Journal of Computer Science

Research Article

Q-Optimizer: An Al-Based Optimization Framework for
Efficient SDN Routing and QoS Enhancement

Deepthi Goteti and Vurrury Krishna Reddy

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra

Pradesh, 522302, India

Article history
Received: 30-04-2025
Revised: 30-06-2025
Accepted: 29-07-2025

Corresponding Author:
Deepthi Goteti

Department of Computer
Science and Engineering,
Koneru Lakshmaiah Education
Foundation, Vaddeswaram,
Guntur, Andhra Pradesh,
522302, India

Email: 2102031088 @kluniversity.in

Abstract: With their rigid layers, traditional networks do not meet evolving
traffic demands. As a result, they tend to face congestion along with un-
optimized routing. SDN controls traffic management by introducing a
programmable control plane, enabling dynamic and intelligent network
management. However, older routing techniques, such as Dijkstra's and
Multipath, suffer from low adaptability, leading to a rise in latency and
packet loss. The addition of Q-learning with Q-Optimizer in SDN is the aim
of this study in order to improve the Quality-of-Service metrics, such as
throughput, Round Trip Time (RTT), jitter, and Packet Loss Ratio (PLR).
Experimental results from Mininet using the Ryu controller demonstrate that
Q-Optimizer improves throughput by 36.49%, reduces RTT by 46.09%,
minimizes jitter by 95.01%, and lowers Packet Loss Ratio (PLR) by 63.32%
compared to Dijkstra’s algorithm. Compared to Multipath routing, Q-
Optimizer improves throughput by 13.25%, reduces RTT by 33.22%,
decreases jitter by 25.32%, and lowers PLR by 55.61%. Even compared to
Q-Learning, it shows improvements in achieving an 11.76% increase in
throughput, 26.05% lower RTT, 14.81% less jitter, and 34.48% lower PLR.
The statistical validation using one-way ANOVA confirms that these
improvements are significant, reinforcing Q-Optimizer's effectiveness in
SDN environments. A one-way ANOVA test (F = 785.78, p = 0.0000). The
outcomes reveal that Al-driven SDN frameworks are more impactful than
traditional approaches and provide scalable and innovative solutions to
current global networking infrastructures.

Keywords: Software-Defined Network (SDN), Q-Learning, Optimization,
Reinforcement Learning, QoS Metrics, iPerf, ANOVA Statistical Analysis

Introduction

Software-Defined Networking (SDN) is a
programmable paradigm that separates the control and
data planes, enabling centralized management, flexibility,
and high performance for large-scale data transmission.
The architecture consists of three planes: A data plane for
forwarding, a control plane for centralized path
computation, and an application plane that interfaces via
APIs (Ma et al., 2022). SDN’s programmability enhances
traffic engineering and simplifies network management
(Singh et al., 2022), yet it also introduces challenges such
as control-plane attacks and scalability bottlenecks (Al-
Muhtadi and Al-Dubai, 2023; Gupta and Soni, 2023).
Sheikh et al. (2024) provided a comparative performance
evaluation of logically centralized SDN controllers using

7%, SCIENCE
%

Publications

Mininet, finding that Ryu exhibited lower latency and
better throughput over tested scenarios by the authors.
Similarly, Cabarkapa and Rancic (2021) analyzed POX
and Ryu in tree-based topologies, identifying trade-offs in
controller efficiency. These studies highlight how
controller behavior affects the QoS parameters, including
bandwidth, jitter, and packet loss. However, most rely on
static routing strategies that do not adapt to real-time
traffic variations or congestion. Furthermore, challenges
in interoperability and standardization continue to affect
SDN deployments across heterogeneous environments
(Lee and Choi, 2023).

Traditional routing methods, such as Dijkstra's
algorithm or multipath forwarding, focus on shortest paths
without considering dynamic congestion or real-time
bandwidth availability (Goteti and Rasheed, 2025;

© 2026 Deepthi Goteti and Vurrury Krishna Reddy. This open-access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

Naim et al., 2023). While they are computationally
efficient, such approaches often yield suboptimal routing
under fluctuating traffic conditions. To address this,
researchers have explored Al-driven routing mechanisms
in Software-Defined Networking (SDN). Reinforcement
Learning (RL), particularly Q-learning, enables autonomous
policy development based on cumulative reward
observations, allowing for adaptive routing decisions
(Tang et al., 2021; Tomovic and Radusinovic, 2016).

Several works have proposed integrating
Reinforcement Learning (RL) into Software-Defined
Networking (SDN) environments. For example, Liatifis et
al. (2023) evaluated OpenFlow's limitations and suggested
transitioning to P4 for enhanced data plane
programmability. Others have introduced deep
reinforcement models, such as Deep Q-Networks (DQN)
and Proximal Policy Optimization (PPO), to enhance routing
adaptability (Singh et al., 2022; Al-Muhtadi and Al-Dubai,
2023). Although effective, these approaches face significant
computational demands and convergence issues in large-
scale Software-Defined Networks (SDNSs).

To overcome these constraints, this study proposes Q-
Optimizer, a lightweight, two-stage reinforcement
learning framework. Q-Optimizer is designed as a
lightweight, two-stage Q-learning model that does not
rely on any neural network-based function approximators.
As a model-free approach, Q-Optimizer relies solely on
tabular Q-values derived from direct interaction with the
environment, without building any model of network
dynamics. In the first stage, routing performance across
the network is pre-evaluated and recorded using a
systematic measurement process. These values are
compiled offline to represent the long-term effectiveness
of various routing paths. In the second stage, the rule-
based selection mechanism references this data and
adjusts routing choices based on current network
conditions, such as link congestion or transmission delays.
This two-phase process enables a more responsive and
efficient path selection compared to conventional
methods, which typically rely on static calculations that
do not adjust to the dynamic behavior of living networks.
It also differs from deep reinforcement learning methods,
such as Deep Q-Networks (DQN) or Proximal Policy
Optimization (PPO), which rely on neural networks for
function approximation and often incur significant
computational overhead (Singh et al., 2022; Al-Muhtadi
and Al-Dubai, 2023). A step-by-step outline of the Q-
Optimizer algorithm is presented in Algorithm 1, and its
performance is rigorously evaluated and compared with
other methods.

The proposed framework is implemented using the
Ryu controller and evaluated in both custom and fat-tree
topologies using the Mininet emulator. Tools such as iPerf
are employed to assess throughput, latency, jitter, and

131

packet loss (Zhang and Chen, 2022; Abdulaziz et al.,
2017). Additionally, this study applies one-way ANOVA
tests to ensure the statistical validity of performance
improvements across routing algorithms, including
Dijkstra, Multipath, Q-learning, and Q-Optimizer.

The results demonstrate that Q-Optimizer effectively
enhances network performance, offering flexibility and

adaptability to real-time traffic conditions, and
consistently outperforms conventional routing
approaches.

Key Contributions

This paper makes the following key contributions:

Introduces Q-Optimizer, a two-stage, lightweight
reinforcement learning-based routing mechanism
that dynamically adapts to real-time traffic and
congestion in SDN environments

Designs a reward function that balances multiple
QoS parameters including delay, bandwidth
utilization, packet loss, and switch utilization
variance

Implements and evaluates Q-Optimizer using the
Ryu controller in both Custom and Fat Tree
topologies, comparing its performance against
Dijkstra, Multipath, and Q-learning algorithms
Demonstrates statistically significant performance
gains using ANOVA analysis across key metrics
such as throughput, RTT, jitter, and packet loss ratio
Establishes Q-Optimizer as a resource-efficient
alternative to deep RL models (e.g., DQN, PPO) by
avoiding complex neural approximations while
maintaining adaptability and low overhead

The subsequent sections provide a detailed overview
of related research, outline the proposed methodology,
describe the simulation environment, and analyze the
experimental results.

Related Work

Software-defined Networks are ample for handling
current network requirements. However, they must
address congestion, network performance, and load
balance issues. Many traditional algorithms were
introduced to address a few issues, like finding the
optimal paths to avoid congestion. Most research on QoS
in SDN networks relies on a few data metrics, which are
low algorithmic. Such methods can optimize routing
traffic to a certain extent, as they focus on optimizing
individual parameters without multiple QoS constraints,
thereby addressing only specific aspects of the problem
(Verma and Bhardwaj, 2016).

Path selection is based on minimal delay in traditional
traffic routing and forwarding methods, such as those

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

using the Open Shortest Path First (OSPF) protocol
(Vinod Chandra and Hareendran, 2024). However, this
single-factor approach fails to meet the demands of
modern high-volume data traffic, often resulting in
channel congestion and performance degradation.
Researchers in SDN have introduced bio-inspired
techniques, such as the modified smell detection
algorithm, to optimize path engineering in hybrid
Software-Defined Networks (SDNs). This method
enhances routing efficiency and identifies optimal paths
while addressing multiple Quality of Service parameters.
Moreover, it effectively adapts to complex and dynamic
network environments (Gopi et al., 2017). Significant
research efforts have also focused on improving routing
mechanisms in SDN. Comparisons between SDN and
conventional networks highlight how SDN technology
outperforms legacy systems in adaptability and routing
efficiency, especially under high-traffic conditions
(Shirmarz and Ghaffari, 2020). Additionally, other
researchers proposed dynamic routing adjustments using
adaptive greedy flow-routing algorithms to further
enhance network performance (Pullah et al., 2021).

Traditional algorithms like Dijkstra's and extended
Dijkstra find the shortest path, and QoS parameters are
measured to determine network performance. The
multipath algorithm also finds multiple paths to send data
over massive networks. Traditional algorithms rely on
predefined rules, so managing an unpredictable network
can lead to network failure and degraded performance.

Introducing intelligent algorithms like reinforcement
learning can allow appropriate decision-making, enable
SDN to learn from the past, and continuously refine its
policies. It can adapt to finding paths from experiences
and make routing decisions to handle massive traffic and
congestion.

In this paper, we apply Q-Learning to calculate the Q-
table, which consists of routing information based on that
g-optimizer to find the path between two dedicated paths.
We will calculate the path between two dedicated paths
with the help of Round-Trip Time and other QoS factors
like throughput jitter and packet loss. Comparisons are
made with the Multipath and Dijkstra's algorithm on the
same topology, which is tested and measures the same set
of parameters. In addition to performance-based
evaluations, statistical methods such as ANOVA have
been used in related works to assess the significance of
various network optimization techniques. Researchers
have applied ANOVA to analyze differences in key
performance metrics (latency, throughput, packet loss)
under different SDN controller configurations and
algorithms. This method allows for determining whether
the results obtained are statistically significant or
produced randomly, providing insights into the
effectiveness of various approaches used for research.

132

Several researchers have employed Analysis of Variance
(ANOVA) to analyze and compare Software-Defined
Networking (SDN) performance metrics.

Pullah et al. (2021) conducted experiments using the
OpenDaylight controller and applied repeated-measures
ANOVA to evaluate SDN performance in terms of latency
and throughput. An ANOVA-based statistical analysis was
employed to identify significant differences across multiple
experimental setups (Akinola et al., 2022). SDN stability was
further examined by analyzing how various network
configurations influenced performance, with key
contributing factors such as resilience quantified through
ANOVA evaluation (Zhang et al., 2015). In addition, Author
explored load balancing in SDN using variance analysis,
integrating ANOVA to assess the efficiency of different
load-balancing strategies.

This study presents ANOVA analysis effectively
determines optimal approaches while reducing
congestion. Also highlights ANOVA's significance in
quantitative SDN performance evaluation, ensuring
robust statistical validation of experimental results. Such
statistical analysis is crucial for validating experimental
results and ensuring that the observed improvements are
not due to random variations.

Although our methodology shares certain conceptual
elements with the approaches proposed by Spano et al.
(2019); Khalid et al. (2020), it diverges significantly in its
use of an adaptive reward-driven Q-learning mechanism
combined with statistical ANOVA validation. Unlike their
static or heuristic-based models, our approach introduces a
dynamic, learning-based optimization pipeline tailored for
real-time SDN conditions.

Zhang and Tian (2021) concentrated on challenges
like network congestion and performance in the SDN
environment and applied reinforcement learning for
congestion control. Reinforcement learning helps adjust
the flow by learning from the network conditions
dynamically. Their simulations demonstrated the
effectiveness of the proposed approach by reducing
packet loss and improving overall network throughput.
This research provides valuable insights for enhancing
SDN performance, particularly under congestion-prone
conditions (Khalid et al., 2020).

Reinforcement learning (RL) empowers systems with
the ability to make rapid and effective decisions in
complex scenarios and has become a cornerstone of
modern computer science (Zhang and Tian, 2021). It aids
computational agents in understanding and navigating
complex environments to achieve optimal results in
various scenarios. Unlike traditional models that the agent
learns by continuously interacting with its environment
and improving through experience (Singh et al., 2022).
Beyond simple learning, it also adapts to ongoing,
continuous learning. Q-learning forms the core
functionality of reinforcement learning (RL), operating

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

with two strategies: One for selecting actions and another
for evaluating the outcomes of those actions. This balance
between exploration (trying new options) and exploitation
(leveraging prior knowledge) evolves to enhance
decision-making (Al-Muhtadi and Dubai, 2023).

RL approaches are broadly categorized as model-free
such as Q-learning, which learns directly from experience
and model-based, which rely on prior knowledge to guide
decision-making (Lee and Choi, 2023). Q-learning is
particularly effective in uncertain environments, making
it a valuable tool in domains like robotics, autonomous
vehicles, and drones (Naim et al., 2023; Pullah et al.,
2021; Akinola et al., 2022). At its foundation, RL involves
an agent interacting with an environment and receiving
feedback in the form of rewards that indicate
performance. Through repeated interactions, the agent
learns to optimize its actions to achieve the best possible
outcomes (Zhang et al., 2015).

Although SDN optimization has significantly advanced,
real-time routing using RL remains challenging. Deep Q-
Networks (DQN) have been utilized for congestion-aware
routing, achieving higher throughput but requiring extensive
training (Sutton and Barto, 2018). Q-learning has also been
applied to SDN, improving adaptability but suffering from
slow convergence (Zhang and Tian, 2021). Advanced RL
algorithms such as Proximal Policy Optimization (PPO) and
Deep Deterministic Policy Gradient (DDPG) have been
tested in SDN contexts to enhance decision-making;
however, they are computationally demanding (Spano et al.,
2019).

The present study introduces Q-Optimizer, an
enhanced Q-learning-based framework that addresses
these limitations by refining the reward function and
reducing training overhead through experience transfer
from initial Q-learners (Khalid et al., 2020). The optimizer
leverages structured data from simulation tables and
demonstrates marked improvements in the efficiency of
Quality of Service parameters.

Singh et al. (2022) proposed a multi-agent SDN traffic
control framework that emphasized trust-based decision-
making rather than Quality of Service -centric routing.
Similarly, Al-Muhtadi and Dubai (2023) explored Al-driven
trust mechanisms for SDN security but did not integrate path
optimization techniques. Lee and Choi (2023) addressed
delay-sensitive routing in fog-SDN integrated systems,
focusing primarily on architectural latency mitigation.

In contrast, the proposed Q-Optimizer framework
directly targets multi-metric QoS enhancement through
adaptive reinforcement learning, making it more suitable
for dynamic, data-driven routing decisions under varying
network loads. Several recent studies have also
investigated deep reinforcement learning (Deep RL)
approaches such as Deep Q-Networks (DQN) and
Proximal Policy Optimization (PPO) for SDN routing
optimization (Pullah et al., 2021; Akinola et al., 2022).

133

While these techniques leverage neural network—based
function approximations to handle high-dimensional state
spaces, they typically require extensive training time,
complex parameter tuning, and higher computational
resources.

By contrast, Q-Optimizer provides a lightweight,
model-free alternative that prioritizes interpretability and
rapid convergence without depending on deep network
architectures. Although Q-learning has previously been
applied to SDN optimization (Zhang et al., 2015; Zhang
and Tian, 2021), many of these studies employ fixed
reward structures and lack rigorous statistical validation.
Similarly, prior research using ANOVA such as the
studies by Pullah et al. (2021); Zhang et al. (2015)
primarily evaluated static algorithmic performance or
compared SDN controllers under predefined conditions.

Works like Spano et al. (2019); Khalid et al. (2020)
introduced learning-based SDN routing frameworks, yet
they relied on static reward heuristics or offline-trained
models, which limited their adaptability in real-time
network scenarios. In contrast, our Q-Optimizer
introduces a context-aware, adaptive reward function that
dynamically balances multiple QoS metrics during
training and integrates ANOVA-based statistical
validation to confirm the significance of observed
improvements. This dual integration of adaptive decision-
making and robust statistical validation establishes a
novel, analytically grounded optimization pipeline
distinguishing our work from both traditional Q-learning
models and ANOVA-only evaluation frameworks in SDN
research.

Furthermore, our approach aligns with the direction
proposed by Naim et al. (2023), who emphasized the
necessity of topology-aware and scalable reinforcement
learning in dynamic SDN environments a goal addressed
by Q-Optimizer through the inclusion of real-time network
topology feedback within its optimization loop.

Proposed Mechanism

Traditional routing strategies that depend on the
shortest path algorithms lead to congestion due to multiple
data flows that select the same path. Congestion happens
because the short path is fixed between the source and
destination, preventing effective data transmission. Route
identification is done on dynamic network conditions,
such as bandwidth and QoS parameters, to overcome this
limitation. The Q learner will calculate rewards for all
possible paths. The Q-Optimizer will retrieve all available
paths and their rewards and select the path with the highest
reward for data transmission from source to destination.
The SDN architecture is designed to integrate this Q-
learning mechanism seamlessly into the control panel.
Figure 1 illustrates the architecture for implementing the
Q-learner and Q-optimizer in SDN.

The proposed architecture employs Software-Defined

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

Networking (SDN) and considers relevant performance
indicators, such as Round Trip Time (RTT), throughput,
packet loss ratio, and jitter. These are important factors of
network performance and reliability metrics. RTT, along
with other elements, assists in routing decisions by
measuring the time taken for a given packet to be received
and sent back. Throughput specifies the amount of data
sent and received, while loss ratio informs about the
number of packets lost or damaged during transmission
without being received. Real-time applications like VoIP
or Video streaming are affected by packet delivery
variations and affect service quality; therefore, jitter is
crucial to address. Moreover, the architecture separates
the data control and control planes. The Ryu controller is
the core of the network management system, which
manages the control plane. It communicates with the
network switches, acquires topology data, and can make
decisions based on the network's state. The data plane
constitutes network switches that carry out the functions
of receiving and sending packets based on flow rules
stipulated by a controller.

Application Plane(Management)

o]

NORTH BOUND
INTERFACE

API

Control Plane

Agent

Topology Detection

Monitoring Network

Action Detection

Calculate Reward

Flow of Operation

State

Computing Path

Route Computing with

Q-Leaming SOUTH BOUND
INTERFACE
NETWORK STATISTICS ¢ FLOW OF PACKETS
DATA PLANE
-~ .
- - =3 bl
ﬂtﬁ._.- POt B ;j‘ NODE D
NODES i TP St Ly

Fig. 1: Proposed architecture embedded with Q-learning

X0

OLeanerin
Terminal 2

=
=I=

SON Tepology Descovery Scrpt
Executicn in Terminal 1

Descover Topoigy
comnecton

i

|

Ry Controber for 8ase ine o n
Performance Metrcs.

04

i

i

Moniior and Compare
Performance Metrics

Fig. 2: Research methodology employed in this study

The proposed architecture implemented with
specific features includes a Q-learning-based path
optimization mechanism. This approach enables the
controller to dynamically change and opt for the most

134

efficient paths by learning from network conditions.
This includes RTT, jitter, packet loss, and throughput.
The Q-Optimizer uses these learned experiences to
choose optimal paths for packet forwarding, ensure
that the network adapts to changing conditions, and
maintains high real-time performance.

In the following section, we will explore the
methodology behind this architecture, detailing the role
of each module from topology discovery to Q-learning-
based path optimization and the decision-making process
of the Q-Optimizer. Figure 2 illustrates the methodology
followed in the research.

Discovering Network Topology

This work is carried out on an SDN topology that
utilizes Open vSwitch (OVS) switches and a remote Ryu
controller, with all connections established using the
OpenFlow 1.0 protocol. The topology is configured with
an IP address range of 10.0.0.0/8 and consists of 30 hosts
(h1 to h30), including specific nodes like h15, h25, h19,
h18, h6, and h12, each uniquely identified within the
network. Structured topology connects 10 switches (s1 to
s10), which provides efficient routing and traffic
management. The Ryu controller runs on 127.0.0.1:6633,
optimizes network operations by managing Switches’
packet forwarding mechanisms

The Ryu controller also integrates NetFlow and sFlow
configurations to support real-time traffic monitoring. The
topology is stored in a graph structure to enable dynamic
path computation and adapt the routing.

The Ryu controller must first be started using a custom
Ryu application before deploying Mininet with the
defined topology. The SDN topology is illustrated in
Figure 3 and consists of 10 switches and 30 hosts,
structured hierarchically under the control of the Ryu
controller. Switches are labeled from left to right as s1 to
s10, with each switch connected to three hosts labeled
sequentially for example, s1 connects to h1-h3, s2 to h4
h6, and so on. This labeling facilitates routing analysis and
enhances clarity during performance evaluation.

To execute sdntopology.py while checking topology
details, approach as follows:

1. Start the Ryu controller with the topology script
Ryu-manager --of-tcp-listen-port 6633
sdntopology.py

2. Launch Mininet with a custom topology (to test
oncustom)
sudo mn --custom SDN_TOPOLOGY.mn --topo my
topo --controller=remote,ip=127.0.0.1,port=6633 -
switch ovs

3. If SDN_TOPOLOGY.mn is in JSON format and not

a Mininet script, we can convert it into a Python
Mininet script before execution

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

Fig. 3: Topology utilized for testing

SDN controller must collect data about network
topology before choosing the optimally efficient path.
This step is paramount because routing is done based on
line switches and links on the network map. With the
OpenFlow protocol, the controller connects to the
switches, "watching" for connection events and gathering
information concerning these switches, for example — the
number of ports available on them. With the help of the
LLDP method, switches discover the links between each
other. In this method, the switches send packets that other
neighboring switches pick up, thus allowing the controller
to build a map of the physical interconnections. The SDN
controller models the network as a graph, with switches
as vertices and links as edges. This enables efficient, real-
time path computation and adaptive routing. By
maintaining an up-to-date topology, the controller installs
optimal flow rules, enhances packet forwarding, and
reduces congestion, ensuring responsive and efficient
network operations (Pullah et al., 2021).

Q-Optimizer Optimal Path Identification

In Software-Defined Networking (SDN)
architecture, the Q learner plays an important role in path
selection optimization through reinforcement learning. It
first explores multiple network paths, collects
information from the Ryu controller, and assesses paths
by analyzing RTT and packet drop. The Q-table is
updated using the Bellman equation to improve optimal
actions over time, as this systematic learning process.
The reward function is also simple; it mainly focuses on
the best routes for the least hops or path length.
Exploration and exploitation are balanced using a fixed
probability, allowing the algorithm to explore new paths
or select the highest Q-value. Once an efficient path is
identified, flow rules are installed to forward packets
efficiently. As the network is analyzed, the Q-Optimizer
further refines path selection by incorporating multiple
network performance metrics, ensuring smooth and
congestion-free data transmission. The Q-Optimization
algorithm is shown in Algorithm 1.

Key parameters in the Q-Optimizer include the
learning rate (o) and discount factor (y), which govern
how quickly and how far-sighted the optimizer learns. To
fine-tune these, we tested o values in {0.01, 0.05, 0.1},

135

tracking convergence using the mean-squared change in
Q-values (AQ) over 100 episodes. The setting a = 0.05
reached a AQ < 1x107 most efficiently, offering a good
trade-off between responsiveness and stability. For y, we
tested values in {0.80, 0.90, 0.95, 0.99}.

A higher y (closer to 1) makes the optimizer think
long-term, valuing future benefits more than short-term
gains. With y = 0.95, our system focuses more on finding
paths that will be beneficial in the long run, like lower
latency or higher bandwidth utilization, instead of
focusing on short-term improvements.

Algorithm 1: Q-Optimizer algorithm

Input: Replay buffer R, Q-table Q(s, a), Topology data,
Learning rate o, Discount factor y, Exploration rate €, Weight
coefficients (A, B, 9,)

Output: Optimized Q-table Q(s, a), Updated network paths,
Installed flow rules, Final reward

1. Initialize: Q-table, weights, and topology data.

2. Define action space (paths between switches) and state space
(network states).

3. For each packet arrival (Episode = 1, E):
a.
b.

Retrieve all possible paths using get_all_paths().

For each path, calculate weight based on network
metrics:

path_weight = (weight_ RTT * inverse_RTT) +
(weight_bandwidth * bandwidth) +
(weight_packet_loss * packet_loss) +
(weight_load_balance * load_balance)

If paths exist:
i.Select the optimal path using learning_agent().
ii. Install flow rules using install_path_flows().

iii. Calculate reward using weighted metrics

e Rlatency = -A * tpath, Rbandwidth = f *
(Bused / Btotal), Rloss = -3 * Ploss, Rload = -
p * outil

e reward = Rlatency + Rbandwidth + Rloss +
Rload

iv. Update Q-table with update_g_values()
based on reward and next state.

Else, log no path available and consider alternate exploration.
End of Episode

The Q-Optimizer is guided towards better decisions
with reward calculation, which uses g-values. These
values are obtained by combining several network metrics
and weights, such as latency, bandwidth, packet loss, and
load balancing. These weights help to prioritize which
metrics are important when calculating rewards. To tune

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

the Q-Optimizer’s reward function, we tested different
values for the weights A, B, 3, and p between 0.1 and 0.9
using a basic grid search. These values were checked
across 20 different traffic situations, ranging from low to
high congestion. The best combination was chosen by
finding the one that gave the lowest combined value of
RTT and packet loss (using V(RTT2 + PLR?)). We also
tested how small changes (10 %) in the weights
affected the results, and found that the quality stayed
almost the same changing by less than 2 %. The final
values we used were similar to those seen in earlier SDN
studies, showing that our approach is reliable and based
on proven choices.

The Q-table was retained across episodes during
training to support cumulative learning and convergence
over time. This design choice allowed the optimizer to
build upon prior knowledge and adapt to evolving traffic
conditions. The update follows the standard Q-learning
formula. Together, o and y values ensure that the Q-
Optimizer learns effectively, balancing short-term
rewards with long-term goals, leading to more optimal
decisions in dynamic network environments. The
methodology follows a structured workflow that begins
with the construction of the SDN topology in Mininet.
The Q-Learner module initially explores all feasible
routing paths by interacting with the network and
observing key metrics such as delay and bandwidth. These
observations are then passed to the Q-Optimizer, which
refines the selection process by applying a dynamic
reward function that balances latency, throughput, loss,
and switch utilization variance. The selected optimal path
is deployed via the Ryu controller, and the system
performance is evaluated through key QoS parameters
including throughput, RTT, jitter, and packet loss ratio.

Materials and Methods

Simulations are taken on real-time network
environments and measured Quality service factors to
asses SDN's network performance. This simulation helps
researchers understand SDN network operation in real-
world scenarios and identify potential areas for
improvement.

To evaluate the performance of the Q-Optimizer, we
implemented an SDN topology with 30 nodes and 10
OpenFlow switches using Mininet. This topology helps
the host and switch communicate and allows us to
simulate the network over varying network loads. The
Ryu controller was used for dynamic routing, which
handles the switches and adjusts traffic flow based on
network policies and conditions. iPerf was utilized to
measure throughput and jitter, a benchmarking tool for
network performance with TCP and UDP traffic between
host pairs under different load conditions.

Each approach (Dijkstra's, Multipath, Q-Learning, and
Q-Optimizer) was tested over 100 independent simulation

136

runs, collecting data for key QoS parameters.

To ensure reproducibility across all simulation runs, a
fixed random seed value of 42 was used. The seed was
applied using both NumPy (numpy.random.seed(42)) and
Python’s built-in random module (random.seed(42)),
ensuring consistent results during evaluation.

Matplotlib is used to create graphs from the data
observed in simulations. We conducted a one-way
ANOVA test on the collected performance data to ensure
statistical validity. The ANOVA test determines whether
the differences in QoS metrics across different approaches
are statistically significant. A confidence level of 95 %
(p<0.05) was used, with p-values and F-statistics
calculated for throughput, RTT, jitter, and PLR.
Additionally, 95 % Confidence Intervals (Cls) were
computed to support the results further (Al-Mobayed,
2018; Bouzidi et al., 2021; Fu et al., 2020).

Table 1 presents the simulation setup used in our
study, detailing the network emulator, testing tools,
topology configuration, and performance metrics
evaluated.

The experiments were conducted using Mininet
v2.3.0, Ryu controller v4.34, and Python v3.8.10 on
Ubuntu 20.04. The system was run on a machine with an
Intel Core i7 processor and 16GB RAM to ensure stable
performance and compatibility.

Table 1: Common simulation parameters

Simulation Values
environment
Network Emulator

Testing Tools
Metrics Tested
Network Topology
Topology Creation
Graph Generation

Mininet

iPerf, Ryu, Matplotlib, Python
Throughput, Packet Loss, Jitter, RTT
SDN topology (with Ryu Controller)
mn (Mininet CLI)

Matplotlib in Python (using JSON to

execute)
Nodes 30 nodes
Switches 10 switches
Links Point-to-point
Results

This section discusses the detailed analysis of our
SDN-based Q-learning and Q-Optimizer on key network
performance metrics such as throughput, Round-Trip
Time (RTT), jitter, and Packet Loss Ratio (PLR). The goal
is to evaluate how well different approaches manage network
traffic, optimize routing, and improve overall efficiency.
We compare four different methods in the same
simulation environment and on the same topology, which
helps ensure a fair comparison. The iPerf tool creates the
client-server environment, making it a valuable
benchmark for evaluation. Multipath testing is a
conventional method that discovers all available and
optimal paths for transmission. If a path becomes

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

congested, this model suggests an alternative route to
distribute the traffic among them.
The second approach is Dijkstra’s algorithm, which is
used to find the shortest path. Due to its limitations in
dynamic network environments, it has also been tested as
part of our work. For instance, there has been progress
toward developing reinforcement learning-based models
that learn from experience using past traffic patterns to
optimize path selection. Lastly, the Q-Optimizer further
refines Q-learning by performing additional real-time
control strategies to adaptively adjust path selection and
improve overall performance.

Key Performance Metrics

Throughput (T): Throughput represents the amount of
data successfully transferred over the network during a
given time. iPerf calculates it using the following formula:

(T = Total Data Transferred (bits)/Total Time (sec) (1)

In simple terms, it is the amount of data moved across
the network within a specific time frame. iPerf reports
throughput in bits per second (bps), and for our
experiments, it measures throughput for TCP and UDP
traffic separately.

Round Trip Time (RTT): RTT indicates how long a
packet takes to travel from the sender to the receiver and
back. It is calculated as:

RTT =) N (Trecv(i)-Tsend (i))i=1 (2)

Jitter (J): Jitter refers to the variation in packet
delivery times; some packets take longer to travel
between systems, which is important for real-time
applications such as video calls or VolP. iPerf directly
measures jitter for UDP traffic using the following
formula:

iPerf directly measures jitter for UDP traffic using this
formula:

JO=J0-1 + {{(PGE-1D) - J{—-D[}{16} @)

Where:

J (i) J = current jitter estimate

D (i—1, i) = difference between two consecutive
packet delays

16 = smoothing factor (default in RTP-based jitter
calculation)

This formula helps reduce delay variation, and
milliseconds (ms) are used as the measurement unit.

137

Excessive jitter can cause disruptions, particularly in real-
time applications.

Packet Loss Ratio (PLR): PLR represents the
percentage of packets lost during transmission. The
formula for PLR is:

(Total Pakets sent—Total Pakets Received)
Total

PLR = (Pakets Sent) * 100% (4)

This metric indicates network reliability. A higher
packet loss ratio suggests that the network is unstable
or experiencing congestion, which can affect delivery
(Zhang et al., 2021).

Experimental Results

This section presents the results of our performance
evaluation, which is crucial for the ANOVA analysis.
The evaluation was conducted over 100 episodes, each
involving the transmission of 10 packets, totaling 1000
packets. The simulations were carried out separately
for four different approaches. We measured key
performance metrics during the evaluation, including
Round-Trip Time (RTT), transfer rate, bandwidth,
jitter, and packet loss ratio. The tests were executed in
Mininet, with Q-learning and Q-Optimizer algorithms
implemented in the Ryu environment. Furthermore,
Multipath and Dijkstra's algorithms were also executed
in Ryu to provide a more in-depth analysis of the
network topology, as detailed in the Network Topology
section. The results were analyzed using ANOVA,
focusing on statistical significance, p-values, and
confidence intervals (ClIs).

Notation and Definitions

Table 2 defines the notations used in the reward
function equations for both Q-learning and Q-Optimizer.

Throughput (T):

The efficiency of different algorithms in data
transfer is measured using GBytes (total data
transferred) and Gbps (bandwidth). The transfer rate
represents the total amount of data transmitted during
the test, while bandwidth indicates the rate at which
data is sent per second. To analyze network
performance more effectively, the transfer rate was
converted into throughput (Gbps) using the formula
below:

Throughput (Gbps) = Transfer Rate (GBytes) x 8 ——(Sec) (5)

Time

The reward function is designed to optimize key
Quality-of-Service (QoS) metrics by assigning specific
weight coefficients to each parameter.

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

Table 2: Notations used

Symbol Meaning Value
Reward for state-action
R(s,a) .
pair
tpath Path delay Measured
Bused Bandwidth used Measured
Biotal Total available bandwidth 100 Gbps
Ploss Packet loss ratio Varies
Gutil Link utilization variation =~ Computed
A Delay weight (fixed) 0.5
B Bandwidth weight (fixed, 03
Q-Learning) ’
Adaptive bandwidth .
Bt Weig;)ht (Q-Optimizer) Dynamic
Packet loss weight 0.2
Utilization variance weight 0.1
At Ada_pti_ve delay weight (Q- Dynamic
Optimizer)
Adaptive packet loss -
ot Wei;ht (QF-)Optimizer) Dynamic
Adaptive utilization weight .
ut (Q-Optimizer) Dynamic
a Learning rate (Q-Learning) 0.1

The values were chosen based on empirical tuning and
insights from previous SDN reinforcement learning
research. Specifically, the weights were set as follows: A
= 0.5 (path delay weight), B = 0.3 (bandwidth weight), &
=0.2 (packet loss weight), and p= 0.1 (utilization weight).
These values lead to RTT reduction and maximize
bandwidth while keeping packet loss to a minimum.

Due to the exploration setting, which was initially set
to 0.2, the Q-learning agent does not get stuck in local
optima while making efficient decisions. In our
implementation, € was maintained as a fixed value (0.2)
throughout training. This static setting ensured a
consistent balance between exploration and exploitation.
Future work may explore decaying ¢ strategies for
potentially faster convergence in dynamic environments.
This means that the agent explores a new path with a
20% probability and exploits an optimal path with an
80% probability. This approach aligns with
reinforcement learning best practices for dynamic SDN
routing optimization.

Impact of Reward Calculation on Throughput

The reward equations used in both Q-learning and Q-
Optimizer are derived from the standard Bellman
equation, which forms the foundation of value iteration in
reinforcement learning. Rather than showing the generic
Bellman form separately, we extend it here to reflect the
domain-specific metrics (e.g., RTT, packet loss,
utilization). This adaptation preserves the original Q-
update logic while integrating SDN-specific performance
objectives.

The reward function plays a key role in determining

138

throughput performance. In standard Q-learning, the
reward function assigns a fixed weight to bandwidth
utilization, which limits its adaptability under fluctuating
network conditions. The reward is computed as:

Bused

RQ—L (S' a) =-1 tpath + ﬂ : -6 Ploss — U Oytin (6)

total

Q-learning does not adjust its decision-making when
network congestion varies, since remains constant,
which leads to suboptimal throughput. On the other hand,
the reward function for the Q-Optimizer is designed to
balance QoS objectives dynamically. It incorporates path
delay, bandwidth utilization, packet loss, and switch
utilization variance using tunable weights (A, By, &, p) for
flexible optimization.

The Q-Optimizer workflow follows a structured
process. For each routing decision, the agent observes key
network parameters such as path delay, bandwidth
utilization ratio, packet loss rate, and switch utilization
variance. These values are combined into a reward using
a weighted formula that prioritizes low latency, high
throughput, low loss, and balanced load. Based on this
reward, the Q-table is updated using standard Q-learning
logic. The action (i.e., path selection) corresponding to the
highest Q-value is then chosen, and flow rules are
installed in the relevant switches to forward traffic
accordingly. This process repeats iteratively across
episodes, allowing the model to converge toward optimal
routing behavior.

The Q-Optimizer enhances throughput by dynamically
adjusting the bandwidth weight coefficient g, in response
to real-time traffic load. Its reward function is:

Bused
total

) — (8, - Pige)

Ro-0(5:0) = ~(he* paer) + (8

= (ue - Ourir) @)

By adjusting g, adaptively, the Q-Optimizer optimally
balances path delay and bandwidth utilization, leading to
improved throughput performance even under varying
network conditions. Transfer rate calculation helps
compare various algorithms by normalizing performance
across different test durations.

It also assesses how efficiently different approaches
utilize network resources and adapt to changing
conditions, such as Dijkstra’s algorithm, Multipath
testing, Q-learning, and Q-Optimizer.

Among the tested approaches, Dijkstra’s algorithm
shows the lowest throughput (86.4-89.6 Gbps) due to its
reliance on fixed, static path selection. Since it does not
adapt to real-time network conditions, it often results in
inefficient routing, congestion, and slower data transfer.
Multipath testing performs slightly better (104.8-110.4
Gbps) by distributing traffic across multiple predefined
paths. However, it still follows a static approach, which

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

limits its ability to handle dynamic network changes
effectively, although it provides more routing options than
Dijkstra’s algorithm. Table 3 presents the comparison of
various approaches based on throughput.

Due to its structure, this prevents it from making the
most efficient decisions in real time. Q-learning, which
uses reinforcement learning, improves on this by
dynamically adjusting to past experiences and optimizing
path selection. With a throughput of 103.2-109.6 Gbps, it
surpasses Multipath testing, but because it relies on
continuous learning, it sometimes makes suboptimal
routing choices, especially in the early stages.

Table 3: Throughput over various approaches (Ghps)

Episode l()éjé(sgajs '\(/Iggézz;th Searning 8ptimizer
(Gbps) (Gbps)
1 86.4 103.2 106.4 1184
10 85.6 104.2 104.8 117.6
20 88.8 106.4 107.2 119.2
30 87.2 104.8 105.6 116.8
40 88.2 107.2 108.8 121.6
50 87.2 106.4 108.5 120.8
60 88.1 104.8 106.4 1184
70 89.6 106.6 107.4 1224
80 87.2 106.2 107.2 120.8
100 88.6 107.9 108.1 121.6

The Q-Optimizer delivers the best throughput (116.8—
122.4 Gbps) by continuously analyzing the real-time
network and making adaptive, intelligent routing
decisions. Compared to traditional algorithms, it detects
congestion and reroutes traffic while reducing delays, as
shown in Figure 4. More reliable performance is achieved
through the continued refinement of path selection with
respect to round-trip time. Consequently, the network can
adjust dynamically based on live conditions, making it
more efficient, stable, and capable of handling high data
loads compared to other approaches. Using reinforcement
learning, the Q-Optimizer prevents bottlenecks and
maximizes overall network efficiency, proving to be the
best-performing algorithm for optimizing data transfer.

ANOVA Analysis

A one-way ANOVA test is used to determine whether
the differences in the resulting throughput of all four
approaches are statistically significant. It also confirms
that the observed improvements are due to the
optimization strategy rather than random fluctuations.

Table 4 presents each approach’s mean throughput
values, 95% Confidence Intervals (Cls), standard
deviations (SDs), and the ANOVA p-value. The
significant difference (p = 0.0000) indicates that the Q-
Optimizer substantially improves throughput compared to
Dijkstra’s algorithm, Multipath, and Q-learning. Notably,

139

the Q-Optimizer achieves the highest mean throughput of
118.4 Gbps, with non-overlapping confidence intervals,
demonstrating that its performance enhancement is
statistically robust. The ANOVA test (F = 785.78, p =
0.0000) confirms that the tested approaches are
statistically significant over the throughput parameter.

115
g 110
Kol
e s -
RS a
3 . - .
_2‘ 105 =
o |
;E 100 Dijkstra's
& Multipath
~4— Q-Learning
95 Q-Optimizer

40 60 80 100

Episodes

0 20

Fig. 4: Throughput comparison across tested approaches

Table 4: Throughput Anova Results
Mean

Approach Throughput Q(Z?pgl SD AN\g\I{Q p-
(Gbps)
Dijkstra’s 86.4 [84.3, 88.9] 2.1 0.0000
Multipath 103.2 [100.5,106.2] 3.4 0.0000
O-Learning 1064 [104.1,109.6] 2.8 0.0000
Q-Optimizer 1184 [115.2,121.6] 2.3 0.0000

Round Trip Time (RTT)

Impact of Reward Calculation on RTT is as follows: In
Q-learning, the reward function considers RTT a static
factor and does not react when facing congestion. The static
weight A in the reward function causes slow adaptation to
latency changes, which affects RTT reduction:

— U Oyutit (8)

In contrast, Q-Optimizer dynamically updates At
based on observed RTT variations:

) - (6t : Ploss)
9

RQ—O (s,a) = _(At : tpath) + (Bt ’
— (U " Oyrir)

Bused
Btotal

This allows the Q-Optimizer to dynamically prioritize
paths with lower RTT, ensuring better latency
optimization than static Q-learning. Network performance
analysis for various routing methods is conducted using
Round-Trip Time (RTT). In Dijkstra’s algorithm, the RTT
had the highest value (34.8-36.5 ms) owing to its inability
to alter selected paths in case of congestion. While
Multipath routing eases the static approach by slightly

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

enhancing RTT (27.9-29.7 ms) through parallel paths, it
still experiences congestion. In Q-learning, RTT values
range from 25.1-26.8 ms, indicating increased efficiency
due to congestion avoidance through dynamic route
selection and adjustment based on experience. However,
Q-learning still needs to explore additional options, as this
issue remains unaddressed. The results are presented in
Table 5.

The Q-Optimizer achieves the lowest RTT values of
18.5-19.8 ms by detecting congested areas and effectively
redirecting traffic toward optimized paths that help
minimize delays. Unlike static algorithms, it continuously
evaluates its decisions to enhance the speed and efficiency
of data transmission. These observations validate that
adaptive learning techniques perform more effectively
than traditional frameworks. Consequently, the results
confirm that the Q-Optimizer is an ideal solution for
improving RTT and optimizing SDN efficiency as shown
in Figure 5.

Figure 5 shows the performance comparison for RTT.

Table 5: Round-trip time (ms) over various approaches

L ; Q- Q-
Episode glr%ks;tra I(\:Inusl)tlpath Learning Optimizer
(ms) (ms)
1 35.2 28.4 25.6 18.9
10 34.8 27.9 25.1 18.5
20 36.1 29.2 26.3 19.4
30 355 28.7 25.8 19.1
40 36.3 29.5 26.5 19.6
50 35.7 28.9 25.9 19.1
60 36.1 29.1 26.2 19.3
70 36.5 29.7 26.8 19.8
80 35.9 29.1 26.1 19.2
100 36.2 29.4 26.4 19.5
42,5 —
40.0 #- Multipath
- Qle
375 - Q-Of
3 35.0f — - —
E 325 :
« —— _—
B—
30.0 \H-—*/
21.5
25.0
0 20 40 60 80 100
Episodes

Fig. 5: Round-Trip Time (RTT) comparison across
tested approaches

RTT ANOVA Analysis

The one-way ANOVA statistical test determines
whether the observed RTT differences across the four

140

approaches are significant or due to random variations.
Table 6 presents each method’s mean RTT, 95%
Confidence Intervals (Cls), Standard Deviations (SDs),
and the ANOVA p-value. The results indicate a highly
significant difference (F = 54231, p 0.0000),
confirming that the choice of optimization approach
directly impacts RTT.

Jitter (J)

Jitter defines the irregularity of packet arrival times,
which affects real-time applications. When jitter
increases, packets arrive at random intervals, worsening
buffering and delays, and resulting in poor performance.
Strategies for effective routing and scheduling aim to
minimize jitter while ensuring accurate packet delivery.

Jitter Handling in Reward Calculation is as follows: In
the Q-learning approach, a static weight is applied to jitter
without dynamic adjustment, meaning jitter is not
explicitly penalized in the reward function:

Bused

RQ—L(S' a)=—4- tpatn + B B =06 Pross — -] (10)

total

However, Q-Optimizer introduces an adaptive jitter-
aware mechanism by adding a jitter penalty term ut-J,
ensuring smoother packet transmission:

used

B
RQ—O(SI a) = _(At : tpath) + (Bt : Bt . l) - (6t : Ploss)
ota

= (e D) an

This approach dynamically penalizes high jitter
values, reducing jitter and improving real-time application
performance over SDN networks.

Among the reviewed methods, Dijkstra’s algorithm
exhibits the highest level of jitter, ranging from 260 ms to
330 ms. This is mainly due to its static routing, which does
not adjust to changes in network load and results in severe
delays and queuing. Multipath routing performs better
than Dijkstra’s algorithm, maintaining jitter between 2.3
ms and 2.8 ms by splitting traffic across several routes.
However, the lack of adaptation to the actual state of the
network still causes minor jitter variations.

Q-learning further improves jitter, achieving values
in the range of 2.0-2.5 ms through adaptive routing
based on reinforcement learning, resulting in enhanced
overall performance. This approach significantly
mitigates congestion and improves packet delivery
reliability. The Q-Optimizer outperforms all other
approaches, achieving jitter values between 1.4 ms and
1.8 ms. Continuous monitoring of real-time traffic
conditions and dynamic rerouting of packets to avoid
congestion ensure smooth and stable packet
transmission, making it the most effective method for

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

nearly eliminating jitter and delivering superior
performance for time-sensitive applications. Table 7
shows the results obtained from the four approaches
when tested for jitter, and a comparison is plotted in
Figure 6.

Jitter ANOVA Analysis

The ANOVA test result (F = 410.29, p = 0.0000)
shows that the Q-Optimizer’s jitter is significantly
reduced across different approaches, highlighting the
effectiveness of the optimization technique in
stabilizing networks, as shown in Table 8. It ensures
greater stability and better consistency in packet
delivery. Therefore, the Q-Optimizer is suitable for
real-time applications such as VolP, video streaming,
and online gaming, providing smooth and reliable
communication.

Table 6: RTT ANOVA results

Table 8: Jitter ANOVA results

Approach Mean Jitter 95 % ClI sD ANOVA
(ms) (Gbps) p-value
Dijkstra’s 3.2 [3.0,3.5] 0.4 0.0000
Multipath 2.8 [2.6,3.0] 0.3 0.0000
Q-Learning 2.5 [2.3,2.7] 0.2 0.0000
Q-Optimizer 1.8 [1.4,1.8] 0.2 0.0000

Approach Me?r';]gﬁ 959%Cl (Gbps) D ANOVAP

Dijksta’s 352 [34.1,365 18 0.0000

Multipath 284 [27.1,29.7] 2.0 0.0000
Q-Learning 25.6 [24.5, 26.8] 15 0.0000
QoOptimizer 189 [182,19.6] 12 0.0000

Table 7: Jitter (ms) over various approaches
Dijkstra’s Multipath Q-Learning Q-Optimizer

Episode (ms) (ms) (ms) (ms)
1 3.2 2.8 2.5 1.8
10 3.1 2.7 24 1.7
20 3.1 2.6 2.3 1.6
30 2.9 2.5 2.2 1.6
40 3.3 2.8 2.5 1.8
50 3.1 2.7 2.3 15
60 3.2 2.6 2.2 14
70 2.9 2.5 2.1 15
80 3.2 2.7 2.4 1.6
100 3.1 2.6 2.3 15
3.2
3.0
28} = » ¥ = H
] Dijkstra's -
E “f s ij.;mp.m» - v
] 2.4 -4 Q-Learning
:‘—i » Q-Optimizer
2.2 W
2.0
1.8
0 20 20 60 80 100
Episodes

Fig. 6: Jitter comparison across tested approaches

Packet Loss Ratio (PLR)

The Operational Communication Functionality (OCF)
considers the loss of packets captured per second in a real-
time application as a critical measure. In terms of
granularity and precision, Dijkstra’s algorithm has the
lowest overall operational communication functionality,
ranging between 4.8 and 5.6%. The reason for this is its
reliance on static routing. Due to its inability to modify
routes during congestion, a high volume of packet loss
occurs. Subsequently, multipath routing improves
operational communication functionality to between 3.8%
and 4.5%. This improvement is primarily achieved by
reducing congestion on a few routes by shifting traffic to
other regions. While this enhancement is commendable,
there is still an observable gradual increase in loss in
certain sections due to the absence of active route
optimization in real time.

Shifting to Q-learning allows Modular Open System
Approach (MOSA) reliance, where the Q-learning Neural
Network (QRNN) can effectively lower PLR from 2.5%
to 3.2%. This occurs due to the algorithm’s ability to
actively select optimal routes based on the level of
congestion in a given region.

The reward calculation of Q-learning and Q-Optimizer
is as follows:

Busea
Ro_p(s,a) = =4 tpaen + B - —B:s: z
ota

" Outil (12)

=68 Poss— U

Q-learning assigns fixed penalties for packet loss,
meaning its adaptability to fluctuating network congestion
is limited. In the Q-Optimizer, the weight for packet loss
(8, is adjusted dynamically, ensuring that the algorithm
aggressively avoids paths with high congestion and loss.

B
RQ—O (s,a) = _(At ' tpath) + (ﬁt ' Bused) — (8¢ Pross)
total
= (e * Ournr) (13)

This approach enables the Q-Optimizer to reduce
packet loss significantly compared to static Q-learning.
Table 9 compares all four approaches, while the
diagrammatic representation of PLR across the tested
approaches is illustrated in Figure 7.

The Q-Optimizer achieved the best results, with the

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

lowest Operational Communication Functionality ranging
from 1.5 to 2.2%. The outcomes demonstrate the
algorithm’s ability to actively remap traffic away from
potential congestion paths when handling a high volume
of data. These efficient transmissions enhance
adaptability and ensure optimal performance in
minimizing packet loss, thereby boosting overall network
productivity and reliability.

Table 9: Packet loss ratio (PLR) over episodes for different
routing approaches

- Dijkstra’s Multipath Q-Learning Q-Optimizer
Episode (ms) (ms) (ms) (ms)
1 5.3 4.5 3.2 2.1
10 5.1 4.3 3.1 1.9
20 5.1 4.2 2.9 1.8
30 4.8 4.1 2.7 1.7
40 5.4 4.5 3.2 2.2
50 5.2 4.3 3.1 1.9
60 5.1 4.2 2.8 1.6
70 5.1 4.1 2.6 1.8
80 5.3 4.3 2.9 1.9
100 5.6 4.5 3.2 2.1
Dijkstra's
35 ~=— Multipath
D —4- Q-Learning
§ 3.0 a—— Q-Optimizer
o " ~.- e
s - -
< 2.5 i
wn
3
z 20 w
Y
v
&15
1.0
0 20 20 60 80 100
Episodes

Fig. 7: Packet Loss Ratio (PLR) comparison across tested
approaches

PLR ANOVA Analysis

The ANOVA test (F = 600.45, p = 0.0000) confirms
that the differences in Packet Loss Ratio (PLR) across the
tested approaches are statistically significant. The results
indicate that the Q-Optimizer achieves the lowest PLR,
ensuring superior packet delivery with minimal loss.

This also proves the effectiveness of the Q-Optimizer
in selecting optimal paths to improve network
performance. The consistency of the Q-Optimizer’s
performance is demonstrated by non-overlapping
confidence intervals. Overall, the Q-Optimizer

142

outperforms other approaches in terms of packet delivery
efficiency. The results are shown in Table 10.

The comparative performance analysis of QoS factors
has demonstrated significant differences among the four
approaches used in this research. Raw data from tables
and QoS trends provide a general understanding;
therefore, deeper analysis such as the ANOVA test is
conducted to validate these significant differences.

It also requires an overall comparison of factors and
approaches using ANOVA, followed by a comprehensive
performance assessment that integrates multiple QoS
factors into a unified evaluation framework. The
following section presents the ANOVA results, statistical
significance analysis, and an aggregated performance
comparison to identify the most efficient SDN routing
approach.

Table 10: PLR ANOVA results

Mean RTT 95 % Cl ANOVA
Approach (ms) (Gbps) sb p-value
Dijkstra’s 5.3 [5.0, 5.6] 0.4 0.0000
Multipath 4.5 [4.2,4.8] 0.3 0.0000
Q-Learning 32 [3.0,3.5] 0.3 0.0000
Q-Optimizer 2.0 [1.8,22] 0.2 0.0000
Results and Analysis
In this section, we analyze the comparative

performance of different SDN routing approaches,
namely Dijkstra’s, Multipath, Q-learning, and Q-
Optimizer, using ANOVA statistical testing over the QoS
factors and their significance based on metrics such as
mean values, Confidence Intervals (Cls), Standard
Deviations (SDs), and ANOVA p-values. This analysis
highlights the advantages of the proposed approach over
both conventional and learning-based routing methods.

ANOVA Comparison Analysis

The ANOVA analysis provides statistical validation of
the performance differences among the four SDN routing
approaches across various QoS metrics. From the
throughput analysis, the Q-Optimizer achieves the highest
throughput (119.76 Gbps), significantly outperforming Q-
learning (107.04 Gbps), Multipath (105.77 Gbps), and
Dijkstra’s (87.69 Gbps). The ANOVA p-value
(p<0.0001) confirms that these differences are statistically
significant, indicating that the Q-Optimizer consistently
maximizes bandwidth utilization.

Similarly, in the RTT analysis, Dijkstra’s recorded the
highest RTT (35.83 ms), followed by Multipath (28.98
ms), Q-learning (26.07 ms), and Q-Optimizer, which
achieved the lowest mean RTT (19.24 ms). This
significant reduction in RTT suggests that the Q-Optimizer
dynamically selects optimal paths, minimizing delay.

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

In the case of jitter, Dijkstra’s algorithm recorded the
highest value (46.10 ms), demonstrating instability in
handling real networks. The remaining algorithms
showed lower jitter: Multipath (3.08 ms), Q-learning
(2.65 ms), and Q-Optimizer maintained the lowest jitter
(2.32 ms).

The ANOVA results indicate a clear performance gap.
The PLR (%) results show that Q-Optimizer achieves the
lowest packet loss (1.90%), while Dijkstra’s records the
highest PLR (5.18%), followed by Multipath (4.28%) and
Q-learning (2.95%).

These results confirm that the Q-Optimizer ensures
more reliable packet delivery than Dijkstra’s algorithm.
This statistical validation using ANOVA confirms that the
Q-Optimizer performs well overall compared to the other
approaches.

The comparison is presented in Table 11, and the
corresponding graph is shown in Figure 8.

From the individual assessments in the previous
section, we can derive the final ANOVA results, which
confirm the statistical significance of the Q-Optimizer’s
enhancements. The ANOVA F-statistic and p-values for
each metric are as follows: Throughput (F = 785.78, p =
0.0000), RTT (F = 542.31, p=0.0000), Jitter (F =410.29,
p = 0.0000), and PLR (F = 600.45, p = 0.0000). The
proposed architecture is further supported by non-
overlapping 95% confidence intervals, demonstrating the
reliability of the findings.

Although ANOVA has previously been employed in
SDN-related research (e.g., Pullah et al., 2021; Akinola
et al., 2022), our study introduces a unique contribution
by combining ANOVA-based statistical validation with
an adaptive reinforcement learning framework. This
methodological integration ensures that path selection is
not only driven by intelligent learning but also
statistically grounded in performance validation. To the
best of our knowledge, this dual-layer evaluation,
combining adaptive Q-learning with rigorous ANOVA
validation, has not been previously demonstrated in the
existing literature.

PLR

Fig. 8: ANOVA results comparison across QoS parameters

143

While the one-way ANOVA establishes that there are
statistically significant differences among the methods,
pairwise post-hoc tests (such as Tukey’s HSD) were not
applied in this study. However, the clear and consistent
separation in mean values across all QoS metrics
particularly the superior performance of the Q-Optimizer
provides strong empirical evidence of its effectiveness
compared to Dijkstra, Multipath, and standard Q-learning,

Performance Comparison Analysis

To extend the ANOVA findings, aggregated mean
values across all metrics were calculated to compare overall
performance, with a heat map visualization used to provide
a comprehensive view of how each algorithm operates.

The results indicate that the Q-Optimizer consistently
outperforms all other approaches, forming the most well-
balanced shape in the radar plot and demonstrating
superior efficiency across all QoS metrics.

Q-learning follows closely, performing better than
Multipath and Dijkstra’s but still exhibiting higher RTT
and PLR values than the Q-Optimizer. Multipath shows
moderate results compared to Dijkstra’s but records
higher RTT and jitter values, leading to overall
performance degradation.

These findings lead to the conclusion that the Q-
Optimizer is the best-performing approach among all and is
applicable to real-world scenarios. The results of the overall
evaluation are summarized in Table 12, and the
corresponding graphical representation is illustrated in
Figure 9.

This section concludes that incorporating intelligence
into the network can drastically improve performance and
eliminate additional mechanisms in SDN-based
environments.

Although this study focuses on a model-free, tabular
Q-Learning (QL) approach, we recognize that deep
reinforcement learning methods such as Deep Q-
Networks (DQN) and Proximal Policy Optimization
(PPO) represent promising alternatives for scalable SDN
routing. However, these methods introduce additional
complexity due to their reliance on neural network
function approximations.

Table 11: Comparison of ANOVA results

Metric Dijkstra’s Multipath Q-Learning Q-Optimizer
Throughput
(Gbps) 86.4 103.2 106.4 1184
RTT (ms) 35.2 28.4 25.6 18.9
Jitter (ms) 3.2 2.8 25 1.8
PLR (%) 5.3 45 3.2 2

Table 12: Comparison of overall performance

Metric Dijkstra’s Multipath Q-Learning Q-Optimizer
Throughput

(Gbps) 87.7 105.7 107.1 119.7

RTT (ms) 35.8 28.9 26.1 19.3

Jitter (ms) 46.1 3.08 2.7 2.3

PLR (%) 5.18 4.28 2.9 1.9

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

.-
-

Fig. 9: Overall performance comparison across QoS parameters

A detailed performance comparison with such
methods was not included in this work, as it is part of a
separate study focused on deep Q-learning in SDN, which
is currently under preparation.

Conclusion

This research aims to mitigate congestion in Software-
Defined Networks (SDNs) by enhancing QoS and
overcoming the limitations of traditional algorithms in
handling real-time network dynamics. While several
conventional routing methods have been proposed, they
often fail to identify optimal paths under fluctuating
conditions, leading to network degradation and increased
congestion. To address these challenges, we introduced
intelligence at the SDN control plane through a Q-
Optimizer-based routing mechanism.

The proposed Q-Optimizer leverages reward-based
learning to dynamically select optimal paths, ensuring
congestion avoidance and improved performance.
Simulations conducted in a Mininet environment with a
Ryu controller demonstrated the effectiveness of our
model when benchmarked against Dijkstra, Multipath,
and standard Q-learning approaches all executed on the
same topology for fair comparison.

While Q-learning has been widely applied in SDN, our
work distinguishes itself through an adaptive reward
function that dynamically balances throughput, delay,
packet loss, and utilization. This reward formulation is
context-sensitive and optimizes QoS parameters under
varying traffic conditions offering a more responsive and
intelligent routing strategy compared to fixed-weighted
techniques. Additionally, unlike static or heuristic-based
approaches such as those proposed by Spano et al. (2019)
our method integrates adaptive reinforcement learning

144

with ANOVA-based statistical validation, forming a data-
driven optimization pipeline tailored for real-time SDN
conditions.

The results show consistent improvements in throughput,
latency, and packet loss, with statistical validation via
ANOVA (F =785.78, p = 0.0000), confirming the reliability
and significance of the proposed approach.

Limitations and Future Work

Although the proposed Q-Optimizer demonstrates
strong performance in simulation, several limitations
merit attention. The current evaluation was conducted in
a Mininet-based emulated environment, which does not
fully capture the variability, scale, and complexity of real-
world Software-Defined Networking (SDN)
deployments. In particular, scalability remains a key
concern. While the Q-learning model is effective for
moderately sized topologies, its reliance on discrete state—
action mappings and manually tuned reward weights
poses challenges when extended to large-scale networks.
The adaptive reward function, although responsive, still
requires grid search for optimal tuning, limiting its
flexibility across heterogeneous traffic conditions and
topologies. These constraints highlight the need for more
robust and generalizable learning frameworks.

To overcome these scalability limitations, future work
will focus on incorporating deep reinforcement learning
models such as Deep Q-Networks (DQN) and policy-
gradient methods, which can better generalize across
expansive and dynamic state spaces. These models have
the potential to improve learning precision, reduce
dependence on manual parameter tuning, and enhance
adaptability in complex, large-scale SDN environments.
The study also aims to explore energy-aware routing
mechanisms by integrating parameters such as CPU
utilization and power efficiency into the optimization
process.

Furthermore, deploying the Q-Optimizer in real-world
SDN testbeds is a key step toward validating its practical
applicability and scalability under live network
conditions. Overall, this study lays the foundation for
developing intelligent, adaptive, and efficient routing
frameworks that support the next generation of
programmable and performance-driven SDN
infrastructures.

Acknowledgment

The authors gratefully acknowledge the support
provided by KLEF (Deemed to be University) for
facilitating the experimental infrastructure

Funding Information

This research received no specific grant from any
funding agency in the public, commercial, or not-for-

https://thescipub.com/as/report.php?state=0.0&journal=2633

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

profit sectors.

Author’s Contributions

Deepthi Goteti: Conceptualization, methodology,
software, validation, formal analysis, investigation, data
curation, writing original draft.

Vurrury Krishna Reddy: Supervision,
administration, writing review and edited.

project

Ethics

This study did not involve human participants or
animal subjects. The authors confirm that the research
complies with ethical standards and institutional
guidelines.

References

Abdulaziz, A., Adedokun, E. A., & Man-Yahya, S.
(2017). Improved Extended Dijkstra’s Algorithm for
Software Defined Networks. International Journal of
Applied Information Systems, 12(8), 22—-26.
https://doi.org/10.5120/ijais2017451714

Akinola, A. T., Adigun, M., & Masango, C. N. (2022).
Determining SDN stability by the analysis of
variance technique. Intelligent Systems and
Applications, 315-324.

Al-Mobayed, F. (2018). Efficient high-performance
protocols for long-distance big data file transfer.
https://core.ac.uk/download/226119797.pdf

Al-Muhtadi, J., & Al-Dubai, A. (2023). Security
challenges in Software-Defined Networking: A
comprehensive survey. In Journal of Network and
Computer Applications (Vol. 54, pp. 1-16).

Bouzidi, E. H., Outtagarts, A., Langar, R., & Boutaba, R.
(2021). Deep Q-Network and Traffic Prediction
based Routing Optimization in Software Defined
Networks. In Journal of Network and Computer
Applications (Vol. 192, p. 103181).
https://doi.org/10.1016/j.jnca.2021.103181

Cabarkapa, D., & Rancic, D. (2021). Performance
Analysis of Ryu-POX Controller in Different Tree-
Based SDN Topologies. Advances in Electrical and
Computer Engineering, 21(3), 31-38.
https://doi.org/10.4316/aece.2021.03004

Fu, Q., Sun, E., Meng, K., Li, M., & Zhang, Y. (2020).
Deep Q-Learning for Routing Schemes in SDN-
Based Data Center Networks. In IEEE Access (Vol.
8, pp. 103491-103499).
https://doi.org/10.1109/access.2020.2995511

Gopi, D., Cheng, S., & Huck, R. (2017). Comparative
analysis of SDN and conventional networks using
routing protocols. Information and
Telecommunication Systems (CITS), 108-112.
https://doi.org/10.1109/cits.2017.8035305

145

Goteti, D., & Rasheed, I. (2025). Multipath Routing
Algorithm to find Optimal Path in SDN with POX
Controller. International Journal of Electrical and
Computer Engineering Systems, 16(2), 121-131.
https://doi.org/10.32985/ijeces.16.2.4

Gupta, P., & Soni, R. (2023). Scalability and performance
optimization in Software Defined Networks. Comput.
Netw, 203, 107720.

Khalid, M., Aslam, N., & Wang, L. (2020). A

Reinforcement Learning based Path Guidance

Scheme for Long-range Autonomous Valet Parking in

Smart Cities. 1-7.

https://doi.org/10.1109/comnet47917.2020.9306103

D., & Choi, Y. (2023). Interoperability and
performance challenges in SDN: A review of
emerging solutions. In IEEE Access (Vol. 11, pp.

14456-14467).

Liatifis, A., Sarigiannidis, P., Argyriou, V., & Lagkas, T.
(2023). Advancing SDN from OpenFlow to P4: A
Survey. ACM Computing Surveys, 55(9), 1-37.
https://doi.org/10.1145/3556973

Ma, J., Jin, R, Dong, L., Zhu, G., & Jiang, X. (2022).
Implementation of SDN traffic monitoring based on
Ryu controller. Proceedings of SPIE, 202-213.
https://doi.org/10.1117/12.2639589

Naim, N., Imad, M., Abul Hassan, M., Bilal Afzal, M., Khan,
S., & Ullah Khan, A. (2023). POX and RYU Controller
Performance Analysis on Software Defined Network.
EAI Endorsed Transactions on Internet of Things, 9(3),
eb. https://doi.org/10.4108/eetiot.v9i3.2821

Pullah, R. I., Oktavian Abas Turianto Nugrahadi, D.,
Mazdadi, M. I., Farmadi, A., & Rusadi, A. (2021).
Analysis of Software Defined Network (SDN) using
Opendaylight Controller with ANOVA Repeated
Measures. 323-327.
https://doi.org/10.1109/ic2ie53219.2021.9649084

Sheikh, M. N. A., Hwang, 1.-S., Raza, M. S., & Ab-
Rahman, M. S. (2024). A Qualitative and Comparative
Performance Assessment of Logically Centralized SDN
Controllers via Mininet Emulator. Computers, 13(4),
85. https://doi.org/10.3390/computers13040085

Shirmarz, A., & Ghaffari, A. (2020). An adaptive greedy
flow routing algorithm for performance improvement
in software-defined network. International Journal
of Numerical Modelling: Electronic Networks,
Devices and Fields, 33(1).
https://doi.org/10.1002/jnm.2676

Singh, A., Kaur, N., & Kaur, H. (2022). Extensive
performance analysis of OpenDayLight (ODL) and
Open Network Operating System (ONOS) SDN
controllers. Microprocessors and Microsystems, 95,
104715. https://doi.org/10.1016/j.micpro.2022.104715

Sutton, R. S., & Barto, A. G. (2018). Reinforcement
Learning: An Introduction.

Lee,

https://thescipub.com/as/report.php?state=0.0&journal=2633
https://doi.org/10.5120/ijais2017451714
https://core.ac.uk/download/226119797.pdf
https://doi.org/10.1016/j.jnca.2021.103181
https://doi.org/10.4316/aece.2021.03004
https://doi.org/10.1109/access.2020.2995511
https://doi.org/10.1109/cits.2017.8035305
https://doi.org/10.32985/ijeces.16.2.4
https://doi.org/10.1109/comnet47917.2020.9306103
https://doi.org/10.1145/3556973
https://doi.org/10.1117/12.2639589
https://doi.org/10.4108/eetiot.v9i3.2821
https://doi.org/10.1109/ic2ie53219.2021.9649084
https://doi.org/10.3390/computers13040085
https://doi.org/10.1002/jnm.2676
https://doi.org/10.1016/j.micpro.2022.104715

Deepthi Goteti and Vurrury Krishna Reddy / Journal of Computer Science 2026, 22 (1): 130.146

DOI: 10.3844/jcssp.2026.130.146

Spano, S., Cardarilli, G. C., Di Nunzio, L., Fazzolari, R.,
Giardino, D., Matta, M., Nannarelli, A., & Re, M.
(2019). An Efficient Hardware Implementation of
Reinforcement Learning: The Q-Learning
Algorithm. IEEE Access, 7, 186340-186351.
https://doi.org/10.1109/access.2019.2961174

Tang, Z., Hu, H., Xu, C., & Zhao, K. (2021). Exploring
an Efficient Remote Biomedical Signal Monitoring
Framework for Personal Health in the COVID-19
Pandemic. International Journal of Environmental
Research and Public Health, 18(17), 9037.
https://doi.org/10.3390/ijerph18179037

Tomovic, S., & Radusinovic, 1. (2016). Fast and efficient
bandwidth-delay constrained routing algorithm for
SDN networks. 2016 IEEE NetSoft Conference and
Workshops (NetSoft), Seoul, South Korea.
https://doi.org/10.1109/netsoft.2016.7502426

Verma, A., & Bhardwaj, N. (2016). A Review on Routing
Information Protocol (RIP) and Open Shortest Path
First (OSPF) Routing Protocol. International Journal
of Future Generation Communication and
Networking, 9(4), 161-170.
https://doi.org/10.14257/ijfgcn.2016.9.4.13

146

Vinod Chandra, S. S., & Anand Hareendran, S. (2024).
Modified smell detection algorithm for optimal paths
engineering in hybrid SDN. Journal of Parallel and
Distributed Computing, 187, 104834.
https://doi.org/10.1016/j.jpdc.2023.104834

Zhang, J., Bi, J., Wu, J., & Wang, Y. (2015). An efficient
SDN load balancing scheme based on variance
analysis. Int. J. Distrib. Sensor Netw, 1, 241732.

Zhang, L., & Tian, X. (2021). Research on SDN
Congestion Control Based on Reinforcement
Learning. Journal of Physics: Conference Series,
2010(1), 012164. https://doi.org/10.1088/1742-
6596/2010/1/012164

Zhang, Y., & Chen, M. (2022). Performance evaluation of
Software-Defined Network (SDN) controllers using
Dijkstra’s algorithm. Wireless Networks, 28(8),
3787-3800. https://doi.org/10.1007/5s11276-022-
03044-3

Zhang X, X., Liu, Y., Wang, J., & Chen, Z. (2021). Deep
Q-network for congestion-aware routing in SDN: A
performance analysis. 5th IEEE Int. Conf. Cloud
Comput. and Intell. Syst, 456-468.

https://thescipub.com/as/report.php?state=0.0&journal=2633
https://doi.org/10.1109/access.2019.2961174
https://doi.org/10.3390/ijerph18179037
https://doi.org/10.1109/netsoft.2016.7502426
https://doi.org/10.14257/ijfgcn.2016.9.4.13
https://doi.org/10.1016/j.jpdc.2023.104834
https://doi.org/10.1088/1742-6596/2010/1/012164
https://doi.org/10.1088/1742-6596/2010/1/012164
https://doi.org/10.1007/s11276-022-03044-3
https://doi.org/10.1007/s11276-022-03044-3

