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Abstract: Adversarial attacks in medical imaging refer to subtle
modifications to images that mislead diagnostic systems, resulting in
inaccurate diagnoses and assessments. These attacks exploit vulnerabilities
in image processing, leading to misclassification or altered visual features
that often go unnoticed. This raises serious concerns about the security and
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Loss Function (CLF) enhances adversarial attack detection by increasing the
distance between genuine and adversarial samples, ensuring a clear
distinction in latent space, and ensuring distinct representation. This
enhances model robustness by reducing sensitivity to small perturbations
while preserving significant features necessary for accurate decision-making.
The proposed GRMLA-CLF achieves high accuracy rates of 99.81, 99.64,
and 98.65% on the ISIC2019, Chest X-ray, and APTOS2019 datasets,
respectively, outperforming existing methods like Global Attention Noise
(GATN).
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Introduction

Medical image classification is crucial in modern
healthcare, enabling efficient and accurate diagnosis
across numerous conditions. This process involves the
analysis and classification of medical images based on
various factors like imaging modalities and clinical
information (Hussain et al., 2025). Deep Learning
(DL), a subset of Artificial Intelligence (AI), has
gained significant popularity in medical image analysis
due to its strong performance in classifying and
interpreting complex patterns. It enhances the ability to
extract essential features and offers flexibility in
addressing intricate diagnostic challenges.
Nevertheless, DL methods possess inherent
vulnerabilities that make them susceptible to
adversarial perturbations, which can lead to
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misclassification by exploiting model vulnerabilities
(Alzubaidi et al., 2024; Haque and Zafar, 2024).
Adversarial Deep Learning (ADL) aims to compromise
DL models by generating deceptive data with subtle
modifications. These adversarial examples exploit DL
vulnerabilities, raising concerns about model integrity
and reliability (Ng and Hargreaves, 2023; Sheikh and
Zafar, 2024). Therefore, addressing such attacks is
essential to ensure the security and robustness of DL-
based medical image analysis systems (Jiang et al.,
2024).

Security threats are typically categorized into two
groups: Causal and probing attacks. During training,
causal attacks degrade model performance by
introducing adversarial samples that disrupt the learning
process (Kanca Gulsoy et al., 2024; Kanca et al., 2025).
Several defense strategies have been developed,
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including adversarial training, FreeLB, and robust
optimization. Among these, Adversarial Propagation
(AdvProp) is an effective training method that
enhances robustness by learning from both clean and
adversarial examples. Unlike traditional training,
AdvProp (Xu et al., 2023) introduces separate Batch
Normalization (BN) layers to minimize conflicts
between learning tasks. However, AdvProp increases
computational overhead due to the generation of
adversarial samples and the management of additional
BN layers, making it less suitable for resource-
constrained environments.

Some of the primary causal attacks include
backdoor and poisoning attacks, which are designed to
produce specific effects. A probing attack, categorized
as an evasive attack, alters test data after training,
thereby outperforming detection mechanisms (Vaddadi
et al., 2024; Pervin et al., 2023). Recent advancements
in generative methods have revolutionized image
manipulation and generation, enabling the creation of
highly realistic images that are nearly indistinguishable
from authentic counterparts (Pasqualino et al., 2024;
Anand et al., 2024). Adversarial attacks not only raise
critical concerns but also have potentially life-
threatening consequences, particularly in the medical
field (Chanakya et al., 2024; Gbashi et al., 2023; Priya
and Dinesh Peter, 2025). By exploiting vulnerabilities
in image processing, these attacks introduce visual
alterations that often remain undetected. To address
this issue, a Generative Adversarial Network with
Residual Multi-Layer Aggregation-based Contrastive
Loss Function is proposed to enhance adversarial
attack detection in medical images. Unlike traditional
GANSs, the proposed GRMLA-CLF employs Residual
Multi-Layer Aggregation (RMLA) in the generator to
fuse deep and shallow features, effectively capturing
both global patterns and fine-grained information in
perturbed inputs. The Contrastive Loss Function (CLF)
ensures Dbetter separation between genuine and
adversarial features, thereby enhancing model
robustness. This process not only improves adversarial
resistance but also strengthens feature representation
across diverse medical image datasets. Consequently,
the proposed method increases the reliability of
medical diagnoses and supports accurate clinical
decisions, ultimately improving patient safety.

The key contributions of this research are explained
below:

e RMLA is incorporated into the generator to enhance
its ability to produce more realistic and structurally
consistent adversarial examples by fusing deep and
shallow residual features. This multi-layer
aggregation enables the generator to better capture

the complex patterns present in medical images
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e CLF enforces greater separation between clean and
adversarial features in the embedding space,
enhancing class discriminability. This helps the
model learn robust feature representations, thereby
improving resistance to adversarial attacks

Contrast Limited Adaptive Histogram Equalization
(CLAHE) is applied to enhance low-contrast images
by preventing over-amplification of noise, making
features more distinguishable for the model

Literature Survey

Dai et al. (2023) introduced a Global Attention
Noise (GATN) injection by containing global and
attention noise into the feature layers. Global noise-
enhanced lesion features in medical images by
preserving sharp areas where the model was
vulnerable. Attention noise locally smoothed the
model, mitigating the effect of small perturbations. Based
on medical images, GATN-Related noise (GATN-R) was
introduced with clearer lesion boundaries. Trainable
attention noise was subsequently included in the feature
layers to further smooth the model locally and highlight
salient regions, thereby enhancing model resistance to
small perturbations. Tsai et al. (2023) proposed one- and
multi-pixel level attacks using Deep Neural Networks
(DNNGs) to classify medical images. The primary multi-
class and multi-label datasets were utilized to conduct
one-pixel attacks. Multiple experiments were conducted
by varying the number of altered pixels, which enhanced
both the model’s performance and the robustness of the
DNN-based method.

Annamalai et al. (2023) developed a Convolutional
Neural Network (CNN) by integrating an Auction-
Based Optimization Approach (ABOA) and Dice
Similarity Coefficient (DSC) to predict pulmonary
disease. The CNN eliminated irrelevant features during
feature extraction. This limitation was effectively
addressed by incorporating ABOA and DSC for
improved classification of pulmonary disease types. An
autoencoder block was employed to transfer image

features across multiple convolutional layers.
However, the non-convex nature of DSC resulted in
unstable gradients, requiring additional training

iterations to achieve optimal performance.

Nazir et al. (2024) established a weighted average
ensemble method by integrating Inception-V3,
VGG16, and CNN to classify severity levels in diabetic
cases. An automated detection system was designed to
assist in early disease diagnosis and reduce the
incidence of vision loss across diverse patient groups.
The established weighted average ensemble model
proved to be efficient, robust, and accurate. Ben
Graham’s method was adopted to address various
lighting resolution issues, and OpenCV Gaussian blur
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was applied to smooth image corners. Harini et al.
(2024) presented a Self-Attention-based Cycle-
Consistent GAN-Archerfish Hunting Optimization
Approach  for Melanoma  Classification  on
Dermoscopic Images (SACCGAN-AHOA-MC-DI).
Dermoscopic images were pre-processed by utilizing
Adjusted Quick Shift Phase with Dynamic Range
Compression (AQSP-DRC) to remove noise and
enhance image quality. These pre-processed images
were then segmented using Piecewise Fuzzy C-Means
Clustering (PF-CMC) to isolate the Region of Interest
(ROI). The segmented ROI was further processed using
the Hexadecimal Local Adaptive Binary Pattern
(HLABP) to extract radiomic features. Finally,
SACCGAN was employed to classify skin cancer
effectively and accurately.

Zhao et al. (2025) developed a Scale Enriching
Method (SEM) to improve the transferability of
adversarial examples by applying an input scale-enriching
model. SEM enhanced significant regions and increased
tolerance to variations across different target models,
thereby improving the transferability of adversarial
examples. During perturbation, SEM prevented the
introduction of noise, preserving textural features across
varying scales. Rahman et al. (2025) proposed a Deep
Neural Network (DNN) for analyzing adversarial attack

methods such as Projected Gradient Descent (PGD), Fast
Gradient Sign Method (FGSM), Basic Iterative Method
(BIM), and others for image classification. Additionally,
two adversarial ensemble strategies, Mean and Weighted
ensemble, were employed to generate adversarial
examples using different attack techniques. The DNN
demonstrated improved performance after applying
defensive measures. Table 1 provides a summary of
existing methods, highlighting their key advantages and
limitations.

From the overall analysis, existing methods exhibit
limitations such as reduced model interpretability, poor
generalization, instability, overfitting, and mode collapse,
which hinder the generation of diverse outputs.
Additionally, adversarial attacks exploit vulnerabilities in
image processing, leading to misclassification. To address
these issues, the GRMLA-CLF is proposed to identify
adversarial attacks by incorporating Residual Multi-Layer
Aggregation (RMLA) and Contrastive Loss Function
(CLF). These components enhance feature learning,
ensure better stability and generalization, and prevent
model collapse. CLF maximizes the separation between
adversarial and genuine samples in the feature space. As
a result, the proposed approach improves model
robustness, enhances reliability, and  reduces
misclassification in the presence of adversarial attacks.

Table 1: Summary of existing methods by representing the advantages and limitations

Author, Year Methods Advantages Limitations
Dai et al. (2023) GATN It enhances model resistance to GATN led to excessive feature
small perturbations distortion, which minimized
interpretability, generalization, and
instability
Tsai et al. (2023) DNN It automatically learn complex Exploiting less perturbation leads to

patterns due to depth and non-

linearity
Annamalai et al. CNN-ABOA-DSC
(2023)
Nazir et al. (2024) weighted average
ensemble method
SACCGAN-AHOA-

MC-DI

Harini et al. (2024)

This method optimally selects
discriminative features and
minimizes redundancy

Minimize the number of vision
losses for diverse patients.

This method provides high-quality
and realistic dermoscopic images.

suboptimal performance

The non-convex nature of DSC leads to
unstable gradients and model
performance

Suffers from overfitting due to
combining multiple DL methods
CGAN suffers from mode collapse,
where it fails to generate diverse output
because of inconsistencies in attention

mapping

Materials and Methods

This research proposes GRMLA-CLF to effectively
identify adversarial attacks. Initially, the ISIC2019
(link: https://challenge.isic-archive.com/landing/2019/
(Accessed on 10 April 2025)), Chest X-ray, and
APTOS2019 datasets are used to evaluate the model’s
performance. The obtained images are pre-processed
using resizing and CLAHE to standardize input
dimensions and enhance low-contrast images. Finally,
GRMLA-CLF is applied to detect adversarial attacks in
medical images. Figure 1 illustrates the workflow of
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the proposed methodology.

Datasets

Metrics
ISIC2019 Pre-processing e Accursey Precision
_, Reszmg attacks | |
Chest X-ray GRMLA- Recall
CLAHE CLF
APTO0S2019 Flscore  Specificity

Fig. 1: Workflow process of the proposed methodology
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Datasets

This research employs ISIC-2019, NIH Chest X-
ray, and APTOS 2019 (Nazir et al., 2024) datasets to
determine the model performance. These datasets
include diverse medical imaging challenges for
ensuring robustness across different modalities. By
leveraging the available clinical data, the research
enhances the model’s reliability. Additionally, the
Derma dataset (Tsai et al., 2023) is used to analyze the
generalization capability of the proposed method. A
detailed description of these datasets is provided
below.

Derma: This is a multi-class dermatoscopic colored
dataset containing pigmented skin lesions. It includes
10,015 images across 7 classes, each sized 3x600x450
, and is used for generalization analysis.

ISIC2019: This dataset is used to classify primary
pigmented skin diseases and contains a total of 25,331
dermoscopic images categorized into 9 classes. It
supports comprehensive analysis by providing diverse
cases that facilitate the development of more accurate
models.

Chest X-ray: This is a binary-class, multi-label
frontal view X-ray dataset consisting of grayscale
images with 14 classes and a total of 112,120 images.
Each image has an original size of 1x1024x1024
pixels, featuring 247 diverse label combinations.
However, most classes contain fewer than 100 images,
with some having fewer than 10.

APTOS2019: The images were analyzed by an
expert team and categorized into five stages: No
Diabetic Retinopathy (DR), mild, moderate, severe,
and proliferative DR. The dataset contains 3,662
training and 1,992 testing images. The images are split
into 80% training and 20% testing sets and then fed into
the pre-processing stage.

Pre-Processing

The obtained images are pre-processed through
resizing and CLAHE (Mohammadi and Nguyen, 2024)
to ensure uniform input dimensions and enhanced
contrast, which improves overall quality for accurate
analysis. The images are then resized to 224x224 for

standardizing input dimensions, achieving
compatibility with DL. This resolution balances
computational effectiveness and preserves essential
visual features for accurate classification.

After resizing, CLAHE is utilized to enhance the
DR image’s intricate details, low contrast, and textures
by adjusting the input image’s lightness value. Unlike
conventional histogram equalization, which stretches
intensity levels over the entire dynamic range, CLAHE
addresses artifacts in low-texture regions and prevents
over-amplification of noise by splitting the image into
small, overlapping tiles. Each tile undergoes histogram
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equalization with a clip limit through five phases:
Excess calculation, computation, mapping, scaling, and
redistribution using the Cumulative Distribution
Function (CDF). To enhance contrast, bilinear
interpolation stitches the tiles together, enhancing local
contrast and making edges and borders more distinct.
Finally, the pre-processed images are passed to the
model for adversarial attack identification.

Adversarial Attack

Projected Gradient Descent (PGD) is an iterative
adversarial attack that perturbs an input sample to
increase the model’s loss while ensuring the
perturbation remains within a defined bound. It
enhances upon the Fast Gradient Sign Method (FGSM)
by using multiple small steps instead of a single large
step, making it more effective against DL models. PGD
is selected over other attacks like FGSM and DeepFool
because it performs iterative perturbations within a
bounded region, making it more effective for analyzing
model robustness. Unlike FGSM, which uses a single-
step update, PGD explores the loss surface more
thoroughly. Compared to Deep Fool, PGD is simpler to
implement and more suitable for adversarial training.
Its widespread adoption as a benchmark attack makes
it ideal for assessing the performance of defense
mechanisms.

At each iteration, the perturbation is projected into
the e-ball around the original input to ensure validity.
PGD is considered a robust first-order adversarial attack
and is widely employed as a benchmark for evaluating
model robustness. It is particularly important in
adversarial training, where models are trained to defend
against attacks by being exposed to adversarial
examples. By incorporating PGD attacks, vulnerabilities
in neural networks can be effectively assessed, and
corresponding defenses can be developed to improve
security in applications such as medical imaging. The
adversarial training process exposes the model to
perturbed inputs generated using white-box PGD
attacks, which allow full access to gradients for crafting
effective adversarial examples. During training, learning
from these examples enhances the model's ability to
distinguish between manipulated and clean inputs. This
significantly improves overall robustness against
adversarial threats.

Generative Adversarial Network With Residual
Multi-Layer Aggregation Based Contrastive Loss
Function (GRMLA-CLF)

After pre-processing, GRMLA-CLF is employed to
identify adversarial attacks by learning the distribution
of clean images and detecting deviations caused by
perturbations. The proposed GRMLA-CLF is chosen
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for its strengths in feature representation, class
separability, and sample diversity. GAN (Devarajan
and Khader, 2023) is used to reconstruct clean images
from perturbed inputs, thereby minimizing the impact
of attacks and continuously improving the model's
ability to distinguish between real and adversarial
samples. GAN consists of two neural networks: A
generator and a discriminator, which compete against
each other. The generator captures the training data
distribution, while the discriminator differentiates
between real and generated images. In the generator,
Residual Multi-Layer Aggregation (RMLA) is
incorporated to strengthen feature representation by
aggregating deep and shallow features across layers.
This enables the model to capture both fine-grained
details and global context, which is essential in
adversarial scenarios. Furthermore, the integration of
the Contrastive Loss Function (CLF) enforces clear
separation  between clean and  adversarial
representations in the embedding space, ensuring the
network learns to distinguish subtle differences
effectively. Together, these components form an
effective model that not only defends against
adversarial attacks but also enhances feature robustness
and class separability. A detailed explanation of
GRMLA-CLF is provided below.

Generator: The generator is a neural network
responsible for producing synthetic data samples that
resemble real data. It takes a random noise vector as
input and transforms it into realistic data through a
series of learned transformations. An equilibrium state
is achieved when the generator produces samples that
the discriminator cannot distinguish from real data,
assigning nearly equal probabilities to both real and
generated samples. In an adversarial manner, both
networks are trained together via error backpropagation
of the loss function. The generator input is a pre-
processed image that acts as noise from a prior
distribution with variables p.(z). In this way, the
generator produces varying samples from the data
distribution x via mapping G(z). The generator
architecture consists of 7 down-sampling modules, 1
up-sampling convolutional layer, and 6 up-sampling
modules. The wup-sampling and down-sampling
modules perform a “concatenation process” at
corresponding levels to better synthesize extracted
features from the bottom to the top layers.

Residual Multi-Layer Aggregation (RMLA): In the
generator, ResNet50 is incorporated as the backbone
due to its proven effectiveness in deep learning. Its
robust feature extraction capabilities and residual
connections enable stable gradient flow in deeper
networks. Within ResNet50, the RMLA module is used
to enhance the model’s sensitivity to subtle
perturbations commonly found in medical images. This
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adaptation allows the network to capture fine-grained
features and local distortions introduced by adversarial
attacks more effectively. As a result, RMLA provides
a novel contribution toward improving adversarial
robustness in clinical applications, enabling the
generator to produce more realistic and high-quality
samples for applications like adversarial attacks in
medical imaging.

A pre-trained ResNet50 model on ImageNet is
employed to leverage both low- and high-level feature
extraction capabilities. During training, the initial
layers of ResNet50 are frozen to retain essential visual
features such as textures and edges, which reduces
training time and helps prevent overfitting. The deeper
layers are fine-tuned using domain-specific datasets
such as Chest X-ray, ISIC2019, and APTOS2019 to
adapt to complex and subtle patterns in medical
images. This approach enhances feature transferability
and improves the model's generalization across
different medical imaging modalities. Furthermore,
ResNet50 addresses the problem of model degradation
in deep networks by employing residual learning,
which allows deeper networks to learn effectively. It
adopts skip connections by changing the learning
objective using Eq. (1):

F(x) =H(x) —x M

Where x indicates input, H(x) represents output after
processing, and F(x) denotes final output. Through
circulating the original input with the processed output
via skip connections, ResNet50 learns residual
mapping effectively to acquire the final representation.
This enables efficient training of deep networks
without encountering vanishing gradients, ensuring
stable learning and improved performance. The multi-
layer aggregation residual network offers several
benefits: It establishes residual learning by integrating
the original input with the processed output, which
simplifies the training of deep networks and prevents
vanishing gradient issues. It facilitates multi-scale
information aggregation during feature extraction,
allowing for more comprehensive capture of image
features. Additionally, it reduces the number of
network parameters, simplifying the training process
and enhancing computational efficiency. To further
minimize complexity and increase efficiency,
dimensionality reduction is applied before large-block
convolutions, balancing the network’s depth and width
to improve accuracy. Aggregating visual information at
various scales also improves multi-scale feature
extraction through two consecutive 3x3 convolution
operations. Compared to traditional ResNet50, RMLA
achieves the same receptive field using two sets of 5x5
convolutions, which reduces parameters and simplifies
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training. These enhancements enable more effective
and accurate feature extraction using RMLA. Fig. 2
shows the structure of the RMLA module.
Discriminator: A discriminator is wused to
differentiate between clean and adversarially perturbed
inputs by identifying subtle distortions introduced
through adversarial attacks. The discriminator network
outputs a 1x16x16 matrix, where each pixel represents

the discriminant value for a small region of the input
image. This structure enables the discriminator to
perform localized discrimination, which improves its
ability to detect adversarial manipulations effectively.
By evaluating smaller regions independently, the
model enhances robustness and ensures stronger
adversarial defense. Moreover, this fine-grained
discrimination contributes to refining adversarial
training strategies and strengthens overall model
security against adversarial threats.

Contrastive Loss Function (CLF): During training,
CLF plays a significant role in enhancing the
adversarial robustness of the GAN by guiding both the
generator and discriminator.

CLF minimizes the distance among feature
representations of genuine images while maximizing
the distance between genuine and adversarial pairs in
the latent space. For the generator, this process
facilitates the creation of high-fidelity and realistic
outputs that are structurally similar to clean images.
Moreover, CLF sharpens the discriminator’s ability to
distinguish adversarial distortions by separating the
features of fake and real samples. This dual influence
enables the generator to focus on robustness, whereas
the discriminator becomes sensitive to subtle
perturbations. Hence, CLF enhances the feedback loop
in GAN training, ensuring an effective adversarial
detection process across medical image datasets. The
implementation steps for CLF are discussed below in
detail.

Step 1: Compute the Euclidean distance d between
the latent feature representations of two input samples
in the embedding space.

Step 2: Use a predefined margin to control the
minimum distance between dissimilar sample pairs.

Step 3: Calculate the Contrastive Loss Function
(CLF) using Eq. (2):

Leone = Zijw(1 — yy;)df; + (1 — w)y;;[max (m — d;j, 0)]*(2)

Where dj denotes the distance between the feature
vectors of F, and F; at position (ij), m represents the
margin for the revised feature pairs, w refers to the balance
of weights of the two terms in Equation (2), and y;
indicates the label at position (7). This enhances the
model's ability to distinguish between adversarial and
clean inputs by learning discriminative representations,
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making adversarial perturbations more detectable.

Step 4: Integrate the Contrastive Loss Function
(CLF) with the adversarial loss of the GAN to jointly
optimize both the generator and discriminator.

Step 5: Finally, perform gradient descent to
minimize the total loss, ensuring the model effectively
clusters genuine samples in the latent space.

Thus, the GRMLA-CLF strengthens adversarial
defense and ensures security in DL methods, and its
structure is shown in Fig. 3.
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Experimental Results

The proposed GRMLA-CLF is simulated in a
Python 3 environment with a system configuration of
64 GB RAM, a Windows 10 operating system, and an
Intel 15 processor. The metrics of recall, accuracy,
precision, specificity, and F1-score are used to evaluate
the model’s performance, as mathematically equated in
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Egs. (3) to (7):

Recall X 100 3)
Accuracy —TPHTN__ 100 4)
TP+TN+FP+FN
Precision = —— x 100 5)
TP+FP
Specificity —— e 100 (6)
F1—Score = —2F % 100 7)
2TP+FP+FN

Where FN denotes False Negative, FP denotes
False Positive, TP denotes True Positive, and TN
denotes True Negative.

Performance Analysis

Figure 4 represents the graphical representation of
different DL methods. When compared to existing
methods like Swin transformer-CLF, ViT-CLF, and
GAN-CLF, the proposed GRMLA-CLF obtains high
accuracies of 99.81, 99.64, and 98.65% on the
ISIC2019, Chest X-ray, and APTOS2019 datasets,
respectively. This is due to its superior ability to
enhance adversarial robustness and feature
representation. The RMLA assists in capturing multi-
scale hierarchical features that enhance feature
continuity and learn intricate attack patterns
effectively. The CLF ensures better distinction among
adversarial and genuine samples by enhancing inter-
class variance and minimizing intra-class variance.
Additionally, the proposed method enables the model
to effectively learn robust discriminative features
against PGD attacks during training. Therefore, this
combination minimizes misclassification and increases
resilience to adversarial perturbations, resulting in high
model performance.

Figure 5 shows a graphical comparison of different
loss functions used for training and evaluating
performance. Compared to existing methods like Hinge
Loss Function (HLF), Cross Entropy Loss Function
(CELF), and KL-Divergence Loss Function (KL-DLF),
the proposed Contrastive Loss Function (CLF)
achieves higher accuracy of 99.81, 99.64, and 98.65%
on the ISIC2019, Chest X-ray, and APTOS2019
datasets, respectively, by effectively distinguishing
between similar and dissimilar samples.

CLF improves feature space separation, ensuring
that samples from different classes are clearly
identified. Moreover, it enhances the model’s ability to
learn discriminative representations, making it more
robust to adversarial variations and noise. By
minimizing the distance among genuine pairs and
maximizing it for adversarial pairs, the function boosts
both robustness and generalization, leading to higher
accuracy.

Figure 6 shows a graphical representation of k-fold
validation used for model performance evaluation.
When k£ = 5, the model achieves higher accuracy
compared to k values of 3, 7, and 9 because it provides
an optimal balance between variance and bias. The case
with £ = 3 is more prone to overfitting due to higher
sensitivity to noise, whereas k values of 7 and 9
increase bias, which reduces sensitivity to local
patterns. With k= 5, the model effectively captures the
underlying distribution while minimizing the impact of
noise, ensuring a better decision boundary. Therefore,
this balance improves the model’s generalization and
stability, resulting in enhanced performance.
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Table 2 presents a performance analysis of computational
time complexity and memory consumption. The proposed
GRMLA-CLF achieves lower time complexity of 59.25s,
54.26s, and 50.36s compared to existing methods such as
Swin-CLF, ViT-CLF, and GAN-CLF due to its effective
feature reuse process.

The RMLA module enables gradient flow through skip
connections, minimizing redundant computations and
improving convergence. Additionally, CLF optimizes the
feature space with fewer parameters, reducing unnecessary
calculations. This combination of CLF and residual
learning increases efficiency by focusing on significant
feature representations, which results in lower memory
usage compared to traditional methods. Furthermore, the
proposed method demonstrates improved statistical
performance, showing lower p-values in t-tests and tighter
confidence intervals compared to existing approaches.

Generalization Analysis

Table 3 presents a performance analysis of
generalizability across different deep learning methods

using the Derma dataset. Generalization refers to the
model’s ability to maintain strong performance on
unseen data. Compared to existing methods, the
proposed GRMLA-CLF achieves superior
generalization by using RMLA to capture both high-
and low-level features, while CLF enhances class
separability. These components ensure the model
effectively learns feature representations, leading to
improved performance.

Cross-Dataset Validation

Table 4 presents the performance analysis of cross-
dataset validation, where the model is trained on the
Chest X-ray dataset and tested on the APTOS2019
dataset. The Chest X-ray dataset was chosen for
training because it contains a large number of images,
while APTOS2019 has fewer images for testing. The
proposed method achieves a high accuracy of 95.36%,
demonstrating its ability to learn scale-invariant and
transferable representations compared to existing
methods.

Table 2: Performance analysis of time complexity and memory consumption

Datasets Methods Computational time Memory  consumption p-value from t-test 95% of CI
(s) (MB)
Swin-CLF 78.26 156 0.025 86.2
ISIC2019 ViT-CLF 75.16 167 0.022 87.5
GAN-CLF 69.14 159 0.019 88.1
GRMLA-CLF 59.25 145 0.015 91.3
Swin-CLF 71.26 156 0.028 84.7
Chest X-ray ViT-CLF 69.26 147 0.025 85.4
GAN-CLF 65.17 139 0.021 86.2
GRMLA-CLF 54.26 126 0.019 89.5
Swin-CLF 59.44 165 0.028 82.9
APTOS ViT-CLF 62.31 147 0.025 84.0
2019 GAN-CLF 55.78 143 0.020 85.1
GRMLA-CLF 50.36 132 0.017 88.6

Table 3: Performance analysis of generalizability with different DL methods using the Derma dataset

Methods Accuracy (%) Recall (%) Specificity (%) Precision (%) F1-score (%)
Swin-CLF 89.25 85.64 82.67 83.69 84.65
ViT-CLF 90.58 87.29 86.94 84.29 85.76
GAN-CLF 92.68 89.38 88.59 86.39 87.85
GRMLA-CLF 97.25 96.17 95.18 95.06 95.61

Table 4: Performance analysis of cross-dataset validation with training on the Chest X-ray dataset and testing on APTOS2019

Methods Accuracy (%) Recall (%) Specificity (%) Precision (%) F1-score (%)
Swin-CLF 78.25 76.39 80.34 82.17 79.17
ViT-CLF 80.29 83.45 82.49 86.98 85.17
GAN-CLF 82.69 86.39 86.39 88.29 87.32
GRMLA-CLF 95.36 94.20 93.12 95.39 94.79
Comparative Analysis 99.81% on the ISIC2019 dataset compared to Dai et al.

Tables 5 to 7 present a comparative analysis of
existing methods on the ISIC2019, Chest X-ray, and
APTOS2019 datasets. As shown in Table 5, the
proposed GRMLA-CLF achieves a higher accuracy of
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(2023); Harini et al. (2024). Similarly, Table 6 shows
that the proposed method attains superior accuracy,
recall, and specificity of 99.64, 98.4, and 98.8%,
respectively, on the Chest X-ray dataset compared to
Annamalai et al. (2023). Table 7 indicates that the
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method achieves accuracy, precision, Fl-score, and
recall 0f 98.65, 97.48,97.02, and 96.57%, respectively,
on the APTOS2019 dataset compared to Nazir et al.
(2024). These improvements are attributed to residual
aggregation, which enhances deep feature learning by
preserving  significant contextual and spatial
information across layers, thereby increasing the
model’s robustness. Additionally, the contrastive loss
function maximizes the distance between genuine and
adversarial samples, ensuring better separation in
feature space and reducing the model’s vulnerabilities.

Table 5: Comparative analysis of existing methods on ISIC2019

Methods Accuracy Recall Specificit
(%) (%) y (%)

GATN (Dai et al., 72.49 N/A N/A

2023)

SACCGAN- 99.5 96 93

AHOA-MC-DI

(Harini et al., 2024)

Proposed 99.81 97.54 97.45

GRMLA-CLF

Table 6: Comparative analysis of existing methods on Chest X-ray

Methods Accuracy  Recall Specificit
(%) (%) y (%)

CNN-ABOA-DSC 96.5 97.3 96.6

(Annamalai et al.,

2023)

Proposed GRMLA- 99.6 98.4 98.8

CLF

Table 7: Comparative analysis of existing methods on APTOS
2019

Methods Recall
(%)

83.78

F1-score
(%)
85.69

Precisi
on (%)
87.88

Accura

cy (%)
Weighted 95.06
average
ensemble (Nazir
et al., 2024)
Proposed

GRMLA-CLF

98.65 97.48 97.02 96.57

Discussion

This section describes the limitations of the existing
methods, along with the advantages of the proposed
GRMLA-CLF, based on their adversarial attack
identification performance. The existing methods’
limitations are noted as follows: The GATN (Dai et al.,
2023) suffers from excessive feature distortion, which
minimizes model interpretability, generalization, and
creates instability in adversarial training. DNN (Tsai et
al., 2023) compromises medical image classification by
exploiting fewer perturbations, which results in
misdiagnosis. The convex nature of DSC (Annamalai et
al., 2023 results in unstable gradients, demanding more
training iterations for optimal performance. The
weighted average ensemble (Nazir et al., 2024) suffers
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from overfitting due to the combination of multiple DL
approaches, while improper weight assignments
amplify adversarial vulnerabilities. The CGAN (Harini
et al., 2024) suffers from mode collapse, failing to
generate diverse outputs due to inconsistencies in
attention mapping. The proposed GRMLA-CLF
overcomes these limitations by incorporating RMLA
and CLF. The RMLA enhances feature extraction,
rendering the model effective in capturing both high
and low-level attack patterns. This enhances robustness
against perturbations and minimizes sensitivity to
minor adversarial noise. Furthermore, CLF enables
better separation between genuine and adversarial
samples, thereby reducing FP. Additionally, the GAN’s
generative ability effectively learns the real data
distribution. Therefore, the proposed GRMLA-CLF
improves  generalization by learning richer
representations over PGD attack types. Furthermore,
the proposed method is designed for deployment in
clinical environments, supporting practical
applications. The use of CLAHE enhances image
visibility, increasing the model’s applicability. The
model’s strong performance across multiple datasets
demonstrates its relevance in improving accuracy and
minimizing misdiagnosis. Its robustness is evident not
only under white-box PGD attacks but also through
strong generalization across the Derma dataset and in
cross-dataset validation.

Conclusion

This research proposes GRMLA-CLF for accurately
identifying adversarial attacks in medical images. In the
generator, RMLA captures information during feature
extraction, reducing the number of network parameters,
simplifying the training process, and enhancing
computational efficiency. CLF improves the model’s
ability to differentiate between adversarial and genuine
images, minimizing FP. This assists in preserving
significant medical image details, enabling clinical
decision-making and accurate diagnosis. In pre-
processing, CLAHE enhances image contrast while
avoiding over-amplification of noise, which is crucial for
medical images. The CLAHE processes small regions
adaptively to preserve local information and improve
visibility. Compared to existing methods like GATN, the
proposed GRMLA-CLF achieves high accuracies of
99.81, 99.64, and 98.65% on the ISIC2019, Chest X-ray,
and APTOS2019 datasets, respectively. The GRMLA-
CLF was evaluated under white-box adversarial attacks,
where attackers have full access to perform gradient-
based attacks. However, adversarial attacks in real-world
scenarios often occur under black-box conditions, where
the adversary has limited access, which poses challenges
to the model's practical robustness. In future work, this
research will be extended to defend against black-box


https://thescipub.com/as/report.php?state=0.0&journal=2633

Amudha Gopalakrishnan and Nalini Joseph / Journal of Computer Science 2026, 22 (1): 218.228

DOI: 10.3844/jcssp.2026.218.228

adversarial attacks using efficient methods across
different datasets to further enhance the model's
robustness and reliability.
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