sampling 

modules. The up-sampling and down-sampling 

modules perform a “concatenation process” at 

corresponding levels to better synthesize extracted 

features from the bottom to the top layers. 

Residual Multi-Layer Aggregation (RMLA): In the 

generator, ResNet50 is incorporated as the backbone 

due to its proven effectiveness in deep learning. Its 

robust feature extraction capabilities and residual 

connections enable stable gradient flow in deeper 

networks. Within ResNet50, the RMLA module is used 

to enhance the model’s sensitivity to subtle 

perturbations commonly found in medical images. This 

adaptation allows the network to capture fine-grained 

features and local distortions introduced by adversarial 

attacks more effectively. As a result, RMLA provides 

a novel contribution toward improving adversarial 

robustness in clinical applications, enabling the 

generator to produce more realistic and high-quality 

samples for applications like adversarial attacks in 

medical imaging. 

A pre-trained ResNet50 model on ImageNet is 

employed to leverage both low- and high-level feature 

extraction capabilities. During training, the initial 

layers of ResNet50 are frozen to retain essential visual 

features such as textures and edges, which reduces 

training time and helps prevent overfitting. The deeper 

layers are fine-tuned using domain-specific datasets 

such as Chest X-ray, ISIC2019, and APTOS2019 to 

adapt to complex and subtle patterns in medical 

images. This approach enhances feature transferability 

and improves the model's generalization across 

different medical imaging modalities. Furthermore, 

ResNet50 addresses the problem of model degradation 

in deep networks by employing residual learning, 

which allows deeper networks to learn effectively. It 

adopts skip connections by changing the learning 

objective using Eq. (1): 

 

𝐹(𝑥) = 𝐻(𝑥) − 𝑥 (1) 

 

Where x indicates input, H(x) represents output after 

processing, and F(x) denotes final output. Through 

circulating the original input with the processed output 

via skip connections, ResNet50 learns residual 

mapping effectively to acquire the final representation. 

This enables efficient training of deep networks 

without encountering vanishing gradients, ensuring 

stable learning and improved performance. The multi-

layer aggregation residual network offers several 

benefits: It establishes residual learning by integrating 

the original input with the processed output, which 

simplifies the training of deep networks and prevents 

vanishing gradient issues. It facilitates multi-scale 

information aggregation during feature extraction, 

allowing for more comprehensive capture of image 

features. Additionally, it reduces the number of 

network parameters, simplifying the training process 

and enhancing computational efficiency. To further 

minimize complexity and increase efficiency, 

dimensionality reduction is applied before large-block 

convolutions, balancing the network’s depth and width 

to improve accuracy. Aggregating visual information at 

various scales also improves multi-scale feature 

extraction through two consecutive 3×3 convolution 

operations. Compared to traditional ResNet50, RMLA 

achieves the same receptive field using two sets of 5×5 

convolutions, which reduces parameters and simplifies 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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training. These enhancements enable more effective 

and accurate feature extraction using RMLA. Fig. 2 

shows the structure of the RMLA module. 

Discriminator: A discriminator is used to 

differentiate between clean and adversarially perturbed 

inputs by identifying subtle distortions introduced 

through adversarial attacks. The discriminator network 

outputs a 1 16 16   matrix, where each pixel represents 

the discriminant value for a small region of the input 

image. This structure enables the discriminator to 

perform localized discrimination, which improves its 

ability to detect adversarial manipulations effectively. 

By evaluating smaller regions independently, the 

model enhances robustness and ensures stronger 

adversarial defense. Moreover, this fine-grained 

discrimination contributes to refining adversarial 

training strategies and strengthens overall model 

security against adversarial threats. 

Contrastive Loss Function (CLF): During training, 

CLF plays a significant role in enhancing the 

adversarial robustness of the GAN by guiding both the 

generator and discriminator. 

CLF minimizes the distance among feature 

representations of genuine images while maximizing 

the distance between genuine and adversarial pairs in 

the latent space. For the generator, this process 

facilitates the creation of high-fidelity and realistic 

outputs that are structurally similar to clean images. 

Moreover, CLF sharpens the discriminator’s ability to 

distinguish adversarial distortions by separating the 

features of fake and real samples. This dual influence 

enables the generator to focus on robustness, whereas 

the discriminator becomes sensitive to subtle 

perturbations. Hence, CLF enhances the feedback loop 

in GAN training, ensuring an effective adversarial 

detection process across medical image datasets. The 

implementation steps for CLF are discussed below in 

detail. 

Step 1: Compute the Euclidean distance d between 

the latent feature representations of two input samples 

in the embedding space. 

Step 2: Use a predefined margin to control the 

minimum distance between dissimilar sample pairs. 

Step 3: Calculate the Contrastive Loss Function 

(CLF) using Eq. (2): 

 

𝐿𝑐𝑜𝑛𝑡 = ∑ 𝑤(1 − 𝑦𝑖𝑗)𝑑𝑖𝑗
2 + (1 − 𝑤)𝑦𝑖𝑗[max⁡(𝑚 − 𝑑𝑖𝑗 , 0)]

2
𝑖𝑗 (2) 

 

Where dij denotes the distance between the feature 

vectors of Fo and F1 at position (i,j), m represents the 

margin for the revised feature pairs, w refers to the balance 

of weights of the two terms in Equation (2), and yij  

indicates the label at position (i,j). This enhances the 

model's ability to distinguish between adversarial and 

clean inputs by learning discriminative representations, 

making adversarial perturbations more detectable. 

Step 4: Integrate the Contrastive Loss Function 

(CLF) with the adversarial loss of the GAN to jointly 

optimize both the generator and discriminator. 

Step 5: Finally, perform gradient descent to 

minimize the total loss, ensuring the model effectively 

clusters genuine samples in the latent space. 

Thus, the GRMLA-CLF strengthens adversarial 

defense and ensures security in DL methods, and its 

structure is shown in Fig. 3. 

 

 
 
Fig. 2: Structure of RMLA module 

 

 
 
Fig. 3: Structure of GRMLA-CLF 

 

Experimental Results  

The proposed GRMLA-CLF is simulated in a 

Python 3 environment with a system configuration of 

64 GB RAM, a Windows 10 operating system, and an 

Intel i5 processor. The metrics of recall, accuracy, 

precision, specificity, and F1-score are used to evaluate 

the model’s performance, as mathematically equated in 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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Eqs. (3) to (7): 
 

𝑅𝑒𝑐𝑎𝑙𝑙⁡
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100  (3) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦⁡
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100  (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100 (5) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦⁡
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100  (6) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = ⁡
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100  (7) 

 
Where FN denotes False Negative, FP denotes 

False Positive, TP denotes True Positive, and TN 

denotes True Negative. 

Performance Analysis 

Figure 4 represents the graphical representation of 

different DL methods. When compared to existing 

methods like Swin transformer-CLF, ViT-CLF, and 

GAN-CLF, the proposed GRMLA-CLF obtains high 

accuracies of 99.81, 99.64, and 98.65% on the 

ISIC2019, Chest X-ray, and APTOS2019 datasets, 

respectively. This is due to its superior ability to 

enhance adversarial robustness and feature 

representation. The RMLA assists in capturing multi-

scale hierarchical features that enhance feature 

continuity and learn intricate attack patterns 

effectively. The CLF ensures better distinction among 

adversarial and genuine samples by enhancing inter-

class variance and minimizing intra-class variance. 

Additionally, the proposed method enables the model 

to effectively learn robust discriminative features 

against PGD attacks during training. Therefore, this 

combination minimizes misclassification and increases 

resilience to adversarial perturbations, resulting in high 

model performance. 

Figure 5 shows a graphical comparison of different 

loss functions used for training and evaluating 

performance. Compared to existing methods like Hinge 

Loss Function (HLF), Cross Entropy Loss Function 

(CELF), and KL-Divergence Loss Function (KL-DLF), 

the proposed Contrastive Loss Function (CLF) 

achieves higher accuracy of 99.81, 99.64, and 98.65% 

on the ISIC2019, Chest X-ray, and APTOS2019 

datasets, respectively, by effectively distinguishing 

between similar and dissimilar samples. 

CLF improves feature space separation, ensuring 

that samples from different classes are clearly 

identified. Moreover, it enhances the model’s ability to 

learn discriminative representations, making it more 

robust to adversarial variations and noise. By 

minimizing the distance among genuine pairs and 

maximizing it for adversarial pairs, the function boosts 

both robustness and generalization, leading to higher 

accuracy. 

Figure 6 shows a graphical representation of k-fold 

validation used for model performance evaluation. 

When k = 5, the model achieves higher accuracy 

compared to k values of 3, 7, and 9 because it provides 

an optimal balance between variance and bias. The case 

with k = 3 is more prone to overfitting due to higher 

sensitivity to noise, whereas k values of 7 and 9 

increase bias, which reduces sensitivity to local 

patterns. With k = 5, the model effectively captures the 

underlying distribution while minimizing the impact of 

noise, ensuring a better decision boundary. Therefore, 

this balance improves the model’s generalization and 

stability, resulting in enhanced performance. 

 

 
 
Fig. 4: Graphical representation of different DL methods 

 

 
 
Fig. 5: Graphical representation of different loss functions used 

for training and evaluation performance 
 

 
 
Fig. 6: Graphical representation of the k-fold validation process 

used for model performance evaluation 
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Table 2 presents a performance analysis of computational 

time complexity and memory consumption. The proposed 

GRMLA-CLF achieves lower time complexity of 59.25s, 

54.26s, and 50.36s compared to existing methods such as 

Swin-CLF, ViT-CLF, and GAN-CLF due to its effective 

feature reuse process. 

The RMLA module enables gradient flow through skip 

connections, minimizing redundant computations and 

improving convergence. Additionally, CLF optimizes the 

feature space with fewer parameters, reducing unnecessary 

calculations. This combination of CLF and residual 

learning increases efficiency by focusing on significant 

feature representations, which results in lower memory 

usage compared to traditional methods. Furthermore, the 

proposed method demonstrates improved statistical 

performance, showing lower p-values in t-tests and tighter 

confidence intervals compared to existing approaches. 

Generalization Analysis 

Table 3 presents a performance analysis of 

generalizability across different deep learning methods 

using the Derma dataset. Generalization refers to the 

model’s ability to maintain strong performance on 

unseen data. Compared to existing methods, the 

proposed GRMLA-CLF achieves superior 

generalization by using RMLA to capture both high- 

and low-level features, while CLF enhances class 

separability. These components ensure the model 

effectively learns feature representations, leading to 

improved performance. 

Cross-Dataset Validation 

Table 4 presents the performance analysis of cross-

dataset validation, where the model is trained on the 

Chest X-ray dataset and tested on the APTOS2019 

dataset. The Chest X-ray dataset was chosen for 

training because it contains a large number of images, 

while APTOS2019 has fewer images for testing. The 

proposed method achieves a high accuracy of 95.36%, 

demonstrating its ability to learn scale-invariant and 

transferable representations compared to existing 

methods. 
 

Table 2: Performance analysis of time complexity and memory consumption 

Datasets Methods Computational time 

(s) 

Memory consumption 

(MB) 

p-value from t-test 95% of CI 

 

ISIC2019 

Swin-CLF 78.26 156 0.025 86.2 

ViT-CLF 75.16 167 0.022 87.5 

GAN-CLF 69.14 159 0.019 88.1 

GRMLA-CLF 59.25 145 0.015 91.3 

 

Chest X-ray 

Swin-CLF 71.26 156 0.028 84.7 

ViT-CLF 69.26 147 0.025 85.4 

GAN-CLF 65.17 139 0.021 86.2 

GRMLA-CLF 54.26 126 0.019 89.5 

 

APTOS 

2019 

Swin-CLF 59.44 165 0.028 82.9 

ViT-CLF 62.31 147 0.025 84.0 

GAN-CLF 55.78 143 0.020 85.1 

GRMLA-CLF 50.36 132 0.017 88.6 

 

Table 3: Performance analysis of generalizability with different DL methods using the Derma dataset 

Methods Accuracy (%) Recall (%) Specificity (%) Precision (%) F1-score (%) 

Swin-CLF 89.25 85.64 82.67 83.69 84.65 

ViT-CLF 90.58 87.29 86.94 84.29 85.76 

GAN-CLF 92.68 89.38 88.59 86.39 87.85 

GRMLA-CLF 97.25 96.17 95.18 95.06 95.61 

 

Table 4: Performance analysis of cross-dataset validation with training on the Chest X-ray dataset and testing on APTOS2019 

Methods Accuracy (%) Recall (%) Specificity (%) Precision (%) F1-score (%) 

Swin-CLF 78.25 76.39 80.34 82.17 79.17 

ViT-CLF 80.29 83.45 82.49 86.98 85.17 

GAN-CLF 82.69 86.39 86.39 88.29 87.32 

GRMLA-CLF 95.36 94.20 93.12 95.39 94.79 

 

Comparative Analysis 

Tables 5 to 7 present a comparative analysis of 

existing methods on the ISIC2019, Chest X-ray, and 

APTOS2019 datasets. As shown in Table 5, the 

proposed GRMLA-CLF achieves a higher accuracy of 

99.81% on the ISIC2019 dataset compared to Dai et al. 

(2023); Harini et al. (2024). Similarly, Table 6 shows 

that the proposed method attains superior accuracy, 

recall, and specificity of 99.64, 98.4, and 98.8%, 

respectively, on the Chest X-ray dataset compared to 

Annamalai et al. (2023). Table 7 indicates that the 
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method achieves accuracy, precision, F1-score, and 

recall of 98.65, 97.48, 97.02, and 96.57%, respectively, 

on the APTOS2019 dataset compared to Nazir et al. 

(2024). These improvements are attributed to residual 

aggregation, which enhances deep feature learning by 

preserving significant contextual and spatial 

information across layers, thereby increasing the 

model’s robustness. Additionally, the contrastive loss 

function maximizes the distance between genuine and 

adversarial samples, ensuring better separation in 

feature space and reducing the model’s vulnerabilities.  
 
Table 5: Comparative analysis of existing methods on ISIC2019 

Methods Accuracy 

(%) 

Recall 

(%) 

Specificit

y (%) 

GATN (Dai et al., 

2023) 

72.49 N/A N/A 

SACCGAN-

AHOA-MC-DI 

(Harini et al., 2024) 

99.5 96 93 

Proposed 

GRMLA-CLF 

99.81 97.54 97.45 

 

Table 6: Comparative analysis of existing methods on Chest X-ray 

Methods Accuracy 

(%) 

Recall 

(%) 

Specificit

y (%) 

CNN-ABOA-DSC 

(Annamalai et al., 

2023) 

96.5 97.3 96.6 

Proposed GRMLA-

CLF 

99.6 98.4 98.8 

 

Table 7: Comparative analysis of existing methods on APTOS 

2019 

Methods Accura

cy (%) 

Precisi

on (%) 

F1-score 

(%) 

Recall 

(%) 

Weighted 

average 

ensemble (Nazir 

et al., 2024) 

95.06 87.88 85.69 83.78 

Proposed 

GRMLA-CLF 

98.65 97.48 97.02 96.57 

 

Discussion 

This section describes the limitations of the existing 

methods, along with the advantages of the proposed 

GRMLA-CLF, based on their adversarial attack 

identification performance. The existing methods’ 

limitations are noted as follows: The GATN (Dai et al., 

2023) suffers from excessive feature distortion, which 

minimizes model interpretability, generalization, and 

creates instability in adversarial training. DNN (Tsai et 

al., 2023) compromises medical image classification by 

exploiting fewer perturbations, which results in 

misdiagnosis. The convex nature of DSC (Annamalai et 

al., 2023 results in unstable gradients, demanding more 

training iterations for optimal performance. The 

weighted average ensemble (Nazir et al., 2024) suffers 

from overfitting due to the combination of multiple DL 

approaches, while improper weight assignments 

amplify adversarial vulnerabilities. The CGAN (Harini 

et al., 2024) suffers from mode collapse, failing to 

generate diverse outputs due to inconsistencies in 

attention mapping. The proposed GRMLA-CLF 

overcomes these limitations by incorporating RMLA 

and CLF. The RMLA enhances feature extraction, 

rendering the model effective in capturing both high 

and low-level attack patterns. This enhances robustness 

against perturbations and minimizes sensitivity to 

minor adversarial noise. Furthermore, CLF enables 

better separation between genuine and adversarial 

samples, thereby reducing FP. Additionally, the GAN’s 

generative ability effectively learns the real data 

distribution. Therefore, the proposed GRMLA-CLF 

improves generalization by learning richer 

representations over PGD attack types. Furthermore, 

the proposed method is designed for deployment in 

clinical environments, supporting practical 

applications. The use of CLAHE enhances image 

visibility, increasing the model’s applicability. The 

model’s strong performance across multiple datasets 

demonstrates its relevance in improving accuracy and 

minimizing misdiagnosis. Its robustness is evident not 

only under white-box PGD attacks but also through 

strong generalization across the Derma dataset and in 

cross-dataset validation. 

Conclusion 

This research proposes GRMLA-CLF for accurately 

identifying adversarial attacks in medical images. In the 

generator, RMLA captures information during feature 

extraction, reducing the number of network parameters, 

simplifying the training process, and enhancing 

computational efficiency. CLF improves the model’s 

ability to differentiate between adversarial and genuine 

images, minimizing FP. This assists in preserving 

significant medical image details, enabling clinical 

decision-making and accurate diagnosis. In pre-

processing, CLAHE enhances image contrast while 

avoiding over-amplification of noise, which is crucial for 

medical images. The CLAHE processes small regions 

adaptively to preserve local information and improve 

visibility. Compared to existing methods like GATN, the 

proposed GRMLA-CLF achieves high accuracies of 

99.81, 99.64, and 98.65% on the ISIC2019, Chest X-ray, 

and APTOS2019 datasets, respectively. The GRMLA-

CLF was evaluated under white-box adversarial attacks, 

where attackers have full access to perform gradient-

based attacks. However, adversarial attacks in real-world 

scenarios often occur under black-box conditions, where 

the adversary has limited access, which poses challenges 

to the model's practical robustness. In future work, this 

research will be extended to defend against black-box 
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adversarial attacks using efficient methods across 

different datasets to further enhance the model's 

robustness and reliability. 
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