

© 2026 Deepthi Goteti and Vurrury Krishna Reddy. This open-access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Research Article

Q-Optimizer: An AI-Based Optimization Framework for

Efficient SDN Routing and QoS Enhancement

Deepthi Goteti and Vurrury Krishna Reddy

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra
Pradesh, 522302, India

Article history
Received: 30-04-2025
Revised: 30-06-2025
Accepted: 29-07-2025

Corresponding Author:
Deepthi Goteti

Department of Computer
Science and Engineering,
Koneru Lakshmaiah Education
Foundation, Vaddeswaram,
Guntur, Andhra Pradesh,
522302, India
Email: 2102031088@kluniversity.in

Abstract: With their rigid layers, traditional networks do not meet evolving

traffic demands. As a result, they tend to face congestion along with un-
optimized routing. SDN controls traffic management by introducing a

programmable control plane, enabling dynamic and intelligent network

management. However, older routing techniques, such as Dijkstra's and

Multipath, suffer from low adaptability, leading to a rise in latency and

packet loss. The addition of Q-learning with Q-Optimizer in SDN is the aim

of this study in order to improve the Quality-of-Service metrics, such as

throughput, Round Trip Time (RTT), jitter, and Packet Loss Ratio (PLR).

Experimental results from Mininet using the Ryu controller demonstrate that

Q-Optimizer improves throughput by 36.49%, reduces RTT by 46.09%,

minimizes jitter by 95.01%, and lowers Packet Loss Ratio (PLR) by 63.32%

compared to Dijkstra’s algorithm. Compared to Multipath routing, Q-
Optimizer improves throughput by 13.25%, reduces RTT by 33.22%,

decreases jitter by 25.32%, and lowers PLR by 55.61%. Even compared to

Q-Learning, it shows improvements in achieving an 11.76% increase in

throughput, 26.05% lower RTT, 14.81% less jitter, and 34.48% lower PLR.

The statistical validation using one-way ANOVA confirms that these

improvements are significant, reinforcing Q-Optimizer's effectiveness in

SDN environments. A one-way ANOVA test (F = 785.78, p = 0.0000). The

outcomes reveal that AI-driven SDN frameworks are more impactful than

traditional approaches and provide scalable and innovative solutions to

current global networking infrastructures.

Keywords: Software-Defined Network (SDN), Q-Learning, Optimization,
Reinforcement Learning, QoS Metrics, iPerf, ANOVA Statistical Analysis

Introduction

Software-Defined Networking (SDN) is a

programmable paradigm that separates the control and

data planes, enabling centralized management, flexibility,

and high performance for large-scale data transmission.

The architecture consists of three planes: A data plane for

forwarding, a control plane for centralized path

computation, and an application plane that interfaces via

APIs (Ma et al., 2022). SDN’s programmability enhances

traffic engineering and simplifies network management

(Singh et al., 2022), yet it also introduces challenges such

as control-plane attacks and scalability bottlenecks (Al-

Muhtadi and Al-Dubai, 2023; Gupta and Soni, 2023).

Sheikh et al. (2024) provided a comparative performance

evaluation of logically centralized SDN controllers using

Mininet, finding that Ryu exhibited lower latency and

better throughput over tested scenarios by the authors.

Similarly, Cabarkapa and Rancic (2021) analyzed POX

and Ryu in tree-based topologies, identifying trade-offs in

controller efficiency. These studies highlight how

controller behavior affects the QoS parameters, including

bandwidth, jitter, and packet loss. However, most rely on

static routing strategies that do not adapt to real-time

traffic variations or congestion. Furthermore, challenges

in interoperability and standardization continue to affect

SDN deployments across heterogeneous environments

(Lee and Choi, 2023).
Traditional routing methods, such as Dijkstra's

algorithm or multipath forwarding, focus on shortest paths

without considering dynamic congestion or real-time

bandwidth availability (Goteti and Rasheed, 2025;

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

131

Naim et al., 2023). While they are computationally

efficient, such approaches often yield suboptimal routing

under fluctuating traffic conditions. To address this,

researchers have explored AI-driven routing mechanisms

in Software-Defined Networking (SDN). Reinforcement
Learning (RL), particularly Q-learning, enables autonomous

policy development based on cumulative reward

observations, allowing for adaptive routing decisions

(Tang et al., 2021; Tomovic and Radusinovic, 2016).

Several works have proposed integrating

Reinforcement Learning (RL) into Software-Defined

Networking (SDN) environments. For example, Liatifis et

al. (2023) evaluated OpenFlow's limitations and suggested

transitioning to P4 for enhanced data plane

programmability. Others have introduced deep

reinforcement models, such as Deep Q-Networks (DQN)

and Proximal Policy Optimization (PPO), to enhance routing

adaptability (Singh et al., 2022; Al-Muhtadi and Al-Dubai,

2023). Although effective, these approaches face significant

computational demands and convergence issues in large-

scale Software-Defined Networks (SDNs).

To overcome these constraints, this study proposes Q-

Optimizer, a lightweight, two-stage reinforcement

learning framework. Q-Optimizer is designed as a

lightweight, two-stage Q-learning model that does not

rely on any neural network-based function approximators.

As a model-free approach, Q-Optimizer relies solely on

tabular Q-values derived from direct interaction with the

environment, without building any model of network

dynamics. In the first stage, routing performance across

the network is pre-evaluated and recorded using a

systematic measurement process. These values are

compiled offline to represent the long-term effectiveness

of various routing paths. In the second stage, the rule-

based selection mechanism references this data and

adjusts routing choices based on current network

conditions, such as link congestion or transmission delays.

This two-phase process enables a more responsive and

efficient path selection compared to conventional

methods, which typically rely on static calculations that

do not adjust to the dynamic behavior of living networks.

It also differs from deep reinforcement learning methods,

such as Deep Q-Networks (DQN) or Proximal Policy

Optimization (PPO), which rely on neural networks for

function approximation and often incur significant

computational overhead (Singh et al., 2022; Al-Muhtadi

and Al-Dubai, 2023). A step-by-step outline of the Q-

Optimizer algorithm is presented in Algorithm 1, and its

performance is rigorously evaluated and compared with

other methods.

The proposed framework is implemented using the

Ryu controller and evaluated in both custom and fat-tree

topologies using the Mininet emulator. Tools such as iPerf

are employed to assess throughput, latency, jitter, and

packet loss (Zhang and Chen, 2022; Abdulaziz et al.,

2017). Additionally, this study applies one-way ANOVA

tests to ensure the statistical validity of performance

improvements across routing algorithms, including

Dijkstra, Multipath, Q-learning, and Q-Optimizer.

The results demonstrate that Q-Optimizer effectively

enhances network performance, offering flexibility and

adaptability to real-time traffic conditions, and

consistently outperforms conventional routing
approaches.

Key Contributions

This paper makes the following key contributions:

 Introduces Q-Optimizer, a two-stage, lightweight

reinforcement learning-based routing mechanism
that dynamically adapts to real-time traffic and

congestion in SDN environments

 Designs a reward function that balances multiple

QoS parameters including delay, bandwidth

utilization, packet loss, and switch utilization

variance

 Implements and evaluates Q-Optimizer using the

Ryu controller in both Custom and Fat Tree

topologies, comparing its performance against

Dijkstra, Multipath, and Q-learning algorithms

 Demonstrates statistically significant performance
gains using ANOVA analysis across key metrics

such as throughput, RTT, jitter, and packet loss ratio

 Establishes Q-Optimizer as a resource-efficient

alternative to deep RL models (e.g., DQN, PPO) by

avoiding complex neural approximations while

maintaining adaptability and low overhead

The subsequent sections provide a detailed overview
of related research, outline the proposed methodology,

describe the simulation environment, and analyze the

experimental results.

Related Work

Software-defined Networks are ample for handling

current network requirements. However, they must

address congestion, network performance, and load

balance issues. Many traditional algorithms were

introduced to address a few issues, like finding the
optimal paths to avoid congestion. Most research on QoS

in SDN networks relies on a few data metrics, which are

low algorithmic. Such methods can optimize routing

traffic to a certain extent, as they focus on optimizing

individual parameters without multiple QoS constraints,

thereby addressing only specific aspects of the problem

(Verma and Bhardwaj, 2016).

Path selection is based on minimal delay in traditional

traffic routing and forwarding methods, such as those

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

132

using the Open Shortest Path First (OSPF) protocol

(Vinod Chandra and Hareendran, 2024). However, this

single-factor approach fails to meet the demands of

modern high-volume data traffic, often resulting in

channel congestion and performance degradation.

Researchers in SDN have introduced bio-inspired

techniques, such as the modified smell detection

algorithm, to optimize path engineering in hybrid

Software-Defined Networks (SDNs). This method

enhances routing efficiency and identifies optimal paths

while addressing multiple Quality of Service parameters.

Moreover, it effectively adapts to complex and dynamic

network environments (Gopi et al., 2017). Significant

research efforts have also focused on improving routing

mechanisms in SDN. Comparisons between SDN and

conventional networks highlight how SDN technology

outperforms legacy systems in adaptability and routing

efficiency, especially under high-traffic conditions

(Shirmarz and Ghaffari, 2020). Additionally, other

researchers proposed dynamic routing adjustments using

adaptive greedy flow-routing algorithms to further

enhance network performance (Pullah et al., 2021).

Traditional algorithms like Dijkstra's and extended

Dijkstra find the shortest path, and QoS parameters are

measured to determine network performance. The

multipath algorithm also finds multiple paths to send data

over massive networks. Traditional algorithms rely on

predefined rules, so managing an unpredictable network

can lead to network failure and degraded performance.

 Introducing intelligent algorithms like reinforcement

learning can allow appropriate decision-making, enable

SDN to learn from the past, and continuously refine its

policies. It can adapt to finding paths from experiences

and make routing decisions to handle massive traffic and

congestion.

 In this paper, we apply Q-Learning to calculate the Q-

table, which consists of routing information based on that

q-optimizer to find the path between two dedicated paths.

We will calculate the path between two dedicated paths

with the help of Round-Trip Time and other QoS factors

like throughput jitter and packet loss. Comparisons are

made with the Multipath and Dijkstra's algorithm on the

same topology, which is tested and measures the same set

of parameters. In addition to performance-based

evaluations, statistical methods such as ANOVA have

been used in related works to assess the significance of

various network optimization techniques. Researchers

have applied ANOVA to analyze differences in key

performance metrics (latency, throughput, packet loss)

under different SDN controller configurations and

algorithms. This method allows for determining whether

the results obtained are statistically significant or

produced randomly, providing insights into the

effectiveness of various approaches used for research.

Several researchers have employed Analysis of Variance

(ANOVA) to analyze and compare Software-Defined

Networking (SDN) performance metrics.
Pullah et al. (2021) conducted experiments using the

OpenDaylight controller and applied repeated-measures

ANOVA to evaluate SDN performance in terms of latency

and throughput. An ANOVA-based statistical analysis was

employed to identify significant differences across multiple

experimental setups (Akinola et al., 2022). SDN stability was

further examined by analyzing how various network
configurations influenced performance, with key

contributing factors such as resilience quantified through

ANOVA evaluation (Zhang et al., 2015). In addition, Author

explored load balancing in SDN using variance analysis,

integrating ANOVA to assess the efficiency of different

load-balancing strategies.

This study presents ANOVA analysis effectively

determines optimal approaches while reducing

congestion. Also highlights ANOVA's significance in

quantitative SDN performance evaluation, ensuring

robust statistical validation of experimental results. Such

statistical analysis is crucial for validating experimental

results and ensuring that the observed improvements are

not due to random variations.

Although our methodology shares certain conceptual

elements with the approaches proposed by Spanò et al.

(2019); Khalid et al. (2020), it diverges significantly in its

use of an adaptive reward-driven Q-learning mechanism

combined with statistical ANOVA validation. Unlike their

static or heuristic-based models, our approach introduces a

dynamic, learning-based optimization pipeline tailored for

real-time SDN conditions.

Zhang and Tian (2021) concentrated on challenges

like network congestion and performance in the SDN

environment and applied reinforcement learning for

congestion control. Reinforcement learning helps adjust

the flow by learning from the network conditions

dynamically. Their simulations demonstrated the

effectiveness of the proposed approach by reducing

packet loss and improving overall network throughput.

This research provides valuable insights for enhancing

SDN performance, particularly under congestion-prone

conditions (Khalid et al., 2020).

 Reinforcement learning (RL) empowers systems with

the ability to make rapid and effective decisions in

complex scenarios and has become a cornerstone of

modern computer science (Zhang and Tian, 2021). It aids

computational agents in understanding and navigating

complex environments to achieve optimal results in

various scenarios. Unlike traditional models that the agent

learns by continuously interacting with its environment

and improving through experience (Singh et al., 2022).

Beyond simple learning, it also adapts to ongoing,

continuous learning. Q-learning forms the core

functionality of reinforcement learning (RL), operating

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

133

with two strategies: One for selecting actions and another

for evaluating the outcomes of those actions. This balance

between exploration (trying new options) and exploitation

(leveraging prior knowledge) evolves to enhance

decision-making (Al-Muhtadi and Dubai, 2023).

RL approaches are broadly categorized as model-free
such as Q-learning, which learns directly from experience

and model-based, which rely on prior knowledge to guide

decision-making (Lee and Choi, 2023). Q-learning is

particularly effective in uncertain environments, making

it a valuable tool in domains like robotics, autonomous

vehicles, and drones (Naim et al., 2023; Pullah et al.,

2021; Akinola et al., 2022). At its foundation, RL involves

an agent interacting with an environment and receiving

feedback in the form of rewards that indicate

performance. Through repeated interactions, the agent

learns to optimize its actions to achieve the best possible
outcomes (Zhang et al., 2015).

Although SDN optimization has significantly advanced,

real-time routing using RL remains challenging. Deep Q-

Networks (DQN) have been utilized for congestion-aware

routing, achieving higher throughput but requiring extensive

training (Sutton and Barto, 2018). Q-learning has also been

applied to SDN, improving adaptability but suffering from

slow convergence (Zhang and Tian, 2021). Advanced RL

algorithms such as Proximal Policy Optimization (PPO) and

Deep Deterministic Policy Gradient (DDPG) have been

tested in SDN contexts to enhance decision-making;

however, they are computationally demanding (Spanò et al.,

2019).

The present study introduces Q-Optimizer, an

enhanced Q-learning–based framework that addresses

these limitations by refining the reward function and

reducing training overhead through experience transfer

from initial Q-learners (Khalid et al., 2020). The optimizer

leverages structured data from simulation tables and

demonstrates marked improvements in the efficiency of

Quality of Service parameters.

Singh et al. (2022) proposed a multi-agent SDN traffic

control framework that emphasized trust-based decision-

making rather than Quality of Service -centric routing.

Similarly, Al-Muhtadi and Dubai (2023) explored AI-driven

trust mechanisms for SDN security but did not integrate path

optimization techniques. Lee and Choi (2023) addressed

delay-sensitive routing in fog–SDN integrated systems,

focusing primarily on architectural latency mitigation.
In contrast, the proposed Q-Optimizer framework

directly targets multi-metric QoS enhancement through

adaptive reinforcement learning, making it more suitable

for dynamic, data-driven routing decisions under varying

network loads. Several recent studies have also

investigated deep reinforcement learning (Deep RL)

approaches such as Deep Q-Networks (DQN) and
Proximal Policy Optimization (PPO) for SDN routing

optimization (Pullah et al., 2021; Akinola et al., 2022).

While these techniques leverage neural network–based

function approximations to handle high-dimensional state

spaces, they typically require extensive training time,

complex parameter tuning, and higher computational

resources.
By contrast, Q-Optimizer provides a lightweight,

model-free alternative that prioritizes interpretability and

rapid convergence without depending on deep network

architectures. Although Q-learning has previously been

applied to SDN optimization (Zhang et al., 2015; Zhang

and Tian, 2021), many of these studies employ fixed

reward structures and lack rigorous statistical validation.

Similarly, prior research using ANOVA such as the

studies by Pullah et al. (2021); Zhang et al. (2015)

primarily evaluated static algorithmic performance or

compared SDN controllers under predefined conditions.

Works like Spano et al. (2019); Khalid et al. (2020)

introduced learning-based SDN routing frameworks, yet

they relied on static reward heuristics or offline-trained

models, which limited their adaptability in real-time

network scenarios. In contrast, our Q-Optimizer

introduces a context-aware, adaptive reward function that

dynamically balances multiple QoS metrics during

training and integrates ANOVA-based statistical

validation to confirm the significance of observed

improvements. This dual integration of adaptive decision-

making and robust statistical validation establishes a

novel, analytically grounded optimization pipeline

distinguishing our work from both traditional Q-learning

models and ANOVA-only evaluation frameworks in SDN

research.
Furthermore, our approach aligns with the direction

proposed by Naim et al. (2023), who emphasized the

necessity of topology-aware and scalable reinforcement
learning in dynamic SDN environments a goal addressed

by Q-Optimizer through the inclusion of real-time network

topology feedback within its optimization loop.

Proposed Mechanism

Traditional routing strategies that depend on the

shortest path algorithms lead to congestion due to multiple

data flows that select the same path. Congestion happens

because the short path is fixed between the source and

destination, preventing effective data transmission. Route

identification is done on dynamic network conditions,

such as bandwidth and QoS parameters, to overcome this

limitation. The Q learner will calculate rewards for all

possible paths. The Q-Optimizer will retrieve all available

paths and their rewards and select the path with the highest

reward for data transmission from source to destination.

The SDN architecture is designed to integrate this Q-

learning mechanism seamlessly into the control panel.

Figure 1 illustrates the architecture for implementing the

Q-learner and Q-optimizer in SDN.

The proposed architecture employs Software-Defined

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

134

Networking (SDN) and considers relevant performance

indicators, such as Round Trip Time (RTT), throughput,

packet loss ratio, and jitter. These are important factors of

network performance and reliability metrics. RTT, along

with other elements, assists in routing decisions by

measuring the time taken for a given packet to be received

and sent back. Throughput specifies the amount of data

sent and received, while loss ratio informs about the

number of packets lost or damaged during transmission

without being received. Real-time applications like VoIP

or Video streaming are affected by packet delivery

variations and affect service quality; therefore, jitter is

crucial to address. Moreover, the architecture separates

the data control and control planes. The Ryu controller is

the core of the network management system, which

manages the control plane. It communicates with the

network switches, acquires topology data, and can make

decisions based on the network's state. The data plane

constitutes network switches that carry out the functions

of receiving and sending packets based on flow rules

stipulated by a controller.

Fig. 1: Proposed architecture embedded with Q-learning

Fig. 2: Research methodology employed in this study

The proposed architecture implemented with

specific features includes a Q-learning-based path

optimization mechanism. This approach enables the

controller to dynamically change and opt for the most

efficient paths by learning from network conditions.

This includes RTT, jitter, packet loss, and throughput.

The Q-Optimizer uses these learned experiences to

choose optimal paths for packet forwarding, ensure

that the network adapts to changing conditions, and
maintains high real-time performance.

In the following section, we will explore the

methodology behind this architecture, detailing the role

of each module from topology discovery to Q-learning-

based path optimization and the decision-making process

of the Q-Optimizer. Figure 2 illustrates the methodology

followed in the research.

Discovering Network Topology

This work is carried out on an SDN topology that

utilizes Open vSwitch (OVS) switches and a remote Ryu

controller, with all connections established using the

OpenFlow 1.0 protocol. The topology is configured with

an IP address range of 10.0.0.0/8 and consists of 30 hosts

(h1 to h30), including specific nodes like h15, h25, h19,

h18, h6, and h12, each uniquely identified within the

network. Structured topology connects 10 switches (s1 to

s10), which provides efficient routing and traffic

management. The Ryu controller runs on 127.0.0.1:6633,

optimizes network operations by managing Switches’

packet forwarding mechanisms

The Ryu controller also integrates NetFlow and sFlow

configurations to support real-time traffic monitoring. The

topology is stored in a graph structure to enable dynamic

path computation and adapt the routing.

The Ryu controller must first be started using a custom

Ryu application before deploying Mininet with the

defined topology. The SDN topology is illustrated in

Figure 3 and consists of 10 switches and 30 hosts,

structured hierarchically under the control of the Ryu

controller. Switches are labeled from left to right as s1 to

s10, with each switch connected to three hosts labeled

sequentially for example, s1 connects to h1–h3, s2 to h4

h6, and so on. This labeling facilitates routing analysis and

enhances clarity during performance evaluation.

To execute sdntopology.py while checking topology

details, approach as follows:

1. Start the Ryu controller with the topology script

Ryu-manager --of-tcp-listen-port 6633

sdntopology.py

2. Launch Mininet with a custom topology (to test

oncustom)

sudo mn --custom SDN_TOPOLOGY.mn --topo my

topo --controller=remote,ip=127.0.0.1,port=6633 -
switch ovs

3. If SDN_TOPOLOGY.mn is in JSON format and not

a Mininet script, we can convert it into a Python

Mininet script before execution

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

135

Fig. 3: Topology utilized for testing

SDN controller must collect data about network

topology before choosing the optimally efficient path.

This step is paramount because routing is done based on

line switches and links on the network map. With the

OpenFlow protocol, the controller connects to the

switches, "watching" for connection events and gathering

information concerning these switches, for example – the

number of ports available on them. With the help of the
LLDP method, switches discover the links between each

other. In this method, the switches send packets that other

neighboring switches pick up, thus allowing the controller

to build a map of the physical interconnections. The SDN

controller models the network as a graph, with switches

as vertices and links as edges. This enables efficient, real-

time path computation and adaptive routing. By

maintaining an up-to-date topology, the controller installs

optimal flow rules, enhances packet forwarding, and
reduces congestion, ensuring responsive and efficient

network operations (Pullah et al., 2021).

Q-Optimizer Optimal Path Identification

 In Software-Defined Networking (SDN)

architecture, the Q learner plays an important role in path

selection optimization through reinforcement learning. It

first explores multiple network paths, collects

information from the Ryu controller, and assesses paths

by analyzing RTT and packet drop. The Q-table is
updated using the Bellman equation to improve optimal

actions over time, as this systematic learning process.

The reward function is also simple; it mainly focuses on

the best routes for the least hops or path length.

Exploration and exploitation are balanced using a fixed

probability, allowing the algorithm to explore new paths

or select the highest Q-value. Once an efficient path is

identified, flow rules are installed to forward packets

efficiently. As the network is analyzed, the Q-Optimizer

further refines path selection by incorporating multiple

network performance metrics, ensuring smooth and
congestion-free data transmission. The Q-Optimization

algorithm is shown in Algorithm 1.

Key parameters in the Q-Optimizer include the

learning rate (α) and discount factor (γ), which govern

how quickly and how far-sighted the optimizer learns. To

fine-tune these, we tested α values in {0.01, 0.05, 0.1},

tracking convergence using the mean-squared change in

Q-values (ΔQ) over 100 episodes. The setting α = 0.05

reached a ΔQ < 1×10⁻³ most efficiently, offering a good

trade-off between responsiveness and stability. For γ, we

tested values in {0.80, 0.90, 0.95, 0.99}.
A higher γ (closer to 1) makes the optimizer think

long-term, valuing future benefits more than short-term

gains. With γ = 0.95, our system focuses more on finding

paths that will be beneficial in the long run, like lower

latency or higher bandwidth utilization, instead of

focusing on short-term improvements.

Algorithm 1: Q-Optimizer algorithm

Input: Replay buffer R, Q-table Q(s, a), Topology data,
Learning rate α, Discount factor γ, Exploration rate ε, Weight
coefficients (λ, β, δ, μ)

Output: Optimized Q-table Q(s, a), Updated network paths,
Installed flow rules, Final reward

1. Initialize: Q-table, weights, and topology data.

2. Define action space (paths between switches) and state space
(network states).

3. For each packet arrival (Episode = 1, E):

a. Retrieve all possible paths using get_all_paths().

b. For each path, calculate weight based on network
metrics:

 path_weight = (weight_RTT * inverse_RTT) +
(weight_bandwidth * bandwidth) +
(weight_packet_loss * packet_loss) +

(weight_load_balance * load_balance)

c. If paths exist:

i.Select the optimal path using learning_agent().

 ii. Install flow rules using install_path_flows().

 iii. Calculate reward using weighted metrics

 Rlatency = -λ * tpath, Rbandwidth = β *
(Bused / Btotal), Rloss = -δ * Ploss, Rload = -
μ * σutil

 reward = Rlatency + Rbandwidth + Rloss +
Rload

 iv. Update Q-table with update_q_values()

based on reward and next state.

Else, log no path available and consider alternate exploration.

End of Episode

The Q-Optimizer is guided towards better decisions

with reward calculation, which uses q-values. These
values are obtained by combining several network metrics

and weights, such as latency, bandwidth, packet loss, and

load balancing. These weights help to prioritize which

metrics are important when calculating rewards. To tune

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

136

the Q-Optimizer’s reward function, we tested different

values for the weights λ, β, δ, and μ between 0.1 and 0.9

using a basic grid search. These values were checked

across 20 different traffic situations, ranging from low to

high congestion. The best combination was chosen by
finding the one that gave the lowest combined value of

RTT and packet loss (using √(RTT² + PLR²)). We also

tested how small changes (±10 %) in the weights

affected the results, and found that the quality stayed

almost the same changing by less than 2 %. The final

values we used were similar to those seen in earlier SDN

studies, showing that our approach is reliable and based

on proven choices.

The Q-table was retained across episodes during

training to support cumulative learning and convergence

over time. This design choice allowed the optimizer to
build upon prior knowledge and adapt to evolving traffic

conditions. The update follows the standard Q-learning

formula. Together, α and γ values ensure that the Q-

Optimizer learns effectively, balancing short-term

rewards with long-term goals, leading to more optimal

decisions in dynamic network environments. The

methodology follows a structured workflow that begins

with the construction of the SDN topology in Mininet.

The Q-Learner module initially explores all feasible

routing paths by interacting with the network and

observing key metrics such as delay and bandwidth. These

observations are then passed to the Q-Optimizer, which
refines the selection process by applying a dynamic

reward function that balances latency, throughput, loss,

and switch utilization variance. The selected optimal path

is deployed via the Ryu controller, and the system

performance is evaluated through key QoS parameters

including throughput, RTT, jitter, and packet loss ratio.

Materials and Methods

Simulations are taken on real-time network

environments and measured Quality service factors to

asses SDN's network performance. This simulation helps

researchers understand SDN network operation in real-

world scenarios and identify potential areas for

improvement.

To evaluate the performance of the Q-Optimizer, we
implemented an SDN topology with 30 nodes and 10
OpenFlow switches using Mininet. This topology helps
the host and switch communicate and allows us to
simulate the network over varying network loads. The
Ryu controller was used for dynamic routing, which
handles the switches and adjusts traffic flow based on

network policies and conditions. iPerf was utilized to
measure throughput and jitter, a benchmarking tool for
network performance with TCP and UDP traffic between
host pairs under different load conditions.

Each approach (Dijkstra's, Multipath, Q-Learning, and

Q-Optimizer) was tested over 100 independent simulation

runs, collecting data for key QoS parameters.

To ensure reproducibility across all simulation runs, a

fixed random seed value of 42 was used. The seed was

applied using both NumPy (numpy.random.seed(42)) and

Python’s built-in random module (random.seed(42)),

ensuring consistent results during evaluation.
Matplotlib is used to create graphs from the data

observed in simulations. We conducted a one-way

ANOVA test on the collected performance data to ensure

statistical validity. The ANOVA test determines whether

the differences in QoS metrics across different approaches
are statistically significant. A confidence level of 95 %

(p<0.05) was used, with p-values and F-statistics

calculated for throughput, RTT, jitter, and PLR.

Additionally, 95 % Confidence Intervals (CIs) were

computed to support the results further (Al-Mobayed,

2018; Bouzidi et al., 2021; Fu et al., 2020).

Table 1 presents the simulation setup used in our

study, detailing the network emulator, testing tools,

topology configuration, and performance metrics

evaluated.

The experiments were conducted using Mininet
v2.3.0, Ryu controller v4.34, and Python v3.8.10 on

Ubuntu 20.04. The system was run on a machine with an

Intel Core i7 processor and 16GB RAM to ensure stable

performance and compatibility.

Table 1: Common simulation parameters

Simulation
environment

Values

Network Emulator Mininet

Testing Tools iPerf, Ryu, Matplotlib, Python

Metrics Tested Throughput, Packet Loss, Jitter, RTT

Network Topology SDN topology (with Ryu Controller)

Topology Creation mn (Mininet CLI)

Graph Generation Matplotlib in Python (using JSON to
execute)

Nodes 30 nodes

Switches 10 switches

Links Point-to-point

Results

This section discusses the detailed analysis of our

SDN-based Q-learning and Q-Optimizer on key network

performance metrics such as throughput, Round-Trip

Time (RTT), jitter, and Packet Loss Ratio (PLR). The goal

is to evaluate how well different approaches manage network
traffic, optimize routing, and improve overall efficiency.

We compare four different methods in the same

simulation environment and on the same topology, which

helps ensure a fair comparison. The iPerf tool creates the

client-server environment, making it a valuable

benchmark for evaluation. Multipath testing is a

conventional method that discovers all available and

optimal paths for transmission. If a path becomes

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

137

congested, this model suggests an alternative route to

distribute the traffic among them.

The second approach is Dijkstra’s algorithm, which is

used to find the shortest path. Due to its limitations in

dynamic network environments, it has also been tested as
part of our work. For instance, there has been progress

toward developing reinforcement learning-based models

that learn from experience using past traffic patterns to

optimize path selection. Lastly, the Q-Optimizer further

refines Q-learning by performing additional real-time

control strategies to adaptively adjust path selection and

improve overall performance.

Key Performance Metrics

Throughput (T): Throughput represents the amount of
data successfully transferred over the network during a

given time. iPerf calculates it using the following formula:

(T = Total Data Transferred (bits)/Total Time (sec) (1)

In simple terms, it is the amount of data moved across

the network within a specific time frame. iPerf reports

throughput in bits per second (bps), and for our

experiments, it measures throughput for TCP and UDP
traffic separately.

Round Trip Time (RTT): RTT indicates how long a

packet takes to travel from the sender to the receiver and

back. It is calculated as:

(() ()) 1RTT N Trecv i Tsend i i   (2)

Jitter (J): Jitter refers to the variation in packet

delivery times; some packets take longer to travel

between systems, which is important for real-time

applications such as video calls or VoIP. iPerf directly

measures jitter for UDP traffic using the following

formula:

iPerf directly measures jitter for UDP traffic using this
formula:

𝐽(𝑖) = 𝐽(𝑖 − 1) + {|(𝐷(𝑖 − 1, 𝑖)) − 𝐽(𝑖 − 1)|}{16} (3)

Where:

 J (i) J = current jitter estimate

 D (i−1, i) = difference between two consecutive

packet delays

 16 = smoothing factor (default in RTP-based jitter

calculation)

This formula helps reduce delay variation, and

milliseconds (ms) are used as the measurement unit.

Excessive jitter can cause disruptions, particularly in real-

time applications.

Packet Loss Ratio (PLR): PLR represents the

percentage of packets lost during transmission. The

formula for PLR is:

𝑃𝐿𝑅 = (
(𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡−𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑘𝑒𝑡𝑠 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑)

𝑇𝑜𝑡𝑎𝑙
𝑃𝑎𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡) ∗ 100% (4)

This metric indicates network reliability. A higher

packet loss ratio suggests that the network is unstable

or experiencing congestion, which can affect delivery

(Zhang et al., 2021).

Experimental Results

This section presents the results of our performance

evaluation, which is crucial for the ANOVA analysis.

The evaluation was conducted over 100 episodes, each

involving the transmission of 10 packets, totaling 1000

packets. The simulations were carried out separately

for four different approaches. We measured key

performance metrics during the evaluation, including

Round-Trip Time (RTT), transfer rate, bandwidth,

jitter, and packet loss ratio. The tests were executed in

Mininet, with Q-learning and Q-Optimizer algorithms

implemented in the Ryu environment. Furthermore,

Multipath and Dijkstra's algorithms were also executed
in Ryu to provide a more in-depth analysis of the

network topology, as detailed in the Network Topology

section. The results were analyzed using ANOVA,

focusing on statistical significance, p-values, and

confidence intervals (CIs).

Notation and Definitions

Table 2 defines the notations used in the reward

function equations for both Q-learning and Q-Optimizer.

Throughput (T):

The efficiency of different algorithms in data

transfer is measured using GBytes (total data

transferred) and Gbps (bandwidth). The transfer rate

represents the total amount of data transmitted during

the test, while bandwidth indicates the rate at which

data is sent per second. To analyze network

performance more effectively, the transfer rate was

converted into throughput (Gbps) using the formula

below:

Throughput (Gbps) = Transfer Rate (GBytes) × 8
Time

(Sec) (5)

The reward function is designed to optimize key

Quality-of-Service (QoS) metrics by assigning specific

weight coefficients to each parameter.

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

138

Table 2: Notations used

Symbol Meaning Value

R(s,a)
Reward for state-action
pair

-

tpath Path delay Measured

Bused Bandwidth used Measured

Btotal Total available bandwidth 100 Gbps

Ploss Packet loss ratio Varies

σutil Link utilization variation Computed

λ Delay weight (fixed) 0.5

β
Bandwidth weight (fixed,

Q-Learning)
0.3

βt
Adaptive bandwidth
weight (Q-Optimizer)

Dynamic

δ Packet loss weight 0.2

μ Utilization variance weight 0.1

λt
Adaptive delay weight (Q-
Optimizer)

Dynamic

δt
Adaptive packet loss
weight (Q-Optimizer)

Dynamic

μt
Adaptive utilization weight
(Q-Optimizer)

Dynamic

α Learning rate (Q-Learning) 0.1

The values were chosen based on empirical tuning and

insights from previous SDN reinforcement learning

research. Specifically, the weights were set as follows: λ

= 0.5 (path delay weight), β = 0.3 (bandwidth weight), δ

= 0.2 (packet loss weight), and μ = 0.1 (utilization weight).

These values lead to RTT reduction and maximize

bandwidth while keeping packet loss to a minimum.

Due to the exploration setting, which was initially set
to 0.2, the Q-learning agent does not get stuck in local

optima while making efficient decisions. In our

implementation, ε was maintained as a fixed value (0.2)

throughout training. This static setting ensured a

consistent balance between exploration and exploitation.

Future work may explore decaying ε strategies for

potentially faster convergence in dynamic environments.

This means that the agent explores a new path with a

20% probability and exploits an optimal path with an

80% probability. This approach aligns with

reinforcement learning best practices for dynamic SDN
routing optimization.

Impact of Reward Calculation on Throughput

The reward equations used in both Q-learning and Q-

Optimizer are derived from the standard Bellman

equation, which forms the foundation of value iteration in

reinforcement learning. Rather than showing the generic

Bellman form separately, we extend it here to reflect the

domain-specific metrics (e.g., RTT, packet loss,

utilization). This adaptation preserves the original Q-
update logic while integrating SDN-specific performance

objectives.

The reward function plays a key role in determining

throughput performance. In standard Q-learning, the

reward function assigns a fixed weight to bandwidth

utilization, which limits its adaptability under fluctuating

network conditions. The reward is computed as:

𝑅𝑄−𝐿(𝑠, 𝑎) = −𝜆 ⋅ 𝑡𝑝𝑎𝑡ℎ + 𝛽 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
− 𝛿 ⋅ 𝑃𝑙𝑜𝑠𝑠 − 𝜇 ⋅ 𝜎𝑢𝑡𝑖𝑙 (6)

Q-learning does not adjust its decision-making when

network congestion varies, since β remains constant,

which leads to suboptimal throughput. On the other hand,

the reward function for the Q-Optimizer is designed to

balance QoS objectives dynamically. It incorporates path

delay, bandwidth utilization, packet loss, and switch

utilization variance using tunable weights (λₜ, βₜ, δₜ, μₜ) for
flexible optimization.

The Q-Optimizer workflow follows a structured

process. For each routing decision, the agent observes key

network parameters such as path delay, bandwidth

utilization ratio, packet loss rate, and switch utilization

variance. These values are combined into a reward using

a weighted formula that prioritizes low latency, high

throughput, low loss, and balanced load. Based on this

reward, the Q-table is updated using standard Q-learning

logic. The action (i.e., path selection) corresponding to the

highest Q-value is then chosen, and flow rules are
installed in the relevant switches to forward traffic

accordingly. This process repeats iteratively across

episodes, allowing the model to converge toward optimal

routing behavior.

The Q-Optimizer enhances throughput by dynamically

adjusting the bandwidth weight coefficient βₜ in response

to real-time traffic load. Its reward function is:

𝑅𝑄−𝑂(𝑠, 𝑎) = −(𝜆𝑡 ⋅ 𝑡𝑝𝑎𝑡ℎ) + (𝛽𝑡 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
) − (𝛿𝑡 ⋅ 𝑃𝑙𝑜𝑠𝑠)

− (𝜇𝑡 ⋅ 𝜎𝑢𝑡𝑖𝑙) (7)

By adjusting βₜ adaptively, the Q-Optimizer optimally

balances path delay and bandwidth utilization, leading to

improved throughput performance even under varying

network conditions. Transfer rate calculation helps

compare various algorithms by normalizing performance

across different test durations.

It also assesses how efficiently different approaches

utilize network resources and adapt to changing
conditions, such as Dijkstra’s algorithm, Multipath

testing, Q-learning, and Q-Optimizer.

Among the tested approaches, Dijkstra’s algorithm

shows the lowest throughput (86.4–89.6 Gbps) due to its

reliance on fixed, static path selection. Since it does not

adapt to real-time network conditions, it often results in

inefficient routing, congestion, and slower data transfer.

Multipath testing performs slightly better (104.8–110.4

Gbps) by distributing traffic across multiple predefined

paths. However, it still follows a static approach, which

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

139

limits its ability to handle dynamic network changes

effectively, although it provides more routing options than

Dijkstra’s algorithm. Table 3 presents the comparison of

various approaches based on throughput.

Due to its structure, this prevents it from making the
most efficient decisions in real time. Q-learning, which

uses reinforcement learning, improves on this by

dynamically adjusting to past experiences and optimizing

path selection. With a throughput of 103.2–109.6 Gbps, it

surpasses Multipath testing, but because it relies on

continuous learning, it sometimes makes suboptimal

routing choices, especially in the early stages.

Table 3: Throughput over various approaches (Gbps)

Episode
Dijkstra’s
(Gbps)

 Multipath
(Gbps)

Q-

Learning
(Gbps)

Q-

Optimizer
(Gbps)

1 86.4 103.2 106.4 118.4

10 85.6 104.2 104.8 117.6

20 88.8 106.4 107.2 119.2

30 87.2 104.8 105.6 116.8

40 88.2 107.2 108.8 121.6

50 87.2 106.4 108.5 120.8

60 88.1 104.8 106.4 118.4

70 89.6 106.6 107.4 122.4

80 87.2 106.2 107.2 120.8

100 88.6 107.9 108.1 121.6

The Q-Optimizer delivers the best throughput (116.8–

122.4 Gbps) by continuously analyzing the real-time

network and making adaptive, intelligent routing

decisions. Compared to traditional algorithms, it detects

congestion and reroutes traffic while reducing delays, as

shown in Figure 4. More reliable performance is achieved

through the continued refinement of path selection with

respect to round-trip time. Consequently, the network can
adjust dynamically based on live conditions, making it

more efficient, stable, and capable of handling high data

loads compared to other approaches. Using reinforcement

learning, the Q-Optimizer prevents bottlenecks and

maximizes overall network efficiency, proving to be the

best-performing algorithm for optimizing data transfer.

ANOVA Analysis

A one-way ANOVA test is used to determine whether

the differences in the resulting throughput of all four
approaches are statistically significant. It also confirms

that the observed improvements are due to the

optimization strategy rather than random fluctuations.

Table 4 presents each approach’s mean throughput

values, 95% Confidence Intervals (CIs), standard

deviations (SDs), and the ANOVA p-value. The

significant difference (p = 0.0000) indicates that the Q-

Optimizer substantially improves throughput compared to

Dijkstra’s algorithm, Multipath, and Q-learning. Notably,

the Q-Optimizer achieves the highest mean throughput of

118.4 Gbps, with non-overlapping confidence intervals,

demonstrating that its performance enhancement is

statistically robust. The ANOVA test (F = 785.78, p =

0.0000) confirms that the tested approaches are
statistically significant over the throughput parameter.

Fig. 4: Throughput comparison across tested approaches

Table 4: Throughput Anova Results

Approach

Mean
Throughput

(Gbps)

95 % CI
(Gbps)

SD
ANOVA p-

value

Dijkstra’s 86.4 [84.3, 88.9] 2.1 0.0000

Multipath 103.2 [100.5, 106.2] 3.4 0.0000

Q-Learning 106.4 [104.1, 109.6] 2.8 0.0000

Q-Optimizer 118.4 [115.2, 121.6] 2.3 0.0000

Round Trip Time (RTT)

Impact of Reward Calculation on RTT is as follows: In

Q-learning, the reward function considers RTT a static

factor and does not react when facing congestion. The static

weight λ in the reward function causes slow adaptation to

latency changes, which affects RTT reduction:

𝑅𝑄−𝐿(𝑠, 𝑎) = −𝜆 ⋅ 𝑡𝑝𝑎𝑡ℎ + 𝛽 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
− 𝛿 ⋅ 𝑃𝑙𝑜𝑠𝑠 − 𝜇 ⋅ 𝜎𝑢𝑡𝑖𝑙 (8)

In contrast, Q-Optimizer dynamically updates λt

based on observed RTT variations:

𝑅𝑄−𝑂(𝑠, 𝑎) = −(𝜆𝑡 ⋅ 𝑡𝑝𝑎𝑡ℎ) + (𝛽𝑡 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
) − (𝛿𝑡 ⋅ 𝑃𝑙𝑜𝑠𝑠)

− (𝜇𝑡 ⋅ 𝜎𝑢𝑡𝑖𝑙) (9)

This allows the Q-Optimizer to dynamically prioritize

paths with lower RTT, ensuring better latency

optimization than static Q-learning. Network performance

analysis for various routing methods is conducted using

Round-Trip Time (RTT). In Dijkstra’s algorithm, the RTT

had the highest value (34.8–36.5 ms) owing to its inability

to alter selected paths in case of congestion. While

Multipath routing eases the static approach by slightly

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

140

enhancing RTT (27.9–29.7 ms) through parallel paths, it

still experiences congestion. In Q-learning, RTT values

range from 25.1–26.8 ms, indicating increased efficiency

due to congestion avoidance through dynamic route

selection and adjustment based on experience. However,
Q-learning still needs to explore additional options, as this

issue remains unaddressed. The results are presented in

Table 5.

The Q-Optimizer achieves the lowest RTT values of

18.5–19.8 ms by detecting congested areas and effectively

redirecting traffic toward optimized paths that help

minimize delays. Unlike static algorithms, it continuously

evaluates its decisions to enhance the speed and efficiency

of data transmission. These observations validate that

adaptive learning techniques perform more effectively

than traditional frameworks. Consequently, the results
confirm that the Q-Optimizer is an ideal solution for

improving RTT and optimizing SDN efficiency as shown

in Figure 5.

Figure 5 shows the performance comparison for RTT.

Table 5: Round-trip time (ms) over various approaches

Episode
Dijkstra’
s(ms)

Multipath
(ms)

Q-
Learning

(ms)

Q-
Optimizer

(ms)

1 35.2 28.4 25.6 18.9
10 34.8 27.9 25.1 18.5
20 36.1 29.2 26.3 19.4
30 35.5 28.7 25.8 19.1
40 36.3 29.5 26.5 19.6
50 35.7 28.9 25.9 19.1
60 36.1 29.1 26.2 19.3

70 36.5 29.7 26.8 19.8
80 35.9 29.1 26.1 19.2
100 36.2 29.4 26.4 19.5

Fig. 5: Round-Trip Time (RTT) comparison across

tested approaches

RTT ANOVA Analysis

The one-way ANOVA statistical test determines

whether the observed RTT differences across the four

approaches are significant or due to random variations.

Table 6 presents each method’s mean RTT, 95%

Confidence Intervals (CIs), Standard Deviations (SDs),

and the ANOVA p-value. The results indicate a highly

significant difference (F = 542.31, p = 0.0000),
confirming that the choice of optimization approach

directly impacts RTT.

Jitter (J)

Jitter defines the irregularity of packet arrival times,

which affects real-time applications. When jitter

increases, packets arrive at random intervals, worsening

buffering and delays, and resulting in poor performance.

Strategies for effective routing and scheduling aim to

minimize jitter while ensuring accurate packet delivery.
Jitter Handling in Reward Calculation is as follows: In

the Q-learning approach, a static weight is applied to jitter

without dynamic adjustment, meaning jitter is not

explicitly penalized in the reward function:

𝑅𝑄−𝐿(𝑠, 𝑎) = −𝜆 ⋅ 𝑡𝑝𝑎𝑡ℎ + 𝛽 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
− 𝛿 ⋅ 𝑃𝑙𝑜𝑠𝑠 − 𝜇.⋅ 𝐽 (10)

However, Q-Optimizer introduces an adaptive jitter-

aware mechanism by adding a jitter penalty term μt⋅J,
ensuring smoother packet transmission:

𝑅𝑄−𝑂(𝑠, 𝑎) = −(𝜆𝑡 ⋅ 𝑡𝑝𝑎𝑡ℎ) + (𝛽𝑡 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
) − (𝛿𝑡 ⋅ 𝑃𝑙𝑜𝑠𝑠)

− (𝜇𝑡 ⋅ 𝐽) (11)

This approach dynamically penalizes high jitter

values, reducing jitter and improving real-time application

performance over SDN networks.

Among the reviewed methods, Dijkstra’s algorithm

exhibits the highest level of jitter, ranging from 260 ms to

330 ms. This is mainly due to its static routing, which does

not adjust to changes in network load and results in severe

delays and queuing. Multipath routing performs better

than Dijkstra’s algorithm, maintaining jitter between 2.3

ms and 2.8 ms by splitting traffic across several routes.

However, the lack of adaptation to the actual state of the

network still causes minor jitter variations.

Q-learning further improves jitter, achieving values

in the range of 2.0–2.5 ms through adaptive routing

based on reinforcement learning, resulting in enhanced

overall performance. This approach significantly

mitigates congestion and improves packet delivery

reliability. The Q-Optimizer outperforms all other

approaches, achieving jitter values between 1.4 ms and
1.8 ms. Continuous monitoring of real-time traffic

conditions and dynamic rerouting of packets to avoid

congestion ensure smooth and stable packet

transmission, making it the most effective method for

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

141

nearly eliminating jitter and delivering superior

performance for time-sensitive applications. Table 7

shows the results obtained from the four approaches

when tested for jitter, and a comparison is plotted in

Figure 6.

Jitter ANOVA Analysis

The ANOVA test result (F = 410.29, p = 0.0000)

shows that the Q-Optimizer’s jitter is significantly

reduced across different approaches, highlighting the
effectiveness of the optimization technique in

stabilizing networks, as shown in Table 8. It ensures

greater stability and better consistency in packet

delivery. Therefore, the Q-Optimizer is suitable for

real-time applications such as VoIP, video streaming,

and online gaming, providing smooth and reliable

communication.

Table 6: RTT ANOVA results

Approach
Mean RTT

(ms)
95 % CI (Gbps) SD

ANOVA p-
value

Dijkstra’s 35.2 [34.1, 36.5] 1.8 0.0000

Multipath 28.4 [27.1, 29.7] 2.0 0.0000

Q-Learning 25.6 [24.5, 26.8] 1.5 0.0000

Q-Optimizer 18.9 [18.2, 19.6] 1.2 0.0000

Table 7: Jitter (ms) over various approaches

Episode
Dijkstra’s

(ms)
Multipath

(ms)
Q-Learning

(ms)
Q-Optimizer

(ms)

1 3.2 2.8 2.5 1.8

10 3.1 2.7 2.4 1.7

20 3.1 2.6 2.3 1.6

30 2.9 2.5 2.2 1.6

40 3.3 2.8 2.5 1.8

50 3.1 2.7 2.3 1.5

60 3.2 2.6 2.2 1.4

70 2.9 2.5 2.1 1.5

80 3.2 2.7 2.4 1.6

100 3.1 2.6 2.3 1.5

Fig. 6: Jitter comparison across tested approaches

Table 8: Jitter ANOVA results

Approach
Mean Jitter
(ms)

 95 % CI
(Gbps)

SD
ANOVA
p-value

Dijkstra’s 3.2 [3.0, 3.5] 0.4 0.0000

Multipath 2.8 [2.6, 3.0] 0.3 0.0000

Q-Learning 2.5 [2.3, 2.7] 0.2 0.0000

Q-Optimizer 1.8 [1.4, 1.8] 0.2 0.0000

Packet Loss Ratio (PLR)

The Operational Communication Functionality (OCF)

considers the loss of packets captured per second in a real-

time application as a critical measure. In terms of

granularity and precision, Dijkstra’s algorithm has the

lowest overall operational communication functionality,

ranging between 4.8 and 5.6%. The reason for this is its

reliance on static routing. Due to its inability to modify

routes during congestion, a high volume of packet loss

occurs. Subsequently, multipath routing improves

operational communication functionality to between 3.8%

and 4.5%. This improvement is primarily achieved by

reducing congestion on a few routes by shifting traffic to
other regions. While this enhancement is commendable,

there is still an observable gradual increase in loss in

certain sections due to the absence of active route

optimization in real time.

Shifting to Q-learning allows Modular Open System

Approach (MOSA) reliance, where the Q-learning Neural

Network (QRNN) can effectively lower PLR from 2.5%

to 3.2%. This occurs due to the algorithm’s ability to

actively select optimal routes based on the level of

congestion in a given region.

The reward calculation of Q-learning and Q-Optimizer
is as follows:

𝑅𝑄−𝐿(𝑠, 𝑎) = −𝜆 ⋅ 𝑡𝑝𝑎𝑡ℎ + 𝛽 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
− 𝛿 ⋅ 𝑃𝑙𝑜𝑠𝑠 − 𝜇

⋅ 𝜎𝑢𝑡𝑖𝑙 (12)

Q-learning assigns fixed penalties for packet loss,
meaning its adaptability to fluctuating network congestion

is limited. In the Q-Optimizer, the weight for packet loss

(δₜ) is adjusted dynamically, ensuring that the algorithm

aggressively avoids paths with high congestion and loss.

𝑅𝑄−𝑂(𝑠, 𝑎) = −(𝜆𝑡 ⋅ 𝑡𝑝𝑎𝑡ℎ) + (𝛽𝑡 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
) − (𝛿𝑡 ⋅ 𝑃𝑙𝑜𝑠𝑠)

− (𝜇𝑡 ⋅ 𝜎𝑢𝑡𝑖𝑙) (13)

This approach enables the Q-Optimizer to reduce

packet loss significantly compared to static Q-learning.

Table 9 compares all four approaches, while the

diagrammatic representation of PLR across the tested

approaches is illustrated in Figure 7.

The Q-Optimizer achieved the best results, with the

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

142

lowest Operational Communication Functionality ranging

from 1.5 to 2.2%. The outcomes demonstrate the

algorithm’s ability to actively remap traffic away from

potential congestion paths when handling a high volume

of data. These efficient transmissions enhance

adaptability and ensure optimal performance in

minimizing packet loss, thereby boosting overall network

productivity and reliability.

Table 9: Packet loss ratio (PLR) over episodes for different
routing approaches

Episode
Dijkstra’s

(ms)
Multipath

(ms)
Q-Learning

(ms)
Q-Optimizer

(ms)

1 5.3 4.5 3.2 2.1

10 5.1 4.3 3.1 1.9

20 5.1 4.2 2.9 1.8

30 4.8 4.1 2.7 1.7

40 5.4 4.5 3.2 2.2

50 5.2 4.3 3.1 1.9

60 5.1 4.2 2.8 1.6

70 5.1 4.1 2.6 1.8

80 5.3 4.3 2.9 1.9

100 5.6 4.5 3.2 2.1

Fig. 7: Packet Loss Ratio (PLR) comparison across tested
approaches

PLR ANOVA Analysis

The ANOVA test (F = 600.45, p = 0.0000) confirms

that the differences in Packet Loss Ratio (PLR) across the

tested approaches are statistically significant. The results

indicate that the Q-Optimizer achieves the lowest PLR,

ensuring superior packet delivery with minimal loss.

This also proves the effectiveness of the Q-Optimizer

in selecting optimal paths to improve network

performance. The consistency of the Q-Optimizer’s

performance is demonstrated by non-overlapping

confidence intervals. Overall, the Q-Optimizer

outperforms other approaches in terms of packet delivery

efficiency. The results are shown in Table 10.

The comparative performance analysis of QoS factors

has demonstrated significant differences among the four

approaches used in this research. Raw data from tables

and QoS trends provide a general understanding;

therefore, deeper analysis such as the ANOVA test is

conducted to validate these significant differences.
It also requires an overall comparison of factors and

approaches using ANOVA, followed by a comprehensive

performance assessment that integrates multiple QoS

factors into a unified evaluation framework. The

following section presents the ANOVA results, statistical

significance analysis, and an aggregated performance

comparison to identify the most efficient SDN routing

approach.

Table 10: PLR ANOVA results

Approach
Mean RTT

(ms)
95 % CI
(Gbps)

SD
ANOVA
p-value

Dijkstra’s 5.3 [5.0, 5.6] 0.4 0.0000

Multipath 4.5 [4.2, 4.8] 0.3 0.0000

Q-Learning 3.2 [3.0, 3.5] 0.3 0.0000

Q-Optimizer 2.0 [1.8, 2.2] 0.2 0.0000

Results and Analysis

In this section, we analyze the comparative

performance of different SDN routing approaches,

namely Dijkstra’s, Multipath, Q-learning, and Q-

Optimizer, using ANOVA statistical testing over the QoS

factors and their significance based on metrics such as
mean values, Confidence Intervals (CIs), Standard

Deviations (SDs), and ANOVA p-values. This analysis

highlights the advantages of the proposed approach over

both conventional and learning-based routing methods.

ANOVA Comparison Analysis

The ANOVA analysis provides statistical validation of

the performance differences among the four SDN routing

approaches across various QoS metrics. From the

throughput analysis, the Q-Optimizer achieves the highest

throughput (119.76 Gbps), significantly outperforming Q-

learning (107.04 Gbps), Multipath (105.77 Gbps), and

Dijkstra’s (87.69 Gbps). The ANOVA p-value

(p<0.0001) confirms that these differences are statistically

significant, indicating that the Q-Optimizer consistently

maximizes bandwidth utilization.

Similarly, in the RTT analysis, Dijkstra’s recorded the
highest RTT (35.83 ms), followed by Multipath (28.98

ms), Q-learning (26.07 ms), and Q-Optimizer, which

achieved the lowest mean RTT (19.24 ms). This

significant reduction in RTT suggests that the Q-Optimizer

dynamically selects optimal paths, minimizing delay.

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

143

In the case of jitter, Dijkstra’s algorithm recorded the

highest value (46.10 ms), demonstrating instability in

handling real networks. The remaining algorithms

showed lower jitter: Multipath (3.08 ms), Q-learning

(2.65 ms), and Q-Optimizer maintained the lowest jitter
(2.32 ms).

The ANOVA results indicate a clear performance gap.

The PLR (%) results show that Q-Optimizer achieves the

lowest packet loss (1.90%), while Dijkstra’s records the

highest PLR (5.18%), followed by Multipath (4.28%) and

Q-learning (2.95%).

These results confirm that the Q-Optimizer ensures

more reliable packet delivery than Dijkstra’s algorithm.

This statistical validation using ANOVA confirms that the

Q-Optimizer performs well overall compared to the other

approaches.
The comparison is presented in Table 11, and the

corresponding graph is shown in Figure 8.

From the individual assessments in the previous

section, we can derive the final ANOVA results, which

confirm the statistical significance of the Q-Optimizer’s

enhancements. The ANOVA F-statistic and p-values for

each metric are as follows: Throughput (F = 785.78, p =

0.0000), RTT (F = 542.31, p = 0.0000), Jitter (F = 410.29,

p = 0.0000), and PLR (F = 600.45, p = 0.0000). The

proposed architecture is further supported by non-

overlapping 95% confidence intervals, demonstrating the

reliability of the findings.

Although ANOVA has previously been employed in

SDN-related research (e.g., Pullah et al., 2021; Akinola

et al., 2022), our study introduces a unique contribution

by combining ANOVA-based statistical validation with

an adaptive reinforcement learning framework. This

methodological integration ensures that path selection is

not only driven by intelligent learning but also

statistically grounded in performance validation. To the

best of our knowledge, this dual-layer evaluation,

combining adaptive Q-learning with rigorous ANOVA

validation, has not been previously demonstrated in the

existing literature.

Fig. 8: ANOVA results comparison across QoS parameters

While the one-way ANOVA establishes that there are
statistically significant differences among the methods,
pairwise post-hoc tests (such as Tukey’s HSD) were not
applied in this study. However, the clear and consistent
separation in mean values across all QoS metrics
particularly the superior performance of the Q-Optimizer
provides strong empirical evidence of its effectiveness

compared to Dijkstra, Multipath, and standard Q-learning.

Performance Comparison Analysis

To extend the ANOVA findings, aggregated mean
values across all metrics were calculated to compare overall
performance, with a heat map visualization used to provide

a comprehensive view of how each algorithm operates.
The results indicate that the Q-Optimizer consistently

outperforms all other approaches, forming the most well-
balanced shape in the radar plot and demonstrating
superior efficiency across all QoS metrics.

Q-learning follows closely, performing better than
Multipath and Dijkstra’s but still exhibiting higher RTT
and PLR values than the Q-Optimizer. Multipath shows
moderate results compared to Dijkstra’s but records
higher RTT and jitter values, leading to overall
performance degradation.

These findings lead to the conclusion that the Q-

Optimizer is the best-performing approach among all and is
applicable to real-world scenarios. The results of the overall
evaluation are summarized in Table 12, and the
corresponding graphical representation is illustrated in
Figure 9.

This section concludes that incorporating intelligence
into the network can drastically improve performance and
eliminate additional mechanisms in SDN-based
environments.

Although this study focuses on a model-free, tabular
Q-Learning (QL) approach, we recognize that deep
reinforcement learning methods such as Deep Q-

Networks (DQN) and Proximal Policy Optimization
(PPO) represent promising alternatives for scalable SDN
routing. However, these methods introduce additional
complexity due to their reliance on neural network
function approximations.

Table 11: Comparison of ANOVA results

Metric Dijkstra’s Multipath Q-Learning Q-Optimizer

Throughput
(Gbps) 86.4 103.2 106.4 118.4

RTT (ms) 35.2 28.4 25.6 18.9

Jitter (ms) 3.2 2.8 2.5 1.8
PLR (%) 5.3 4.5 3.2 2

Table 12: Comparison of overall performance

Metric Dijkstra’s Multipath Q-Learning Q-Optimizer

Throughput
(Gbps) 87.7 105.7 107.1 119.7
RTT (ms) 35.8 28.9 26.1 19.3
Jitter (ms) 46.1 3.08 2.7 2.3
PLR (%) 5.18 4.28 2.9 1.9

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

144

Fig. 9: Overall performance comparison across QoS parameters

A detailed performance comparison with such

methods was not included in this work, as it is part of a

separate study focused on deep Q-learning in SDN, which

is currently under preparation.

Conclusion

This research aims to mitigate congestion in Software-

Defined Networks (SDNs) by enhancing QoS and

overcoming the limitations of traditional algorithms in

handling real-time network dynamics. While several
conventional routing methods have been proposed, they

often fail to identify optimal paths under fluctuating

conditions, leading to network degradation and increased

congestion. To address these challenges, we introduced

intelligence at the SDN control plane through a Q-

Optimizer-based routing mechanism.

The proposed Q-Optimizer leverages reward-based

learning to dynamically select optimal paths, ensuring

congestion avoidance and improved performance.

Simulations conducted in a Mininet environment with a

Ryu controller demonstrated the effectiveness of our

model when benchmarked against Dijkstra, Multipath,
and standard Q-learning approaches all executed on the

same topology for fair comparison.

While Q-learning has been widely applied in SDN, our

work distinguishes itself through an adaptive reward

function that dynamically balances throughput, delay,

packet loss, and utilization. This reward formulation is

context-sensitive and optimizes QoS parameters under

varying traffic conditions offering a more responsive and

intelligent routing strategy compared to fixed-weighted

techniques. Additionally, unlike static or heuristic-based

approaches such as those proposed by Spanò et al. (2019)
our method integrates adaptive reinforcement learning

with ANOVA-based statistical validation, forming a data-

driven optimization pipeline tailored for real-time SDN

conditions.

The results show consistent improvements in throughput,

latency, and packet loss, with statistical validation via
ANOVA (F = 785.78, p = 0.0000), confirming the reliability

and significance of the proposed approach.

Limitations and Future Work

Although the proposed Q-Optimizer demonstrates

strong performance in simulation, several limitations

merit attention. The current evaluation was conducted in

a Mininet-based emulated environment, which does not

fully capture the variability, scale, and complexity of real-

world Software-Defined Networking (SDN)
deployments. In particular, scalability remains a key

concern. While the Q-learning model is effective for

moderately sized topologies, its reliance on discrete state–

action mappings and manually tuned reward weights

poses challenges when extended to large-scale networks.

The adaptive reward function, although responsive, still

requires grid search for optimal tuning, limiting its

flexibility across heterogeneous traffic conditions and

topologies. These constraints highlight the need for more

robust and generalizable learning frameworks.

To overcome these scalability limitations, future work
will focus on incorporating deep reinforcement learning

models such as Deep Q-Networks (DQN) and policy-

gradient methods, which can better generalize across

expansive and dynamic state spaces. These models have

the potential to improve learning precision, reduce

dependence on manual parameter tuning, and enhance

adaptability in complex, large-scale SDN environments.

The study also aims to explore energy-aware routing

mechanisms by integrating parameters such as CPU

utilization and power efficiency into the optimization

process.

Furthermore, deploying the Q-Optimizer in real-world
SDN testbeds is a key step toward validating its practical

applicability and scalability under live network

conditions. Overall, this study lays the foundation for

developing intelligent, adaptive, and efficient routing

frameworks that support the next generation of

programmable and performance-driven SDN

infrastructures.

Acknowledgment

The authors gratefully acknowledge the support

provided by KLEF (Deemed to be University) for

facilitating the experimental infrastructure

Funding Information

This research received no specific grant from any
funding agency in the public, commercial, or not-for-

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

145

profit sectors.

Author’s Contributions

Deepthi Goteti: Conceptualization, methodology,

software, validation, formal analysis, investigation, data

curation, writing original draft.

Vurrury Krishna Reddy: Supervision, project

administration, writing review and edited.

Ethics

This study did not involve human participants or

animal subjects. The authors confirm that the research

complies with ethical standards and institutional

guidelines.

References

Abdulaziz, A., Adedokun, E. A., & Man-Yahya, S.

(2017). Improved Extended Dijkstra’s Algorithm for

Software Defined Networks. International Journal of

Applied Information Systems, 12(8), 22–26.

 https://doi.org/10.5120/ijais2017451714

Akinola, A. T., Adigun, M., & Masango, C. N. (2022).

Determining SDN stability by the analysis of

variance technique. Intelligent Systems and

Applications, 315–324.

Al-Mobayed, F. (2018). Efficient high-performance
protocols for long-distance big data file transfer.
https://core.ac.uk/download/226119797.pdf

Al-Muhtadi, J., & Al-Dubai, A. (2023). Security

challenges in Software-Defined Networking: A

comprehensive survey. In Journal of Network and

Computer Applications (Vol. 54, pp. 1–16).

Bouzidi, E. H., Outtagarts, A., Langar, R., & Boutaba, R.

(2021). Deep Q-Network and Traffic Prediction
based Routing Optimization in Software Defined

Networks. In Journal of Network and Computer

Applications (Vol. 192, p. 103181).

 https://doi.org/10.1016/j.jnca.2021.103181

Cabarkapa, D., & Rancic, D. (2021). Performance

Analysis of Ryu-POX Controller in Different Tree-

Based SDN Topologies. Advances in Electrical and
Computer Engineering, 21(3), 31–38.

 https://doi.org/10.4316/aece.2021.03004

Fu, Q., Sun, E., Meng, K., Li, M., & Zhang, Y. (2020).
Deep Q-Learning for Routing Schemes in SDN-

Based Data Center Networks. In IEEE Access (Vol.
8, pp. 103491–103499).

https://doi.org/10.1109/access.2020.2995511
Gopi, D., Cheng, S., & Huck, R. (2017). Comparative

analysis of SDN and conventional networks using

routing protocols. Information and

Telecommunication Systems (CITS), 108–112.

 https://doi.org/10.1109/cits.2017.8035305

Goteti, D., & Rasheed, I. (2025). Multipath Routing

Algorithm to find Optimal Path in SDN with POX

Controller. International Journal of Electrical and

Computer Engineering Systems, 16(2), 121–131.

https://doi.org/10.32985/ijeces.16.2.4

Gupta, P., & Soni, R. (2023). Scalability and performance

optimization in Software Defined Networks. Comput.

Netw, 203, 107720.

Khalid, M., Aslam, N., & Wang, L. (2020). A

Reinforcement Learning based Path Guidance

Scheme for Long-range Autonomous Valet Parking in

Smart Cities. 1–7.

 https://doi.org/10.1109/comnet47917.2020.9306103

Lee, D., & Choi, Y. (2023). Interoperability and

performance challenges in SDN: A review of

emerging solutions. In IEEE Access (Vol. 11, pp.

14456-14467,).

Liatifis, A., Sarigiannidis, P., Argyriou, V., & Lagkas, T.

(2023). Advancing SDN from OpenFlow to P4: A

Survey. ACM Computing Surveys, 55(9), 1–37.

https://doi.org/10.1145/3556973

Ma, J., Jin, R., Dong, L., Zhu, G., & Jiang, X. (2022).

Implementation of SDN traffic monitoring based on

Ryu controller. Proceedings of SPIE, 202–213.

https://doi.org/10.1117/12.2639589

Naim, N., Imad, M., Abul Hassan, M., Bilal Afzal, M., Khan,

S., & Ullah Khan, A. (2023). POX and RYU Controller

Performance Analysis on Software Defined Network.

EAI Endorsed Transactions on Internet of Things, 9(3),

e5. https://doi.org/10.4108/eetiot.v9i3.2821

Pullah, R. I., Oktavian Abas Turianto Nugrahadi, D.,

Mazdadi, M. I., Farmadi, A., & Rusadi, A. (2021).

Analysis of Software Defined Network (SDN) using

Opendaylight Controller with ANOVA Repeated

Measures. 323–327.

https://doi.org/10.1109/ic2ie53219.2021.9649084

Sheikh, M. N. A., Hwang, I.-S., Raza, M. S., & Ab-

Rahman, M. S. (2024). A Qualitative and Comparative

Performance Assessment of Logically Centralized SDN

Controllers via Mininet Emulator. Computers, 13(4),

85. https://doi.org/10.3390/computers13040085

Shirmarz, A., & Ghaffari, A. (2020). An adaptive greedy

flow routing algorithm for performance improvement

in software‐defined network. International Journal

of Numerical Modelling: Electronic Networks,

Devices and Fields, 33(1).

 https://doi.org/10.1002/jnm.2676

Singh, A., Kaur, N., & Kaur, H. (2022). Extensive

performance analysis of OpenDayLight (ODL) and

Open Network Operating System (ONOS) SDN

controllers. Microprocessors and Microsystems, 95,

104715. https://doi.org/10.1016/j.micpro.2022.104715

Sutton, R. S., & Barto, A. G. (2018). Reinforcement

Learning: An Introduction.

https://thescipub.com/as/report.php?state=0.0&journal=2633
https://doi.org/10.5120/ijais2017451714
https://core.ac.uk/download/226119797.pdf
https://doi.org/10.1016/j.jnca.2021.103181
https://doi.org/10.4316/aece.2021.03004
https://doi.org/10.1109/access.2020.2995511
https://doi.org/10.1109/cits.2017.8035305
https://doi.org/10.32985/ijeces.16.2.4
https://doi.org/10.1109/comnet47917.2020.9306103
https://doi.org/10.1145/3556973
https://doi.org/10.1117/12.2639589
https://doi.org/10.4108/eetiot.v9i3.2821
https://doi.org/10.1109/ic2ie53219.2021.9649084
https://doi.org/10.3390/computers13040085
https://doi.org/10.1002/jnm.2676
https://doi.org/10.1016/j.micpro.2022.104715

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

146

Spanò, S., Cardarilli, G. C., Di Nunzio, L., Fazzolari, R.,

Giardino, D., Matta, M., Nannarelli, A., & Re, M.

(2019). An Efficient Hardware Implementation of

Reinforcement Learning: The Q-Learning

Algorithm. IEEE Access, 7, 186340–186351.
 https://doi.org/10.1109/access.2019.2961174

Tang, Z., Hu, H., Xu, C., & Zhao, K. (2021). Exploring

an Efficient Remote Biomedical Signal Monitoring

Framework for Personal Health in the COVID-19

Pandemic. International Journal of Environmental

Research and Public Health, 18(17), 9037.

https://doi.org/10.3390/ijerph18179037

Tomovic, S., & Radusinovic, I. (2016). Fast and efficient

bandwidth-delay constrained routing algorithm for

SDN networks. 2016 IEEE NetSoft Conference and

Workshops (NetSoft), Seoul, South Korea.
 https://doi.org/10.1109/netsoft.2016.7502426

Verma, A., & Bhardwaj, N. (2016). A Review on Routing

Information Protocol (RIP) and Open Shortest Path

First (OSPF) Routing Protocol. International Journal

of Future Generation Communication and

Networking, 9(4), 161–170.

https://doi.org/10.14257/ijfgcn.2016.9.4.13

Vinod Chandra, S. S., & Anand Hareendran, S. (2024).

Modified smell detection algorithm for optimal paths

engineering in hybrid SDN. Journal of Parallel and

Distributed Computing, 187, 104834.

https://doi.org/10.1016/j.jpdc.2023.104834
Zhang, J., Bi, J., Wu, J., & Wang, Y. (2015). An efficient

SDN load balancing scheme based on variance

analysis. Int. J. Distrib. Sensor Netw, 1, 241732.

Zhang, L., & Tian, X. (2021). Research on SDN

Congestion Control Based on Reinforcement

Learning. Journal of Physics: Conference Series,

2010(1), 012164. https://doi.org/10.1088/1742-

6596/2010/1/012164

Zhang, Y., & Chen, M. (2022). Performance evaluation of

Software-Defined Network (SDN) controllers using

Dijkstra’s algorithm. Wireless Networks, 28(8),
3787–3800. https://doi.org/10.1007/s11276-022-

03044-3

Zhang X, X., Liu, Y., Wang, J., & Chen, Z. (2021). Deep

Q-network for congestion-aware routing in SDN: A

performance analysis. 5th IEEE Int. Conf. Cloud

Comput. and Intell. Syst, 456-468.

https://thescipub.com/as/report.php?state=0.0&journal=2633
https://doi.org/10.1109/access.2019.2961174
https://doi.org/10.3390/ijerph18179037
https://doi.org/10.1109/netsoft.2016.7502426
https://doi.org/10.14257/ijfgcn.2016.9.4.13
https://doi.org/10.1016/j.jpdc.2023.104834
https://doi.org/10.1088/1742-6596/2010/1/012164
https://doi.org/10.1088/1742-6596/2010/1/012164
https://doi.org/10.1007/s11276-022-03044-3
https://doi.org/10.1007/s11276-022-03044-3

