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Abstract: With their rigid layers, traditional networks do not meet evolving 

traffic demands. As a result, they tend to face congestion along with un-
optimized routing. SDN controls traffic management by introducing a 

programmable control plane, enabling dynamic and intelligent network 

management. However, older routing techniques, such as Dijkstra's and 

Multipath, suffer from low adaptability, leading to a rise in latency and 

packet loss. The addition of Q-learning with Q-Optimizer in SDN is the aim 

of this study in order to improve the Quality-of-Service metrics, such as 

throughput, Round Trip Time (RTT), jitter, and Packet Loss Ratio (PLR). 

Experimental results from Mininet using the Ryu controller demonstrate that 

Q-Optimizer improves throughput by 36.49%, reduces RTT by 46.09%, 

minimizes jitter by 95.01%, and lowers Packet Loss Ratio (PLR) by 63.32% 

compared to Dijkstra’s algorithm. Compared to Multipath routing, Q-
Optimizer improves throughput by 13.25%, reduces RTT by 33.22%, 

decreases jitter by 25.32%, and lowers PLR by 55.61%. Even compared to 

Q-Learning, it shows improvements in achieving an 11.76% increase in 

throughput, 26.05% lower RTT, 14.81% less jitter, and 34.48% lower PLR. 

The statistical validation using one-way ANOVA confirms that these 

improvements are significant, reinforcing Q-Optimizer's effectiveness in 

SDN environments. A one-way ANOVA test (F = 785.78, p = 0.0000). The 

outcomes reveal that AI-driven SDN frameworks are more impactful than 

traditional approaches and provide scalable and innovative solutions to 

current global networking infrastructures. 

 

Keywords: Software-Defined Network (SDN), Q-Learning, Optimization, 
Reinforcement Learning, QoS Metrics, iPerf, ANOVA Statistical Analysis 

 

Introduction 

Software-Defined Networking (SDN) is a 

programmable paradigm that separates the control and 

data planes, enabling centralized management, flexibility, 

and high performance for large-scale data transmission. 

The architecture consists of three planes: A data plane for 

forwarding, a control plane for centralized path 

computation, and an application plane that interfaces via 

APIs (Ma et al., 2022). SDN’s programmability enhances 

traffic engineering and simplifies network management 

(Singh et al., 2022), yet it also introduces challenges such 

as control-plane attacks and scalability bottlenecks (Al-

Muhtadi and Al-Dubai, 2023; Gupta and Soni, 2023). 

Sheikh et al. (2024) provided a comparative performance 

evaluation of logically centralized SDN controllers using 

Mininet, finding that Ryu exhibited lower latency and 

better throughput over tested scenarios by the authors. 

Similarly, Cabarkapa and Rancic (2021) analyzed POX 

and Ryu in tree-based topologies, identifying trade-offs in 

controller efficiency. These studies highlight how 

controller behavior affects the QoS parameters, including 

bandwidth, jitter, and packet loss. However, most rely on 

static routing strategies that do not adapt to real-time 

traffic variations or congestion. Furthermore, challenges 

in interoperability and standardization continue to affect 

SDN deployments across heterogeneous environments 

(Lee and Choi, 2023). 
Traditional routing methods, such as Dijkstra's 

algorithm or multipath forwarding, focus on shortest paths 

without considering dynamic congestion or real-time 

bandwidth availability (Goteti and Rasheed, 2025; 
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Naim et al., 2023). While they are computationally 

efficient, such approaches often yield suboptimal routing 

under fluctuating traffic conditions. To address this, 

researchers have explored AI-driven routing mechanisms 

in Software-Defined Networking (SDN). Reinforcement 
Learning (RL), particularly Q-learning, enables autonomous 

policy development based on cumulative reward 

observations, allowing for adaptive routing decisions 

(Tang et al., 2021; Tomovic and Radusinovic, 2016). 

Several works have proposed integrating 

Reinforcement Learning (RL) into Software-Defined 

Networking (SDN) environments. For example, Liatifis et 

al. (2023) evaluated OpenFlow's limitations and suggested 

transitioning to P4 for enhanced data plane 

programmability. Others have introduced deep 

reinforcement models, such as Deep Q-Networks (DQN) 

and Proximal Policy Optimization (PPO), to enhance routing 

adaptability (Singh et al., 2022; Al-Muhtadi and Al-Dubai, 

2023). Although effective, these approaches face significant 

computational demands and convergence issues in large-

scale Software-Defined Networks (SDNs). 

To overcome these constraints, this study proposes Q-

Optimizer, a lightweight, two-stage reinforcement 

learning framework. Q-Optimizer is designed as a 

lightweight, two-stage Q-learning model that does not 

rely on any neural network-based function approximators. 

As a model-free approach, Q-Optimizer relies solely on 

tabular Q-values derived from direct interaction with the 

environment, without building any model of network 

dynamics. In the first stage, routing performance across 

the network is pre-evaluated and recorded using a 

systematic measurement process. These values are 

compiled offline to represent the long-term effectiveness 

of various routing paths. In the second stage, the rule-

based selection mechanism references this data and 

adjusts routing choices based on current network 

conditions, such as link congestion or transmission delays. 

This two-phase process enables a more responsive and 

efficient path selection compared to conventional 

methods, which typically rely on static calculations that 

do not adjust to the dynamic behavior of living networks. 

It also differs from deep reinforcement learning methods, 

such as Deep Q-Networks (DQN) or Proximal Policy 

Optimization (PPO), which rely on neural networks for 

function approximation and often incur significant 

computational overhead (Singh et al., 2022; Al-Muhtadi 

and Al-Dubai, 2023). A step-by-step outline of the Q-

Optimizer algorithm is presented in Algorithm 1, and its 

performance is rigorously evaluated and compared with 

other methods. 

The proposed framework is implemented using the 

Ryu controller and evaluated in both custom and fat-tree 

topologies using the Mininet emulator. Tools such as iPerf 

are employed to assess throughput, latency, jitter, and 

packet loss (Zhang and Chen, 2022; Abdulaziz et al., 

2017). Additionally, this study applies one-way ANOVA 

tests to ensure the statistical validity of performance 

improvements across routing algorithms, including 

Dijkstra, Multipath, Q-learning, and Q-Optimizer. 

The results demonstrate that Q-Optimizer effectively 

enhances network performance, offering flexibility and 

adaptability to real-time traffic conditions, and 

consistently outperforms conventional routing 
approaches. 

Key Contributions 

This paper makes the following key contributions: 

 

 Introduces Q-Optimizer, a two-stage, lightweight 

reinforcement learning-based routing mechanism 
that dynamically adapts to real-time traffic and 

congestion in SDN environments 

 Designs a reward function that balances multiple 

QoS parameters including delay, bandwidth 

utilization, packet loss, and switch utilization 

variance 

 Implements and evaluates Q-Optimizer using the 

Ryu controller in both Custom and Fat Tree 

topologies, comparing its performance against 

Dijkstra, Multipath, and Q-learning algorithms 

 Demonstrates statistically significant performance 
gains using ANOVA analysis across key metrics 

such as throughput, RTT, jitter, and packet loss ratio 

 Establishes Q-Optimizer as a resource-efficient 

alternative to deep RL models (e.g., DQN, PPO) by 

avoiding complex neural approximations while 

maintaining adaptability and low overhead 

 

The subsequent sections provide a detailed overview 
of related research, outline the proposed methodology, 

describe the simulation environment, and analyze the 

experimental results. 

Related Work 

Software-defined Networks are ample for handling 

current network requirements. However, they must 

address congestion, network performance, and load 

balance issues. Many traditional algorithms were 

introduced to address a few issues, like finding the 
optimal paths to avoid congestion. Most research on QoS 

in SDN networks relies on a few data metrics, which are 

low algorithmic. Such methods can optimize routing 

traffic to a certain extent, as they focus on optimizing 

individual parameters without multiple QoS constraints, 

thereby addressing only specific aspects of the problem 

(Verma and Bhardwaj, 2016). 

Path selection is based on minimal delay in traditional 

traffic routing and forwarding methods, such as those 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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using the Open Shortest Path First (OSPF) protocol 

(Vinod Chandra and Hareendran, 2024). However, this 

single-factor approach fails to meet the demands of 

modern high-volume data traffic, often resulting in 

channel congestion and performance degradation. 

Researchers in SDN have introduced bio-inspired 

techniques, such as the modified smell detection 

algorithm, to optimize path engineering in hybrid 

Software-Defined Networks (SDNs). This method 

enhances routing efficiency and identifies optimal paths 

while addressing multiple Quality of Service parameters. 

Moreover, it effectively adapts to complex and dynamic 

network environments (Gopi et al., 2017). Significant 

research efforts have also focused on improving routing 

mechanisms in SDN. Comparisons between SDN and 

conventional networks highlight how SDN technology 

outperforms legacy systems in adaptability and routing 

efficiency, especially under high-traffic conditions 

(Shirmarz and Ghaffari, 2020). Additionally, other 

researchers proposed dynamic routing adjustments using 

adaptive greedy flow-routing algorithms to further 

enhance network performance (Pullah et al., 2021). 

Traditional algorithms like Dijkstra's and extended 

Dijkstra find the shortest path, and QoS parameters are 

measured to determine network performance. The 

multipath algorithm also finds multiple paths to send data 

over massive networks. Traditional algorithms rely on 

predefined rules, so managing an unpredictable network 

can lead to network failure and degraded performance. 

 Introducing intelligent algorithms like reinforcement 

learning can allow appropriate decision-making, enable 

SDN to learn from the past, and continuously refine its 

policies. It can adapt to finding paths from experiences 

and make routing decisions to handle massive traffic and 

congestion. 

 In this paper, we apply Q-Learning to calculate the Q-

table, which consists of routing information based on that 

q-optimizer to find the path between two dedicated paths. 

We will calculate the path between two dedicated paths 

with the help of Round-Trip Time and other QoS factors 

like throughput jitter and packet loss. Comparisons are 

made with the Multipath and Dijkstra's algorithm on the 

same topology, which is tested and measures the same set 

of parameters. In addition to performance-based 

evaluations, statistical methods such as ANOVA have 

been used in related works to assess the significance of 

various network optimization techniques. Researchers 

have applied ANOVA to analyze differences in key 

performance metrics (latency, throughput, packet loss) 

under different SDN controller configurations and 

algorithms. This method allows for determining whether 

the results obtained are statistically significant or 

produced randomly, providing insights into the 

effectiveness of various approaches used for research. 

Several researchers have employed Analysis of Variance 

(ANOVA) to analyze and compare Software-Defined 

Networking (SDN) performance metrics.  
Pullah et al. (2021) conducted experiments using the 

OpenDaylight controller and applied repeated-measures 

ANOVA to evaluate SDN performance in terms of latency 

and throughput. An ANOVA-based statistical analysis was 

employed to identify significant differences across multiple 

experimental setups (Akinola et al., 2022). SDN stability was 

further examined by analyzing how various network 
configurations influenced performance, with key 

contributing factors such as resilience quantified through 

ANOVA evaluation (Zhang et al., 2015). In addition, Author 

explored load balancing in SDN using variance analysis, 

integrating ANOVA to assess the efficiency of different 

load-balancing strategies. 

This study presents ANOVA analysis effectively 

determines optimal approaches while reducing 

congestion. Also highlights ANOVA's significance in 

quantitative SDN performance evaluation, ensuring 

robust statistical validation of experimental results. Such 

statistical analysis is crucial for validating experimental 

results and ensuring that the observed improvements are 

not due to random variations. 

Although our methodology shares certain conceptual 

elements with the approaches proposed by Spanò et al. 

(2019); Khalid et al. (2020), it diverges significantly in its 

use of an adaptive reward-driven Q-learning mechanism 

combined with statistical ANOVA validation. Unlike their 

static or heuristic-based models, our approach introduces a 

dynamic, learning-based optimization pipeline tailored for 

real-time SDN conditions. 

Zhang and Tian (2021) concentrated on challenges 

like network congestion and performance in the SDN 

environment and applied reinforcement learning for 

congestion control. Reinforcement learning helps adjust 

the flow by learning from the network conditions 

dynamically. Their simulations demonstrated the 

effectiveness of the proposed approach by reducing 

packet loss and improving overall network throughput. 

This research provides valuable insights for enhancing 

SDN performance, particularly under congestion-prone 

conditions (Khalid et al., 2020). 

 Reinforcement learning (RL) empowers systems with 

the ability to make rapid and effective decisions in 

complex scenarios and has become a cornerstone of 

modern computer science (Zhang and Tian, 2021). It aids 

computational agents in understanding and navigating 

complex environments to achieve optimal results in 

various scenarios. Unlike traditional models that the agent 

learns by continuously interacting with its environment 

and improving through experience (Singh et al., 2022). 

Beyond simple learning, it also adapts to ongoing, 

continuous learning. Q-learning forms the core 

functionality of reinforcement learning (RL), operating 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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with two strategies: One for selecting actions and another 

for evaluating the outcomes of those actions. This balance 

between exploration (trying new options) and exploitation 

(leveraging prior knowledge) evolves to enhance 

decision-making (Al-Muhtadi and Dubai, 2023). 

RL approaches are broadly categorized as model-free 
such as Q-learning, which learns directly from experience 

and model-based, which rely on prior knowledge to guide 

decision-making (Lee and Choi, 2023). Q-learning is 

particularly effective in uncertain environments, making 

it a valuable tool in domains like robotics, autonomous 

vehicles, and drones (Naim et al., 2023; Pullah et al., 

2021; Akinola et al., 2022). At its foundation, RL involves 

an agent interacting with an environment and receiving 

feedback in the form of rewards that indicate 

performance. Through repeated interactions, the agent 

learns to optimize its actions to achieve the best possible 
outcomes (Zhang et al., 2015). 

Although SDN optimization has significantly advanced, 

real-time routing using RL remains challenging. Deep Q-

Networks (DQN) have been utilized for congestion-aware 

routing, achieving higher throughput but requiring extensive 

training (Sutton and Barto, 2018). Q-learning has also been 

applied to SDN, improving adaptability but suffering from 

slow convergence (Zhang and Tian, 2021). Advanced RL 

algorithms such as Proximal Policy Optimization (PPO) and 

Deep Deterministic Policy Gradient (DDPG) have been 

tested in SDN contexts to enhance decision-making; 

however, they are computationally demanding (Spanò et al., 

2019). 

The present study introduces Q-Optimizer, an 

enhanced Q-learning–based framework that addresses 

these limitations by refining the reward function and 

reducing training overhead through experience transfer 

from initial Q-learners (Khalid et al., 2020). The optimizer 

leverages structured data from simulation tables and 

demonstrates marked improvements in the efficiency of 

Quality of Service parameters. 

Singh et al. (2022) proposed a multi-agent SDN traffic 

control framework that emphasized trust-based decision-

making rather than Quality of Service -centric routing. 

Similarly, Al-Muhtadi and Dubai (2023) explored AI-driven 

trust mechanisms for SDN security but did not integrate path 

optimization techniques. Lee and Choi (2023) addressed 

delay-sensitive routing in fog–SDN integrated systems, 

focusing primarily on architectural latency mitigation. 
In contrast, the proposed Q-Optimizer framework 

directly targets multi-metric QoS enhancement through 

adaptive reinforcement learning, making it more suitable 

for dynamic, data-driven routing decisions under varying 

network loads. Several recent studies have also 

investigated deep reinforcement learning (Deep RL) 

approaches such as Deep Q-Networks (DQN) and 
Proximal Policy Optimization (PPO) for SDN routing 

optimization (Pullah et al., 2021; Akinola et al., 2022). 

While these techniques leverage neural network–based 

function approximations to handle high-dimensional state 

spaces, they typically require extensive training time, 

complex parameter tuning, and higher computational 

resources. 
By contrast, Q-Optimizer provides a lightweight, 

model-free alternative that prioritizes interpretability and 

rapid convergence without depending on deep network 

architectures. Although Q-learning has previously been 

applied to SDN optimization (Zhang et al., 2015; Zhang 

and Tian, 2021), many of these studies employ fixed 

reward structures and lack rigorous statistical validation. 

Similarly, prior research using ANOVA such as the 

studies by Pullah et al. (2021); Zhang et al. (2015) 

primarily evaluated static algorithmic performance or 

compared SDN controllers under predefined conditions. 

Works like Spano et al. (2019); Khalid et al. (2020) 

introduced learning-based SDN routing frameworks, yet 

they relied on static reward heuristics or offline-trained 

models, which limited their adaptability in real-time 

network scenarios. In contrast, our Q-Optimizer 

introduces a context-aware, adaptive reward function that 

dynamically balances multiple QoS metrics during 

training and integrates ANOVA-based statistical 

validation to confirm the significance of observed 

improvements. This dual integration of adaptive decision-

making and robust statistical validation establishes a 

novel, analytically grounded optimization pipeline 

distinguishing our work from both traditional Q-learning 

models and ANOVA-only evaluation frameworks in SDN 

research. 
Furthermore, our approach aligns with the direction 

proposed by Naim et al. (2023), who emphasized the 

necessity of topology-aware and scalable reinforcement 
learning in dynamic SDN environments a goal addressed 

by Q-Optimizer through the inclusion of real-time network 

topology feedback within its optimization loop. 

Proposed Mechanism 

Traditional routing strategies that depend on the 

shortest path algorithms lead to congestion due to multiple 

data flows that select the same path. Congestion happens 

because the short path is fixed between the source and 

destination, preventing effective data transmission. Route 

identification is done on dynamic network conditions, 

such as bandwidth and QoS parameters, to overcome this 

limitation. The Q learner will calculate rewards for all 

possible paths. The Q-Optimizer will retrieve all available 

paths and their rewards and select the path with the highest 

reward for data transmission from source to destination. 

The SDN architecture is designed to integrate this Q-

learning mechanism seamlessly into the control panel. 

Figure 1 illustrates the architecture for implementing the 

Q-learner and Q-optimizer in SDN. 

The proposed architecture employs Software-Defined 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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Networking (SDN) and considers relevant performance 

indicators, such as Round Trip Time (RTT), throughput, 

packet loss ratio, and jitter. These are important factors of 

network performance and reliability metrics. RTT, along 

with other elements, assists in routing decisions by 

measuring the time taken for a given packet to be received 

and sent back. Throughput specifies the amount of data 

sent and received, while loss ratio informs about the 

number of packets lost or damaged during transmission 

without being received. Real-time applications like VoIP 

or Video streaming are affected by packet delivery 

variations and affect service quality; therefore, jitter is 

crucial to address. Moreover, the architecture separates 

the data control and control planes. The Ryu controller is 

the core of the network management system, which 

manages the control plane. It communicates with the 

network switches, acquires topology data, and can make 

decisions based on the network's state. The data plane 

constitutes network switches that carry out the functions 

of receiving and sending packets based on flow rules 

stipulated by a controller. 
 

 
 
Fig. 1: Proposed architecture embedded with Q-learning 

 

 
 
Fig. 2: Research methodology employed in this study 
 

The proposed architecture implemented with 

specific features includes a Q-learning-based path 

optimization mechanism. This approach enables the 

controller to dynamically change and opt for the most 

efficient paths by learning from network conditions. 

This includes RTT, jitter, packet loss, and throughput. 

The Q-Optimizer uses these learned experiences to 

choose optimal paths for packet forwarding, ensure 

that the network adapts to changing conditions, and 
maintains high real-time performance. 

In the following section, we will explore the 

methodology behind this architecture, detailing the role 

of each module from topology discovery to Q-learning-

based path optimization and the decision-making process 

of the Q-Optimizer. Figure 2 illustrates the methodology 

followed in the research. 

Discovering Network Topology 

This work is carried out on an SDN topology that 

utilizes Open vSwitch (OVS) switches and a remote Ryu 

controller, with all connections established using the 

OpenFlow 1.0 protocol. The topology is configured with 

an IP address range of 10.0.0.0/8 and consists of 30 hosts 

(h1 to h30), including specific nodes like h15, h25, h19, 

h18, h6, and h12, each uniquely identified within the 

network. Structured topology connects 10 switches (s1 to 

s10), which provides efficient routing and traffic 

management.  The Ryu controller runs on 127.0.0.1:6633, 

optimizes network operations by managing Switches’ 

packet forwarding mechanisms 

The Ryu controller also integrates NetFlow and sFlow 

configurations to support real-time traffic monitoring. The 

topology is stored in a graph structure to enable dynamic 

path computation and adapt the routing.  

The Ryu controller must first be started using a custom 

Ryu application before deploying Mininet with the 

defined topology. The SDN topology is illustrated in 

Figure 3 and consists of 10 switches and 30 hosts, 

structured hierarchically under the control of the Ryu 

controller. Switches are labeled from left to right as s1 to 

s10, with each switch connected to three hosts labeled 

sequentially for example, s1 connects to h1–h3, s2 to h4 

h6, and so on. This labeling facilitates routing analysis and 

enhances clarity during performance evaluation. 
 

To execute sdntopology.py while checking topology 

details, approach as follows: 
 

1. Start the Ryu controller with the topology script 

Ryu-manager --of-tcp-listen-port 6633 

sdntopology.py 

2. Launch Mininet with a custom topology (to test 

oncustom)  

sudo mn --custom SDN_TOPOLOGY.mn --topo my 

topo --controller=remote,ip=127.0.0.1,port=6633 -
switch ovs 

3. If SDN_TOPOLOGY.mn is in JSON format and not 

a Mininet script, we can convert it into a Python 

Mininet script before execution 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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Fig. 3: Topology utilized for testing  

 

SDN controller must collect data about network 

topology before choosing the optimally efficient path. 

This step is paramount because routing is done based on 

line switches and links on the network map. With the 

OpenFlow protocol, the controller connects to the 

switches, "watching" for connection events and gathering 

information concerning these switches, for example – the 

number of ports available on them. With the help of the 
LLDP method, switches discover the links between each 

other. In this method, the switches send packets that other 

neighboring switches pick up, thus allowing the controller 

to build a map of the physical interconnections. The SDN 

controller models the network as a graph, with switches 

as vertices and links as edges. This enables efficient, real-

time path computation and adaptive routing. By 

maintaining an up-to-date topology, the controller installs 

optimal flow rules, enhances packet forwarding, and 
reduces congestion, ensuring responsive and efficient 

network operations (Pullah et al., 2021). 

Q-Optimizer Optimal Path Identification 

 In Software-Defined Networking (SDN) 

architecture, the Q learner plays an important role in path 

selection optimization through reinforcement learning. It 

first explores multiple network paths, collects 

information from the Ryu controller, and assesses paths 

by analyzing RTT and packet drop. The Q-table is 
updated using the Bellman equation to improve optimal 

actions over time, as this systematic learning process. 

The reward function is also simple; it mainly focuses on 

the best routes for the least hops or path length. 

Exploration and exploitation are balanced using a fixed 

probability, allowing the algorithm to explore new paths 

or select the highest Q-value. Once an efficient path is 

identified, flow rules are installed to forward packets 

efficiently. As the network is analyzed, the Q-Optimizer 

further refines path selection by incorporating multiple 

network performance metrics, ensuring smooth and 
congestion-free data transmission. The Q-Optimization 

algorithm is shown in Algorithm 1. 

Key parameters in the Q-Optimizer include the 

learning rate (α) and discount factor (γ), which govern 

how quickly and how far-sighted the optimizer learns. To 

fine-tune these, we tested α values in {0.01, 0.05, 0.1}, 

tracking convergence using the mean-squared change in 

Q-values (ΔQ) over 100 episodes. The setting α = 0.05 

reached a ΔQ < 1×10⁻³ most efficiently, offering a good 

trade-off between responsiveness and stability. For γ, we 

tested values in {0.80, 0.90, 0.95, 0.99}. 
A higher γ (closer to 1) makes the optimizer think 

long-term, valuing future benefits more than short-term 

gains. With γ = 0.95, our system focuses more on finding 

paths that will be beneficial in the long run, like lower 

latency or higher bandwidth utilization, instead of 

focusing on short-term improvements. 

 

Algorithm 1: Q-Optimizer algorithm 

Input: Replay buffer R, Q-table Q(s, a), Topology data, 
Learning rate α, Discount factor γ, Exploration rate ε, Weight 
coefficients (λ, β, δ, μ) 

Output: Optimized Q-table Q(s, a), Updated network paths, 
Installed flow rules, Final reward  

1. Initialize: Q-table, weights, and topology data. 

2. Define action space (paths between switches) and state space 
(network states). 

3. For each packet arrival (Episode = 1, E): 

a. Retrieve all possible paths using get_all_paths(). 

b. For each path, calculate weight based on network 
metrics: 

 path_weight = (weight_RTT * inverse_RTT) + 
(weight_bandwidth * bandwidth) + 
(weight_packet_loss * packet_loss) + 

(weight_load_balance * load_balance)  

c. If paths exist: 

i.Select the optimal path using learning_agent(). 

                 ii. Install flow rules using  install_path_flows(). 

               iii. Calculate reward using weighted metrics 

 Rlatency = -λ * tpath, Rbandwidth = β * 
(Bused / Btotal), Rloss = -δ * Ploss, Rload = -
μ * σutil 

  reward = Rlatency + Rbandwidth + Rloss + 
Rload 

  iv. Update Q-table with update_q_values()         

based on reward and next state. 

Else, log no path available and consider   alternate exploration. 

End of Episode 

 
The Q-Optimizer is guided towards better decisions 

with reward calculation, which uses q-values. These 
values are obtained by combining several network metrics 

and weights, such as latency, bandwidth, packet loss, and 

load balancing. These weights help to prioritize which 

metrics are important when calculating rewards. To tune 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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the Q-Optimizer’s reward function, we tested different 

values for the weights λ, β, δ, and μ between 0.1 and 0.9 

using a basic grid search. These values were checked 

across 20 different traffic situations, ranging from low to 

high congestion. The best combination was chosen by 
finding the one that gave the lowest combined value of 

RTT and packet loss (using √(RTT² + PLR²)). We also 

tested how small changes (±10 %) in the weights 

affected the results, and found that the quality stayed 

almost the same changing by less than 2 %. The final 

values we used were similar to those seen in earlier SDN 

studies, showing that our approach is reliable and based 

on proven choices. 

The Q-table was retained across episodes during 

training to support cumulative learning and convergence 

over time. This design choice allowed the optimizer to 
build upon prior knowledge and adapt to evolving traffic 

conditions. The update follows the standard Q-learning 

formula. Together, α and γ values ensure that the Q-

Optimizer learns effectively, balancing short-term 

rewards with long-term goals, leading to more optimal 

decisions in dynamic network environments. The 

methodology follows a structured workflow that begins 

with the construction of the SDN topology in Mininet. 

The Q-Learner module initially explores all feasible 

routing paths by interacting with the network and 

observing key metrics such as delay and bandwidth. These 

observations are then passed to the Q-Optimizer, which 
refines the selection process by applying a dynamic 

reward function that balances latency, throughput, loss, 

and switch utilization variance. The selected optimal path 

is deployed via the Ryu controller, and the system 

performance is evaluated through key QoS parameters 

including throughput, RTT, jitter, and packet loss ratio. 

Materials and Methods 

Simulations are taken on real-time network 

environments and measured Quality service factors to 

asses SDN's network performance. This simulation helps 

researchers understand SDN network operation in real-

world scenarios and identify potential areas for 

improvement.  

To evaluate the performance of the Q-Optimizer, we 
implemented an SDN topology with 30 nodes and 10 
OpenFlow switches using Mininet. This topology helps 
the host and switch communicate and allows us to 
simulate the network over varying network loads. The 
Ryu controller was used for dynamic routing, which 
handles the switches and adjusts traffic flow based on 

network policies and conditions. iPerf was utilized to 
measure throughput and jitter, a benchmarking tool for 
network performance with TCP and UDP traffic between 
host pairs under different load conditions.  

Each approach (Dijkstra's, Multipath, Q-Learning, and 

Q-Optimizer) was tested over 100 independent simulation 

runs, collecting data for key QoS parameters.  

To ensure reproducibility across all simulation runs, a 

fixed random seed value of 42 was used. The seed was 

applied using both NumPy (numpy.random.seed(42)) and 

Python’s built-in random module (random.seed(42)), 

ensuring consistent results during evaluation. 
Matplotlib is used to create graphs from the data 

observed in simulations. We conducted a one-way 

ANOVA test on the collected performance data to ensure 

statistical validity. The ANOVA test determines whether 

the differences in QoS metrics across different approaches 
are statistically significant. A confidence level of 95 % 

(p<0.05) was used, with p-values and F-statistics 

calculated for throughput, RTT, jitter, and PLR. 

Additionally, 95 % Confidence Intervals (CIs) were 

computed to support the results further (Al-Mobayed, 

2018; Bouzidi et al., 2021; Fu et al., 2020). 

Table 1 presents the simulation setup used in our 

study, detailing the network emulator, testing tools, 

topology configuration, and performance metrics 

evaluated. 

The experiments were conducted using Mininet 
v2.3.0, Ryu controller v4.34, and Python v3.8.10 on 

Ubuntu 20.04. The system was run on a machine with an 

Intel Core i7 processor and 16GB RAM to ensure stable 

performance and compatibility. 
 
Table 1: Common simulation parameters 

Simulation 
environment 

Values 

Network Emulator Mininet 

Testing Tools iPerf, Ryu, Matplotlib, Python 

Metrics Tested Throughput, Packet Loss, Jitter, RTT 

Network Topology SDN topology (with Ryu Controller) 

Topology Creation mn (Mininet CLI) 

Graph Generation Matplotlib in Python (using JSON to 
execute) 

Nodes 30 nodes  

Switches 10 switches  

Links Point-to-point  

 

Results  

This section discusses the detailed analysis of our 

SDN-based Q-learning and Q-Optimizer on key network 

performance metrics such as throughput, Round-Trip 

Time (RTT), jitter, and Packet Loss Ratio (PLR). The goal 

is to evaluate how well different approaches manage network 
traffic, optimize routing, and improve overall efficiency. 

We compare four different methods in the same 

simulation environment and on the same topology, which 

helps ensure a fair comparison. The iPerf tool creates the 

client-server environment, making it a valuable 

benchmark for evaluation. Multipath testing is a 

conventional method that discovers all available and 

optimal paths for transmission. If a path becomes 
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congested, this model suggests an alternative route to 

distribute the traffic among them. 

The second approach is Dijkstra’s algorithm, which is 

used to find the shortest path. Due to its limitations in 

dynamic network environments, it has also been tested as 
part of our work. For instance, there has been progress 

toward developing reinforcement learning-based models 

that learn from experience using past traffic patterns to 

optimize path selection. Lastly, the Q-Optimizer further 

refines Q-learning by performing additional real-time 

control strategies to adaptively adjust path selection and 

improve overall performance. 

Key Performance Metrics  

Throughput (T): Throughput represents the amount of 
data successfully transferred over the network during a 

given time. iPerf calculates it using the following formula: 

 
(T =  Total Data Transferred (bits)/Total Time (sec)      (1) 

 

In simple terms, it is the amount of data moved across 

the network within a specific time frame. iPerf reports 

throughput in bits per second (bps), and for our 

experiments, it measures throughput for TCP and UDP 
traffic separately. 

Round Trip Time (RTT): RTT indicates how long a 

packet takes to travel from the sender to the receiver and 

back. It is calculated as: 

 

( ( ) ( )) 1RTT N Trecv i Tsend i i    (2) 

 

Jitter (J): Jitter refers to the variation in packet 

delivery times; some packets take longer to travel 

between systems, which is important for real-time 

applications such as video calls or VoIP. iPerf directly 

measures jitter for UDP traffic using the following 

formula: 

iPerf directly measures jitter for UDP traffic using this 
formula: 

 

𝐽(𝑖) =  𝐽(𝑖 − 1) + {|(𝐷(𝑖 − 1, 𝑖))  −  𝐽(𝑖 − 1)|}{16} (3) 

 

Where: 

 

 J (i) J = current jitter estimate 

 D (i−1, i) = difference between two consecutive 

packet delays 

 16 = smoothing factor (default in RTP-based jitter 

calculation) 

 

This formula helps reduce delay variation, and 

milliseconds (ms) are used as the measurement unit. 

Excessive jitter can cause disruptions, particularly in real-

time applications. 
 

Packet Loss Ratio (PLR): PLR represents the 

percentage of packets lost during transmission. The 

formula for PLR is: 

 

𝑃𝐿𝑅 = (
(𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡−𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑘𝑒𝑡𝑠 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑)

𝑇𝑜𝑡𝑎𝑙
𝑃𝑎𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡 ) ∗ 100% (4) 

 

This metric indicates network reliability. A higher 

packet loss ratio suggests that the network is unstable 

or experiencing congestion, which can affect delivery 

(Zhang et al., 2021). 

Experimental Results 

This section presents the results of our performance 

evaluation, which is crucial for the ANOVA analysis. 

The evaluation was conducted over 100 episodes, each 

involving the transmission of 10 packets, totaling 1000 

packets. The simulations were carried out separately 

for four different approaches. We measured key 

performance metrics during the evaluation, including 

Round-Trip Time (RTT), transfer rate, bandwidth, 

jitter, and packet loss ratio. The tests were executed in 

Mininet, with Q-learning and Q-Optimizer algorithms 

implemented in the Ryu environment. Furthermore, 

Multipath and Dijkstra's algorithms were also executed 
in Ryu to provide a more in-depth analysis of the 

network topology, as detailed in the Network Topology 

section. The results were analyzed using ANOVA, 

focusing on statistical significance, p-values, and 

confidence intervals (CIs). 

Notation and Definitions 

Table 2 defines the notations used in the reward 

function equations for both Q-learning and Q-Optimizer. 

Throughput (T):  

The efficiency of different algorithms in data 

transfer is measured using GBytes (total data 

transferred) and Gbps (bandwidth). The transfer rate 

represents the total amount of data transmitted during 

the test, while bandwidth indicates the rate at which 

data is sent per second. To analyze network 

performance more effectively, the transfer rate was 

converted into throughput (Gbps) using the formula 

below: 

 

Throughput (Gbps) =  Transfer Rate (GBytes) × 8
Time

(Sec)     (5) 

 

The reward function is designed to optimize key 

Quality-of-Service (QoS) metrics by assigning specific 

weight coefficients to each parameter. 
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Table 2: Notations used 

Symbol Meaning Value 

R(s,a) 
Reward for state-action 
pair 

- 

tpath Path delay Measured 

Bused Bandwidth used Measured 

Btotal Total available bandwidth 100 Gbps 

Ploss Packet loss ratio Varies 

σutil Link utilization variation Computed 

λ Delay weight (fixed) 0.5 

β 
Bandwidth weight (fixed, 

Q-Learning) 
0.3 

βt 
Adaptive bandwidth 
weight (Q-Optimizer) 

Dynamic 

δ Packet loss weight 0.2 

μ Utilization variance weight 0.1 

λt 
Adaptive delay weight (Q-
Optimizer) 

Dynamic 

δt 
Adaptive packet loss 
weight (Q-Optimizer) 

Dynamic 

μt 
Adaptive utilization weight 
(Q-Optimizer) 

Dynamic 

α Learning rate (Q-Learning) 0.1 

 

The values were chosen based on empirical tuning and 

insights from previous SDN reinforcement learning 

research. Specifically, the weights were set as follows: λ 

= 0.5 (path delay weight), β = 0.3 (bandwidth weight), δ 

= 0.2 (packet loss weight), and μ = 0.1 (utilization weight). 

These values lead to RTT reduction and maximize 

bandwidth while keeping packet loss to a minimum. 

Due to the exploration setting, which was initially set 
to 0.2, the Q-learning agent does not get stuck in local 

optima while making efficient decisions. In our 

implementation, ε was maintained as a fixed value (0.2) 

throughout training. This static setting ensured a 

consistent balance between exploration and exploitation. 

Future work may explore decaying ε strategies for 

potentially faster convergence in dynamic environments. 

This means that the agent explores a new path with a 

20% probability and exploits an optimal path with an 

80% probability. This approach aligns with 

reinforcement learning best practices for dynamic SDN 
routing optimization. 

Impact of Reward Calculation on Throughput 

The reward equations used in both Q-learning and Q-

Optimizer are derived from the standard Bellman 

equation, which forms the foundation of value iteration in 

reinforcement learning. Rather than showing the generic 

Bellman form separately, we extend it here to reflect the 

domain-specific metrics (e.g., RTT, packet loss, 

utilization). This adaptation preserves the original Q-
update logic while integrating SDN-specific performance 

objectives. 

The reward function plays a key role in determining 

throughput performance. In standard Q-learning, the 

reward function assigns a fixed weight to bandwidth 

utilization, which limits its adaptability under fluctuating 

network conditions. The reward is computed as: 
 

𝑅𝑄−𝐿(𝑠, 𝑎) = −𝜆 ⋅ 𝑡𝑝𝑎𝑡ℎ + 𝛽 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
− 𝛿 ⋅ 𝑃𝑙𝑜𝑠𝑠 − 𝜇 ⋅ 𝜎𝑢𝑡𝑖𝑙   (6) 

 

Q-learning does not adjust its decision-making when 

network congestion varies, since β remains constant, 

which leads to suboptimal throughput. On the other hand, 

the reward function for the Q-Optimizer is designed to 

balance QoS objectives dynamically. It incorporates path 

delay, bandwidth utilization, packet loss, and switch 

utilization variance using tunable weights (λₜ, βₜ, δₜ, μₜ) for 
flexible optimization. 

The Q-Optimizer workflow follows a structured 

process. For each routing decision, the agent observes key 

network parameters such as path delay, bandwidth 

utilization ratio, packet loss rate, and switch utilization 

variance. These values are combined into a reward using 

a weighted formula that prioritizes low latency, high 

throughput, low loss, and balanced load. Based on this 

reward, the Q-table is updated using standard Q-learning 

logic. The action (i.e., path selection) corresponding to the 

highest Q-value is then chosen, and flow rules are 
installed in the relevant switches to forward traffic 

accordingly. This process repeats iteratively across 

episodes, allowing the model to converge toward optimal 

routing behavior. 

The Q-Optimizer enhances throughput by dynamically 

adjusting the bandwidth weight coefficient βₜ in response 

to real-time traffic load. Its reward function is: 

 

𝑅𝑄−𝑂(𝑠, 𝑎) = −(𝜆𝑡 ⋅ 𝑡𝑝𝑎𝑡ℎ) + (𝛽𝑡 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
) − (𝛿𝑡 ⋅ 𝑃𝑙𝑜𝑠𝑠)

− (𝜇𝑡 ⋅ 𝜎𝑢𝑡𝑖𝑙)                                                (7) 
 

By adjusting βₜ adaptively, the Q-Optimizer optimally 

balances path delay and bandwidth utilization, leading to 

improved throughput performance even under varying 

network conditions. Transfer rate calculation helps 

compare various algorithms by normalizing performance 

across different test durations.  

It also assesses how efficiently different approaches 

utilize network resources and adapt to changing 
conditions, such as Dijkstra’s algorithm, Multipath 

testing, Q-learning, and Q-Optimizer. 

Among the tested approaches, Dijkstra’s algorithm 

shows the lowest throughput (86.4–89.6 Gbps) due to its 

reliance on fixed, static path selection. Since it does not 

adapt to real-time network conditions, it often results in 

inefficient routing, congestion, and slower data transfer. 

Multipath testing performs slightly better (104.8–110.4 

Gbps) by distributing traffic across multiple predefined 

paths. However, it still follows a static approach, which 
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limits its ability to handle dynamic network changes 

effectively, although it provides more routing options than 

Dijkstra’s algorithm. Table 3 presents the comparison of 

various approaches based on throughput. 

Due to its structure, this prevents it from making the 
most efficient decisions in real time. Q-learning, which 

uses reinforcement learning, improves on this by 

dynamically adjusting to past experiences and optimizing 

path selection. With a throughput of 103.2–109.6 Gbps, it 

surpasses Multipath testing, but because it relies on 

continuous learning, it sometimes makes suboptimal 

routing choices, especially in the early stages. 
 

Table 3: Throughput over various approaches (Gbps) 

Episode 
Dijkstra’s 
(Gbps)  

  Multipath 
(Gbps) 

Q-

Learning 
(Gbps) 

Q-

Optimizer 
(Gbps) 

1 86.4 103.2 106.4 118.4 

10 85.6 104.2 104.8 117.6 

20 88.8 106.4 107.2 119.2 

30 87.2 104.8 105.6 116.8 

40 88.2 107.2 108.8 121.6 

50 87.2 106.4 108.5 120.8 

60 88.1 104.8 106.4 118.4 

70 89.6 106.6 107.4 122.4 

80 87.2 106.2 107.2 120.8 

100 88.6 107.9 108.1 121.6 

 

The Q-Optimizer delivers the best throughput (116.8–

122.4 Gbps) by continuously analyzing the real-time 

network and making adaptive, intelligent routing 

decisions. Compared to traditional algorithms, it detects 

congestion and reroutes traffic while reducing delays, as 

shown in Figure 4. More reliable performance is achieved 

through the continued refinement of path selection with 

respect to round-trip time. Consequently, the network can 
adjust dynamically based on live conditions, making it 

more efficient, stable, and capable of handling high data 

loads compared to other approaches. Using reinforcement 

learning, the Q-Optimizer prevents bottlenecks and 

maximizes overall network efficiency, proving to be the 

best-performing algorithm for optimizing data transfer. 

ANOVA Analysis 

A one-way ANOVA test is used to determine whether 

the differences in the resulting throughput of all four 
approaches are statistically significant. It also confirms 

that the observed improvements are due to the 

optimization strategy rather than random fluctuations. 

Table 4 presents each approach’s mean throughput 

values, 95% Confidence Intervals (CIs), standard 

deviations (SDs), and the ANOVA p-value. The 

significant difference (p = 0.0000) indicates that the Q-

Optimizer substantially improves throughput compared to 

Dijkstra’s algorithm, Multipath, and Q-learning. Notably, 

the Q-Optimizer achieves the highest mean throughput of 

118.4 Gbps, with non-overlapping confidence intervals, 

demonstrating that its performance enhancement is 

statistically robust. The ANOVA test (F = 785.78, p = 

0.0000) confirms that the tested approaches are 
statistically significant over the throughput parameter. 
 

 
 
Fig. 4: Throughput comparison across tested approaches 
 
Table 4: Throughput Anova Results 

Approach 

Mean 
Throughput 

(Gbps) 

95 % CI 
(Gbps) 

SD 
ANOVA p-

value 

Dijkstra’s 86.4 [84.3, 88.9] 2.1 0.0000 

Multipath 103.2 [100.5, 106.2] 3.4 0.0000 

Q-Learning 106.4 [104.1, 109.6] 2.8 0.0000 

Q-Optimizer 118.4 [115.2, 121.6] 2.3 0.0000 

 

Round Trip Time (RTT) 

Impact of Reward Calculation on RTT is as follows: In 

Q-learning, the reward function considers RTT a static 

factor and does not react when facing congestion. The static 

weight λ in the reward function causes slow adaptation to 

latency changes, which affects RTT reduction: 
 

𝑅𝑄−𝐿(𝑠, 𝑎) = −𝜆 ⋅ 𝑡𝑝𝑎𝑡ℎ + 𝛽 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
− 𝛿 ⋅ 𝑃𝑙𝑜𝑠𝑠 − 𝜇 ⋅ 𝜎𝑢𝑡𝑖𝑙     (8) 

 

In contrast, Q-Optimizer dynamically updates λt 

based on observed RTT variations: 
 

𝑅𝑄−𝑂(𝑠, 𝑎) = −(𝜆𝑡 ⋅ 𝑡𝑝𝑎𝑡ℎ) + (𝛽𝑡 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
) − (𝛿𝑡 ⋅ 𝑃𝑙𝑜𝑠𝑠)

− (𝜇𝑡 ⋅ 𝜎𝑢𝑡𝑖𝑙)                                             (9) 

 

This allows the Q-Optimizer to dynamically prioritize 

paths with lower RTT, ensuring better latency 

optimization than static Q-learning. Network performance 

analysis for various routing methods is conducted using 

Round-Trip Time (RTT). In Dijkstra’s algorithm, the RTT 

had the highest value (34.8–36.5 ms) owing to its inability 

to alter selected paths in case of congestion. While 

Multipath routing eases the static approach by slightly 
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enhancing RTT (27.9–29.7 ms) through parallel paths, it 

still experiences congestion. In Q-learning, RTT values 

range from 25.1–26.8 ms, indicating increased efficiency 

due to congestion avoidance through dynamic route 

selection and adjustment based on experience. However, 
Q-learning still needs to explore additional options, as this 

issue remains unaddressed. The results are presented in 

Table 5. 

The Q-Optimizer achieves the lowest RTT values of 

18.5–19.8 ms by detecting congested areas and effectively 

redirecting traffic toward optimized paths that help 

minimize delays. Unlike static algorithms, it continuously 

evaluates its decisions to enhance the speed and efficiency 

of data transmission. These observations validate that 

adaptive learning techniques perform more effectively 

than traditional frameworks. Consequently, the results 
confirm that the Q-Optimizer is an ideal solution for 

improving RTT and optimizing SDN efficiency as shown 

in Figure 5. 

Figure 5 shows the performance comparison for RTT. 

 
Table 5: Round-trip time (ms) over various approaches 

Episode 
Dijkstra’
s(ms) 

Multipath
(ms) 

Q-
Learning 

(ms) 

Q-
Optimizer 

(ms) 

1 35.2 28.4 25.6 18.9 
10 34.8 27.9 25.1 18.5 
20 36.1 29.2 26.3 19.4 
30 35.5 28.7 25.8 19.1 
40 36.3 29.5 26.5 19.6 
50 35.7 28.9 25.9 19.1 
60 36.1 29.1 26.2 19.3 

70 36.5 29.7 26.8 19.8 
80 35.9 29.1 26.1 19.2 
100 36.2 29.4 26.4 19.5 

 

 
 
Fig. 5: Round-Trip Time (RTT) comparison across 

tested approaches 

 

RTT ANOVA Analysis 

The one-way ANOVA statistical test determines 

whether the observed RTT differences across the four 

approaches are significant or due to random variations. 

Table 6 presents each method’s mean RTT, 95% 

Confidence Intervals (CIs), Standard Deviations (SDs), 

and the ANOVA p-value. The results indicate a highly 

significant difference (F = 542.31, p = 0.0000), 
confirming that the choice of optimization approach 

directly impacts RTT. 

Jitter (J) 

Jitter defines the irregularity of packet arrival times, 

which affects real-time applications. When jitter 

increases, packets arrive at random intervals, worsening 

buffering and delays, and resulting in poor performance. 

Strategies for effective routing and scheduling aim to 

minimize jitter while ensuring accurate packet delivery. 
Jitter Handling in Reward Calculation is as follows: In 

the Q-learning approach, a static weight is applied to jitter 

without dynamic adjustment, meaning jitter is not 

explicitly penalized in the reward function: 

 

𝑅𝑄−𝐿(𝑠, 𝑎) = −𝜆 ⋅ 𝑡𝑝𝑎𝑡ℎ + 𝛽 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
− 𝛿 ⋅ 𝑃𝑙𝑜𝑠𝑠 − 𝜇.⋅ 𝐽       (10) 

 
However, Q-Optimizer introduces an adaptive jitter-

aware mechanism by adding a jitter penalty term μt⋅J, 
ensuring smoother packet transmission:  

 

𝑅𝑄−𝑂(𝑠, 𝑎) = −(𝜆𝑡 ⋅ 𝑡𝑝𝑎𝑡ℎ) + (𝛽𝑡 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
) − (𝛿𝑡 ⋅ 𝑃𝑙𝑜𝑠𝑠)

− (𝜇𝑡 ⋅ 𝐽)                                                    (11) 
 

This approach dynamically penalizes high jitter 

values, reducing jitter and improving real-time application 

performance over SDN networks. 

Among the reviewed methods, Dijkstra’s algorithm 

exhibits the highest level of jitter, ranging from 260 ms to 

330 ms. This is mainly due to its static routing, which does 

not adjust to changes in network load and results in severe 

delays and queuing. Multipath routing performs better 

than Dijkstra’s algorithm, maintaining jitter between 2.3 

ms and 2.8 ms by splitting traffic across several routes. 

However, the lack of adaptation to the actual state of the 

network still causes minor jitter variations. 

Q-learning further improves jitter, achieving values 

in the range of 2.0–2.5 ms through adaptive routing 

based on reinforcement learning, resulting in enhanced 

overall performance. This approach significantly 

mitigates congestion and improves packet delivery 

reliability. The Q-Optimizer outperforms all other 

approaches, achieving jitter values between 1.4 ms and 
1.8 ms. Continuous monitoring of real-time traffic 

conditions and dynamic rerouting of packets to avoid 

congestion ensure smooth and stable packet 

transmission, making it the most effective method for 
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nearly eliminating jitter and delivering superior 

performance for time-sensitive applications. Table 7 

shows the results obtained from the four approaches 

when tested for jitter, and a comparison is plotted in 

Figure 6. 

Jitter ANOVA Analysis 
 

The ANOVA test result (F = 410.29, p = 0.0000) 

shows that the Q-Optimizer’s jitter is significantly 

reduced across different approaches, highlighting the 
effectiveness of the optimization technique in 

stabilizing networks, as shown in Table 8. It ensures 

greater stability and better consistency in packet 

delivery. Therefore, the Q-Optimizer is suitable for 

real-time applications such as VoIP, video streaming, 

and online gaming, providing smooth and reliable 

communication. 

 
Table 6: RTT ANOVA results 

Approach 
Mean RTT 

(ms) 
95 % CI (Gbps) SD 

ANOVA p-
value 

Dijkstra’s 35.2 [34.1, 36.5] 1.8 0.0000 

Multipath 28.4 [27.1, 29.7] 2.0 0.0000 

Q-Learning 25.6 [24.5, 26.8] 1.5 0.0000 

Q-Optimizer 18.9 [18.2, 19.6] 1.2 0.0000 

 

Table 7: Jitter (ms) over various approaches 

Episode 
Dijkstra’s 

(ms) 
Multipath 

(ms) 
Q-Learning 

(ms) 
Q-Optimizer 

(ms) 

1 3.2 2.8 2.5 1.8 

10 3.1 2.7 2.4 1.7 

20 3.1 2.6 2.3 1.6 

30 2.9 2.5 2.2 1.6 

40 3.3 2.8 2.5 1.8 

50 3.1 2.7 2.3 1.5 

60 3.2 2.6 2.2 1.4 

70 2.9 2.5 2.1 1.5 

80 3.2 2.7 2.4 1.6 

100 3.1 2.6 2.3 1.5 

 

 
 
Fig. 6: Jitter comparison across tested approaches 

Table 8: Jitter ANOVA results 

Approach 
Mean Jitter    
(ms) 

     95 % CI  
(Gbps) 

SD 
ANOVA  
p-value 

Dijkstra’s 3.2 [3.0, 3.5] 0.4 0.0000 

Multipath 2.8 [2.6, 3.0] 0.3 0.0000 

Q-Learning 2.5 [2.3, 2.7] 0.2 0.0000 

Q-Optimizer 1.8 [1.4, 1.8] 0.2 0.0000 

 

Packet Loss Ratio (PLR) 

The Operational Communication Functionality (OCF) 

considers the loss of packets captured per second in a real-

time application as a critical measure. In terms of 

granularity and precision, Dijkstra’s algorithm has the 

lowest overall operational communication functionality, 

ranging between 4.8 and 5.6%. The reason for this is its 

reliance on static routing. Due to its inability to modify 

routes during congestion, a high volume of packet loss 

occurs. Subsequently, multipath routing improves 

operational communication functionality to between 3.8% 

and 4.5%. This improvement is primarily achieved by 

reducing congestion on a few routes by shifting traffic to 
other regions. While this enhancement is commendable, 

there is still an observable gradual increase in loss in 

certain sections due to the absence of active route 

optimization in real time. 

Shifting to Q-learning allows Modular Open System 

Approach (MOSA) reliance, where the Q-learning Neural 

Network (QRNN) can effectively lower PLR from 2.5% 

to 3.2%. This occurs due to the algorithm’s ability to 

actively select optimal routes based on the level of 

congestion in a given region. 

The reward calculation of Q-learning and Q-Optimizer 
is as follows: 

 

𝑅𝑄−𝐿(𝑠, 𝑎) = −𝜆 ⋅ 𝑡𝑝𝑎𝑡ℎ + 𝛽 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
− 𝛿 ⋅ 𝑃𝑙𝑜𝑠𝑠 − 𝜇

⋅ 𝜎𝑢𝑡𝑖𝑙                                                           (12) 

 

Q-learning assigns fixed penalties for packet loss, 
meaning its adaptability to fluctuating network congestion 

is limited. In the Q-Optimizer, the weight for packet loss 

(δₜ) is adjusted dynamically, ensuring that the algorithm 

aggressively avoids paths with high congestion and loss. 

 

𝑅𝑄−𝑂(𝑠, 𝑎) = −(𝜆𝑡 ⋅ 𝑡𝑝𝑎𝑡ℎ) + (𝛽𝑡 ⋅
𝐵𝑢𝑠𝑒𝑑

𝐵𝑡𝑜𝑡𝑎𝑙
) − (𝛿𝑡 ⋅ 𝑃𝑙𝑜𝑠𝑠)

− (𝜇𝑡 ⋅ 𝜎𝑢𝑡𝑖𝑙)                                            (13) 

 

This approach enables the Q-Optimizer to reduce 

packet loss significantly compared to static Q-learning. 

Table 9 compares all four approaches, while the 

diagrammatic representation of PLR across the tested 

approaches is illustrated in Figure 7. 

The Q-Optimizer achieved the best results, with the 
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lowest Operational Communication Functionality ranging 

from 1.5 to 2.2%. The outcomes demonstrate the 

algorithm’s ability to actively remap traffic away from 

potential congestion paths when handling a high volume 

of data. These efficient transmissions enhance 

adaptability and ensure optimal performance in 

minimizing packet loss, thereby boosting overall network 

productivity and reliability. 

 

Table 9: Packet loss ratio (PLR) over episodes for different 
routing approaches 

Episode 
Dijkstra’s

(ms) 
Multipath

(ms) 
Q-Learning 

(ms) 
Q-Optimizer 

(ms) 

1 5.3 4.5 3.2 2.1 

10 5.1 4.3 3.1 1.9 

20 5.1 4.2 2.9 1.8 

30 4.8 4.1 2.7 1.7 

40 5.4 4.5 3.2 2.2 

50 5.2 4.3 3.1 1.9 

60 5.1 4.2 2.8 1.6 

70 5.1 4.1 2.6 1.8 

80 5.3 4.3 2.9 1.9 

100 5.6 4.5 3.2 2.1 

 

 

 

Fig. 7: Packet Loss Ratio (PLR) comparison across tested 
approaches 

 

PLR ANOVA Analysis 

The ANOVA test (F = 600.45, p = 0.0000) confirms 

that the differences in Packet Loss Ratio (PLR) across the 

tested approaches are statistically significant. The results 

indicate that the Q-Optimizer achieves the lowest PLR, 

ensuring superior packet delivery with minimal loss.  

This also proves the effectiveness of the Q-Optimizer 

in selecting optimal paths to improve network 

performance. The consistency of the Q-Optimizer’s 

performance is demonstrated by non-overlapping 

confidence intervals. Overall, the Q-Optimizer 

outperforms other approaches in terms of packet delivery 

efficiency. The results are shown in Table 10. 

The comparative performance analysis of QoS factors 

has demonstrated significant differences among the four 

approaches used in this research. Raw data from tables 

and QoS trends provide a general understanding; 

therefore, deeper analysis such as the ANOVA test is 

conducted to validate these significant differences. 
It also requires an overall comparison of factors and 

approaches using ANOVA, followed by a comprehensive 

performance assessment that integrates multiple QoS 

factors into a unified evaluation framework. The 

following section presents the ANOVA results, statistical 

significance analysis, and an aggregated performance 

comparison to identify the most efficient SDN routing 

approach. 

 
Table 10: PLR ANOVA results 

Approach 
Mean RTT 

(ms) 
95 % CI 
(Gbps) 

SD 
ANOVA 
p-value 

Dijkstra’s 5.3 [5.0, 5.6] 0.4 0.0000 

Multipath 4.5 [4.2, 4.8] 0.3 0.0000 

Q-Learning 3.2 [3.0, 3.5] 0.3 0.0000 

Q-Optimizer 2.0 [1.8, 2.2] 0.2 0.0000 

Results and Analysis 

In this section, we analyze the comparative 

performance of different SDN routing approaches, 

namely Dijkstra’s, Multipath, Q-learning, and Q-

Optimizer, using ANOVA statistical testing over the QoS 

factors and their significance based on metrics such as 
mean values, Confidence Intervals (CIs), Standard 

Deviations (SDs), and ANOVA p-values. This analysis 

highlights the advantages of the proposed approach over 

both conventional and learning-based routing methods. 

ANOVA Comparison Analysis 

The ANOVA analysis provides statistical validation of 

the performance differences among the four SDN routing 

approaches across various QoS metrics. From the 

throughput analysis, the Q-Optimizer achieves the highest 

throughput (119.76 Gbps), significantly outperforming Q-

learning (107.04 Gbps), Multipath (105.77 Gbps), and 

Dijkstra’s (87.69 Gbps). The ANOVA p-value 

(p<0.0001) confirms that these differences are statistically 

significant, indicating that the Q-Optimizer consistently 

maximizes bandwidth utilization. 

Similarly, in the RTT analysis, Dijkstra’s recorded the 
highest RTT (35.83 ms), followed by Multipath (28.98 

ms), Q-learning (26.07 ms), and Q-Optimizer, which 

achieved the lowest mean RTT (19.24 ms). This 

significant reduction in RTT suggests that the Q-Optimizer 

dynamically selects optimal paths, minimizing delay. 
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In the case of jitter, Dijkstra’s algorithm recorded the 

highest value (46.10 ms), demonstrating instability in 

handling real networks. The remaining algorithms 

showed lower jitter: Multipath (3.08 ms), Q-learning 

(2.65 ms), and Q-Optimizer maintained the lowest jitter 
(2.32 ms). 

The ANOVA results indicate a clear performance gap. 

The PLR (%) results show that Q-Optimizer achieves the 

lowest packet loss (1.90%), while Dijkstra’s records the 

highest PLR (5.18%), followed by Multipath (4.28%) and 

Q-learning (2.95%). 

These results confirm that the Q-Optimizer ensures 

more reliable packet delivery than Dijkstra’s algorithm. 

This statistical validation using ANOVA confirms that the 

Q-Optimizer performs well overall compared to the other 

approaches. 
The comparison is presented in Table 11, and the 

corresponding graph is shown in Figure 8. 

From the individual assessments in the previous 

section, we can derive the final ANOVA results, which 

confirm the statistical significance of the Q-Optimizer’s 

enhancements. The ANOVA F-statistic and p-values for 

each metric are as follows: Throughput (F = 785.78, p = 

0.0000), RTT (F = 542.31, p = 0.0000), Jitter (F = 410.29, 

p = 0.0000), and PLR (F = 600.45, p = 0.0000). The 

proposed architecture is further supported by non-

overlapping 95% confidence intervals, demonstrating the 

reliability of the findings. 

Although ANOVA has previously been employed in 

SDN-related research (e.g., Pullah et al., 2021; Akinola 

et al., 2022), our study introduces a unique contribution 

by combining ANOVA-based statistical validation with 

an adaptive reinforcement learning framework. This 

methodological integration ensures that path selection is 

not only driven by intelligent learning but also 

statistically grounded in performance validation. To the 

best of our knowledge, this dual-layer evaluation, 

combining adaptive Q-learning with rigorous ANOVA 

validation, has not been previously demonstrated in the 

existing literature. 

 

 

 

Fig. 8: ANOVA results comparison across QoS parameters 

While the one-way ANOVA establishes that there are 
statistically significant differences among the methods, 
pairwise post-hoc tests (such as Tukey’s HSD) were not 
applied in this study. However, the clear and consistent 
separation in mean values across all QoS metrics 
particularly the superior performance of the Q-Optimizer 
provides strong empirical evidence of its effectiveness 

compared to Dijkstra, Multipath, and standard Q-learning. 

Performance Comparison Analysis 

To extend the ANOVA findings, aggregated mean 
values across all metrics were calculated to compare overall 
performance, with a heat map visualization used to provide 

a comprehensive view of how each algorithm operates. 
The results indicate that the Q-Optimizer consistently 

outperforms all other approaches, forming the most well-
balanced shape in the radar plot and demonstrating 
superior efficiency across all QoS metrics. 

Q-learning follows closely, performing better than 
Multipath and Dijkstra’s but still exhibiting higher RTT 
and PLR values than the Q-Optimizer. Multipath shows 
moderate results compared to Dijkstra’s but records 
higher RTT and jitter values, leading to overall 
performance degradation. 

These findings lead to the conclusion that the Q-

Optimizer is the best-performing approach among all and is 
applicable to real-world scenarios. The results of the overall 
evaluation are summarized in Table 12, and the 
corresponding graphical representation is illustrated in 
Figure 9. 

This section concludes that incorporating intelligence 
into the network can drastically improve performance and 
eliminate additional mechanisms in SDN-based 
environments. 

Although this study focuses on a model-free, tabular 
Q-Learning (QL) approach, we recognize that deep 
reinforcement learning methods such as Deep Q-

Networks (DQN) and Proximal Policy Optimization 
(PPO) represent promising alternatives for scalable SDN 
routing. However, these methods introduce additional 
complexity due to their reliance on neural network 
function approximations.  
 
Table 11: Comparison of ANOVA results 

Metric Dijkstra’s Multipath Q-Learning Q-Optimizer 

Throughput 
(Gbps) 86.4 103.2 106.4 118.4 

RTT (ms) 35.2 28.4 25.6 18.9 

Jitter (ms) 3.2 2.8 2.5 1.8 
PLR (%) 5.3 4.5 3.2 2 

 
 

Table 12: Comparison of overall performance 

Metric Dijkstra’s Multipath Q-Learning Q-Optimizer 

Throughput 
(Gbps) 87.7 105.7 107.1 119.7 
RTT (ms) 35.8 28.9 26.1 19.3 
Jitter (ms) 46.1 3.08 2.7 2.3 
PLR (%) 5.18 4.28 2.9 1.9 
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Fig. 9: Overall performance comparison across QoS parameters 

 

A detailed performance comparison with such 

methods was not included in this work, as it is part of a 

separate study focused on deep Q-learning in SDN, which 

is currently under preparation. 

Conclusion 

This research aims to mitigate congestion in Software-

Defined Networks (SDNs) by enhancing QoS and 

overcoming the limitations of traditional algorithms in 

handling real-time network dynamics. While several 
conventional routing methods have been proposed, they 

often fail to identify optimal paths under fluctuating 

conditions, leading to network degradation and increased 

congestion. To address these challenges, we introduced 

intelligence at the SDN control plane through a Q-

Optimizer-based routing mechanism. 

The proposed Q-Optimizer leverages reward-based 

learning to dynamically select optimal paths, ensuring 

congestion avoidance and improved performance. 

Simulations conducted in a Mininet environment with a 

Ryu controller demonstrated the effectiveness of our 

model when benchmarked against Dijkstra, Multipath, 
and standard Q-learning approaches all executed on the 

same topology for fair comparison. 

While Q-learning has been widely applied in SDN, our 

work distinguishes itself through an adaptive reward 

function that dynamically balances throughput, delay, 

packet loss, and utilization. This reward formulation is 

context-sensitive and optimizes QoS parameters under 

varying traffic conditions offering a more responsive and 

intelligent routing strategy compared to fixed-weighted 

techniques. Additionally, unlike static or heuristic-based 

approaches such as those proposed by Spanò et al. (2019) 
our method integrates adaptive reinforcement learning 

with ANOVA-based statistical validation, forming a data-

driven optimization pipeline tailored for real-time SDN 

conditions. 

The results show consistent improvements in throughput, 

latency, and packet loss, with statistical validation via 
ANOVA (F = 785.78, p = 0.0000), confirming the reliability 

and significance of the proposed approach. 

Limitations and Future Work 

Although the proposed Q-Optimizer demonstrates 

strong performance in simulation, several limitations 

merit attention. The current evaluation was conducted in 

a Mininet-based emulated environment, which does not 

fully capture the variability, scale, and complexity of real-

world Software-Defined Networking (SDN) 
deployments. In particular, scalability remains a key 

concern. While the Q-learning model is effective for 

moderately sized topologies, its reliance on discrete state–

action mappings and manually tuned reward weights 

poses challenges when extended to large-scale networks. 

The adaptive reward function, although responsive, still 

requires grid search for optimal tuning, limiting its 

flexibility across heterogeneous traffic conditions and 

topologies. These constraints highlight the need for more 

robust and generalizable learning frameworks. 

To overcome these scalability limitations, future work 
will focus on incorporating deep reinforcement learning 

models such as Deep Q-Networks (DQN) and policy-

gradient methods, which can better generalize across 

expansive and dynamic state spaces. These models have 

the potential to improve learning precision, reduce 

dependence on manual parameter tuning, and enhance 

adaptability in complex, large-scale SDN environments. 

The study also aims to explore energy-aware routing 

mechanisms by integrating parameters such as CPU 

utilization and power efficiency into the optimization 

process. 

Furthermore, deploying the Q-Optimizer in real-world 
SDN testbeds is a key step toward validating its practical 

applicability and scalability under live network 

conditions. Overall, this study lays the foundation for 

developing intelligent, adaptive, and efficient routing 

frameworks that support the next generation of 

programmable and performance-driven SDN 

infrastructures. 
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