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Abstract: This paper presents a rigorous comparative analysis of six 

feedforward neural network models for predicting the directional movement 

of the EUR/USD currency pair. The evaluated models include the Learning 

Vector Quantization, Cascade Neural Network, Feedforward Neural 

Network, Single Layer Perceptron, Multi-Layer Perceptron, and Radial Basis 

Function network. Utilizing daily historical data from April 2009 to May 
2024, each model was trained and optimized under uniform conditions on a 

rich feature set derived from a diverse pool of technical indicators. Model 

performance was comprehensively evaluated using a suite of metrics, 

including accuracy, MSE, MAE, R², balanced accuracy, F1-score, precision, 

recall, and the sharpe ratio. The Cascade Neural Network consistently 

demonstrated superior performance, achieving a validation accuracy of 74.8, 

a balanced accuracy of 74.8, and a validation F1-score of 75.44%. By 

establishing a robust performance baseline for these foundational 

architectures, this study highlights the significant potential of neural 

networks in forex forecasting and provides critical insights into their 

respective strengths and weaknesses. The findings serve as a guide for future 

research and practical applications in financial market analysis, particularly 
in the development of more advanced predictive systems. 
 

Keywords: Comparative Analysis, EUR/USD, Neural Networks, Technical 

Indicators 

 

Introduction 

The foreign exchange (Forex) market, the largest and 

most liquid financial market globally, is characterized by 

high volatility and complex price dynamics. The 

EUR/USD currency pair, as a cornerstone of global 

finance, is intrinsically linked to traditional monetary 

systems and macroeconomic policies, making its 

directional prediction a subject of significant interest for 

traders, investors, and financial institutions (Remsperger 

and Winkler, 2009). The inherent complexity and non-

linearity of this market present both substantial profit 

opportunities and significant risks (Zembura, 2023). In 

response, practitioners increasingly integrate quantitative 

methods, leveraging technical indicators with machine 

learning algorithms to enhance pattern recognition and 

forecasting accuracy (Shashank et al., 2023). 

This research is framed within the long-standing 
debate on market efficiency. The Efficient Market 
Hypothesis (EMH), in its semi-strong form, posits that 

asset prices fully reflect all publicly available 
information, rendering technical analysis ineffective 
for generating abnormal returns. However, this view is 

challenged by alternative theories. Behavioral finance 
suggests that psychological biases can lead to 
predictable market inefficiencies, while the Adaptive 
Market Hypothesis (AMH) proposes that market 

efficiency is not static but evolves over time, creating 
transient opportunities for profit (Watkins et al., 2004). 
By applying sophisticated neural network models to 

historical price data, this study implicitly tests the 
limits of market efficiency, exploring whether 
exploitable patterns, potentially arising from 

behavioral or adaptive dynamics, exist in the 
EUR/USD market. 
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Building upon our previous work, which demonstrated 
the general superiority of neural networks over other 
classification models for financial forecasting (El Badaoui 
et al., 2023), this paper narrows its focus to conduct a 
deep, comparative analysis of six foundational 
feedforward neural network architectures: Learning 
Vector Quantization (LVQ), Cascade Neural Network, 

Feedforward Neural Network (FFNN), Single Layer 
Perceptron (SLP), Multi-Layer Perceptron (MLP), and the 
Radial Basis Function (RBF) network. 

This study deliberately distinguishes itself from prior 
research in several key aspects. While many 

contemporary studies focus on more complex deep 
learning architectures like Long Short-Term Memory 

(LSTM) networks (Zafeiriou and Kalles, 2024), our 
research intentionally excludes them. The primary 

objective is to establish a rigorous and comprehensive 
performance baseline for traditional feedforward models. 

We address a critical research gap by providing a multi-
metric evaluation, encompassing accuracy, error metrics, 

and risk-adjusted return measures like the sharpe ratio, of 
these fundamental architectures under uniform 

conditions. By focusing exclusively on technical 
indicators, we isolate their predictive power and create a 

benchmark against which more complex models, 
including those incorporating fundamental or sentiment 

data, can be objectively compared in future work. 
Ultimately, this paper aims to provide a granular 

understanding of the strengths and weaknesses of these 
foundational neural network models in the challenging 

domain of Forex prediction. The findings are intended not 
only to contribute to the academic literature on financial 
market analysis but also to offer practical insights for the 
development of robust and reliable predictive systems. 

The models and findings presented in this paper are for 
informational and academic purposes only. They are not 
intended as financial advice, and we disclaim all 
responsibility for any losses resulting from their 
application in actual trading or investment decisions 

Related Work 

The application of machine learning to financial 

forecasting is a well-established and rapidly evolving 

field of research. A significant portion of recent literature 

has focused on the efficacy of deep learning models, 

particularly those designed to capture temporal 
dependencies in time-series data. For instance, Huang and 

Wang (2023) conducted a comparative analysis of various 

techniques for stock price prediction, concluding that 

Long Short-Term Memory (LSTM) networks outperform 

other models, including Transformers and Convolutional 

Neural Networks (CNNs), due to their superior ability to 

model long-term dependencies. This finding is 

corroborated by Mathur et al. (2023), who also identified 

LSTM as the most suitable algorithm for stock value 

forecasting based on a range of technical indicators. 

While deep learning has shown considerable promise, 
research has also highlighted the utility of other machine 

learning paradigms. Nti et al. (2020) demonstrated that 
ensemble learning methods, such as stacking and 

blending, can yield superior accuracy and lower error 
rates in stock market prediction. In the specific domain of 

Forex forecasting, a key study by Zafeiriou and Kalles, 
(2024) presented a nuanced comparison, suggesting that 

while LSTMs are powerful, custom-designed Artificial 
Neural Networks (ANNs) based on technical indicators 

can offer a preferable trade-off between predictive quality, 
computational cost, and resource efficiency, especially in 

low-power or real-time decision-making environments. 
This study is positioned to complement and extend this 

body of work by addressing a specific, yet critical, gap. 

Whereas the aforementioned studies have predominantly 

focused on the performance of complex deep learning or 

ensemble models, a rigorous, comparative baseline for 

foundational feedforward neural networks is less 

established in recent literature. Our research deliberately 

excludes recurrent architectures like LSTM and GRU, as 

well as ensemble methods, to conduct a focused and 

granular investigation into the predictive capabilities of 
six traditional feedforward models: SLP, MLP, RBF, 

FFNN, LVQ, and the Cascade Neural Network. 

The novelty of our contribution lies not in the 

introduction of a new algorithm, but in the 
methodological rigor and comprehensiveness of our 

comparative evaluation. Unlike studies that may focus on 
a single primary metric, we employ a wide-ranging suite 

of performance indicators, spanning classification 
accuracy, error analysis, and risk-adjusted return, to create 

a multi-faceted performance profile for each model. By 
isolating the impact of technical indicators and 

establishing this robust baseline, our work provides a 
critical benchmark for the academic and practitioner 

communities. It allows for a more informed assessment of 
the incremental benefits offered by more complex models 

and provides a foundational understanding of how 
different feedforward architectures handle the non-linear 

and dynamic nature of Forex market data. 

Methods 

This section details the comprehensive and 

reproducible methodology employed in our comparative 

study. We describe the dataset acquisition and feature 

engineering process, the data preprocessing steps 
including stationarity testing, the architectures of the six 

neural network models, the rigorous experimental setup 

for training and evaluation, and the metrics used for 

performance assessment and statistical validation. 

Data Acquisition and Feature Engineering 

The study utilizes daily historical data for the 

EUR/USD currency pair, sourced from a CSV file 
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containing data from April 2, 2009, to May 3, 2024. The 

historical closing price for this dataset is shown in Fig. 

1. This period encompasses a wide range of market 

conditions, providing a robust foundation for model 

training and validation. The raw dataset includes daily 
Open, High, Low, and Close (OHLC) prices. 

From this baseline dataset, a comprehensive set of 14 

technical indicators was engineered to serve as input 

features. The selection was guided by their established 

utility in financial literature for capturing distinct market 

dynamics: 

 

 Trend Indicators: Simple Moving Averages (SMA) 

and Exponential Moving Averages (EMA) were 

calculated for short (5-day), medium (10-day), and 

long (20-day) periods to identify trends across 
different time horizons 

 Momentum Indicators: The Moving Average 

Convergence Divergence (MACD) with its signal 

line, the 14-day Relative Strength Index (RSI), a 4-

day Momentum indicator, and a 12-day Rate of 

Change (ROC) were included to measure the speed 

and strength of price movements 

 Volatility and Volume/Strength Indicators: 20-day 

Bollinger Bands were used to gauge market volatility, 

the 14-day Stochastic Oscillator to identify 

overbought/oversold levels, and the 14-day Average 
Directional Index (ADX) to quantify trend strength 

 

Table 1 summarizes these selected indicators, providing 

their mathematical formulas and parameter definitions. 

 To capture temporal dependencies, we further 

enriched the feature set by creating lagged features for all 

indicators and price data for periods of 1, 2, 3, 4, and 5 

days. After generation, any rows with NaN values 

resulting from the rolling windows and lagging were 

removed to ensure data integrity. 

The prediction target was defined for a binary 

classification task: The target variable 𝑦𝑡is set to 1 if the 

closing price of the next day (𝐶𝑙𝑜𝑠𝑒𝑡+1) is higher than the 

current day’s closing price Close𝑡 , and 0 otherwise. 

 

 
 
Fig. 1: EUR/USD Close Prices 

Table 1: Technical indicators and variables 

Indicator Formula/Computation 

Simple Moving Average 
(Mak, 2021b) 

𝑆𝑀𝐴𝑛 =  
1

𝑛
∑ 𝑃𝑟𝑖𝑐𝑒𝑡−𝑖

𝑛−1

𝑖=0
 

Exponential Moving 
Average (Mak, 2021a) 

𝐸𝑀𝐴𝑛

=  𝛼. 𝑃𝑟𝑖𝑐𝑒𝑡

+ (𝐴 −  𝛼). 𝐸𝑚𝑎𝑡−1, 𝑊ℎ𝑒𝑟𝑒 𝛼

=  
2

𝑛 + 1
 

Relative Strength Index 
(Shik and Chong, 2007) 

𝑅𝑆𝐼14

= 100 − (
100

1 + 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐺𝑎𝑖𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑠𝑠

 ) 

Moving Average 
Convergence 
Divergence (Kang, 
2021) 

𝑀𝐴𝐶𝐷
=  𝐸𝑀𝐴12

− 𝐸𝑀𝐴26 , 𝑆𝑖𝑔𝑛𝑎𝑙 𝐿𝑖𝑛𝑒 ∶  
𝑀𝐴𝐶𝐷𝑆𝑖𝑔𝑛𝑎𝑙 =  𝐸𝑀𝐴9(𝑀𝐴𝐶𝐷) 

Stochastic Oscillator 
(Paik et al., 2024) 

𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 =  
𝑃𝑟𝑖𝑐𝑒 − 𝐿14

𝐻14 − 𝐿14
 

× 100 

Bollinger Bands 
(Lauguico et al., 2019) 

𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝐻𝑖𝑔ℎ =  𝑆𝑀𝐴20 + 2 
× 𝑆𝐷𝑇20 

𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝐿𝑜𝑤 =  𝑆𝑀𝐴20 − 2 
× 𝑆𝐷𝑇20 

Momentum (Papailias 
et al., 2021) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 =  𝑃𝑟𝑖𝑐𝑒𝑡

− 𝑃𝑟𝑖𝑐𝑒𝑡−𝑛 

Rate of Change (Duan 
et al., 2024) 

𝑅𝑂𝐶 = (
𝑃𝑟𝑖𝑐𝑒𝑡 − 𝑃𝑟𝑖𝑐𝑒𝑡−𝑛

𝑃𝑟𝑖𝑐𝑒𝑡−𝑛
)

× 100 

Average Directional 
Index (Gurrib, 2018) 

ADX Calculation Steps: True 
Range (TR), Directional 
Movement (+DM, -DM), 
Smoothed Averages, DI+, DI-, 
DX, ADX 

 

Data Preprocessing and Stationarity 

A critical prerequisite for reliable time series 

forecasting is data stationarity. We performed an 

Augmented Dickey-Fuller (ADF) (Mushtaq, 2012) test 

on the raw EUR/USD closing price series. As expected 

for financial price data, the test confirmed the series 

was non-stationary (p>0.05) due to the presence of a 

unit root. Figure 2 illustrates the original non-

stationary series and the effect of the differencing 

applied to correct it. 

 To induce stationarity, we applied first-order 

differencing. A subsequent ADF test on the differenced 

series yielded a p-value well below 0.05, confirming its 

stationarity. This transformation allows the models to 

learn the underlying patterns of price changes rather 

than being biased by long-term trends. All input 

features were then standardized 

using StandardScaler to have a mean of 0 and a 

standard deviation of 1, preventing features with larger 

scales from dominating the model training process. The 

complete data processing pipeline is illustrated in 

Figure 3. 
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Fig. 2: Comparison of original and differenced close price 
series for eur/usd 

 

This diagram outlines our comprehensive three-phase 

methodology. Phase 1 details the data processing 

pipeline, from raw data input to the creation of 

preprocessed train, validation, and test sets. Phase 

2 illustrates the comparative framework where six neural 

network models are trained and optimized in parallel. 

Finally, Phase 3 depicts the performance analysis, where 

the trained models are evaluated on unseen test data to 

identify the best-performing architecture. 

Model Architectures and Implementation 

We implemented and compared six distinct models to 

address the binary classification task. Formally, for a 

given input feature vector 𝑥𝑖 , each model aims to learn a 

prediction function 𝑦𝑖̂ = 𝑓(𝑥𝑖|𝜃)  that approximates the 

true target label 𝑦𝑖. The model parameters 𝜃are optimized 

by minimizing a specific cost function 𝑗(𝜃)  over the 

training dataset. 

The models were implemented using established 

Python libraries to ensure reproducibility. Specifically, the 

feedforward networks (SLP (Chen et al., 2009), MLP 

(Ramchoun et al., 2016), FFNN (Cloud et al., 2019), 

Cascade Neural Network (Pakrashi and Mac Namee, 

2021)) were implemented using Scikit-

learn's Perceptron and MLPClassifier classes. The RBF 

network (Dash et al., 2016) was constructed as a Scikit-

learn Pipeline combining RBFSampler and LogisticRegr

ession, and the LVQ (Ding et al., 2014) model utilized 

the sklearn_lvq library. 
We implemented and compared six distinct models. 

The feedforward networks (SLP, MLP, FFNN, 

CascadeNN) were implemented using Scikit-learn's 

MLPClassifier and Perceptron classes. The LVQ model 

utilized the sklearn_lvq library, and the RBF network was 

constructed as a Scikit-learn Pipeline combining RBF 

Sampler and Logistic Regression. 

A key aspect of our methodology is that the final 

architecture for each model was not predefined but was 

instead determined empirically through the 

GridSearchCV process. The optimal hyperparameters 

found for each model define its final architecture and 
training configuration. These best-performing 

configurations are detailed in Table 2.  

 

 

 

Fig. 3: Data processing and modeling workflow 
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Table 2: Optimal model architectures 

Model Implementation Optimal Architecture  

SLP Perceptron 

Penalty: l2, 

 Alpha: 0.0001, 

 Max Iterations: 800 

MLP MLPClassifier 

Hidden Layers: 2, 

 Structure: (50, 50), 

 Activation: relu,  

Alpha: 0.1, 

 Learning Rate: adaptive 

RBF 
network 

Pipeline 

RBF Gamma: 0.1,  

Logistic C 

(Regularization): 1.0 

FFNN MLPClassifier 

Hidden Layers: 1,  

Structure: (100,),  

Activation: tanh,  

Alpha: 0.1, 

 Learning Rate: adaptive 

CascadeNN MLPClassifier 

Hidden Layers: 1,  

Structure: (100,),  

Activation: relu, 

 Alpha: 0.01, 

 Learning Rate: adaptive 

LVQ GlvqModel 
Prototypes per Class: 3, 

 Max Iterations: 3000 

 

MLP, FFNN, and CascadeNN are all implemented 

using 𝑀𝐿𝑃𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  but with different optimal 

hyperparameters discovered during the search. The 

"CascadeNN" label distinguishes the model that 

performed best overall, which used 𝑒𝑎𝑟𝑙𝑦_𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 =
𝑇𝑟𝑢𝑒 to find a robust network size, a behavior analogous 

to cascade correlation methods. 

Experimental Setup and Hyperparameter Tuning 

The full dataset was split chronologically to respect the 

temporal nature of the data: 80% for training and validation, 

and the remaining 20% as a final, unseen test set. The 80% 

portion was then handled by a TimeSeriesSplit cross-

validator during the optimization phase. 

For hyperparameter optimization, we employed 

GridSearchCV with a TimeSeriesSplit of 5 folds. This 

cross-validation strategy is crucial for time series data as 
it ensures that each fold's validation set is always 

chronologically after its training set, preventing data 

leakage and lookahead bias. The grid search was 

parallelized (𝑛_𝑗𝑜𝑏𝑠 = −1)  to accelerate computation. 

The specific search space for each model was as follows: 
 

 SLP: penalty ([None, 'l2', 'l1']), alpha ([0.0001, 0.001, 
0.01, 0.1]), max_iter ([200, 400, 800]) 

 MLP/FFNN/CascadeNN: hidden_layer_sizes (e.g., 

[(50,), (100,), (50, 50)]), activation (['tanh', 'relu']), 

alpha ([0.001, 0.01, 0.1]), max_iter ([200, 400]) 

 RBF Network: rbf__gamma ([0.1, 0.5, 1.0]), 

logistic__C ([0.01, 0.1, 1.0, 10.0]) 

 LVQ: prototypes_per_class ([1, 2, 3]), max_iter 

([1000, 2000, 3000]) 

 The best estimator found by the grid search for each 

model was then used for the final evaluation 
presented in Section 4 

 
Performance Metrics and Statistical Validation 

To provide a comprehensive assessment of model 

performance, we used a suite of evaluation metrics 

tailored for binary classification and financial forecasting: 
 
 Classification accuracy: Overall correctness 

(accuracy, balanced accuracy) 

 Class-Specific Performance: Precision, recall, and 

the F1-Score (the harmonic mean of precision and 
recall, used as our primary comparison metric due to 

its robustness to class imbalance) 

 Probabilistic performance: Log Loss and the Area 

Under the ROC Curve (AUC) 

 Goodness of fit: R-squared (𝑅²),  Mean Squared 

Error (MSE), and Mean Absolute Error (MAE) 

 Financial utility: A custom sharpe ratio, calculated on 

the prediction errors, is used to provide a proxy for 

risk-adjusted performance 
 

To validate the significance of our results and directly 

address a key reviewer concern, we 

performed McNemar's test. This non-parametric 

statistical test is specifically designed to compare the 

contingency tables of two paired binary classifiers. We 
will use it to compare the prediction vectors of the best-

performing model against each of the other models on the 

held-out test set. A p-value below 0.05 will be considered 

evidence of a statistically significant difference in 

classification accuracy. 

Results 

This section presents the empirical results of our 
comparative analysis. We first provide an overview of the 

performance of all six models across key metrics. We then 

conduct an in-depth analysis of the best-performing 

model, including its statistical validation, before 

examining its learning characteristics and feature 

importance. 

Overall Model Performance Comparison 

Following the rigorous training and hyperparameter 

tuning process described in Section 3, each of the six models 
was evaluated on the held-out test set. The performance on 

the validation set, which guided the selection of the best 

hyperparameters, is summarized in Table 3. 

As shown in Table 3, the Cascade Neural Network 

(CascadeNN), Multi-Layer Perceptron (MLP), and 

Feedforward Neural Network (FFNN) models clearly 

outperform the others. 



El Badaoui Mohamed et al. / Journal of Computer Science 2026, 22 (1): 111.120 

DOI: 10.3844/jcssp.2026.111.120 

 

116 

Table 3: Comparative model performance on the validation set 

Metric Cascade NN MLP FFNN LVQ RBF network SLP 

F1-Score 0.7544 0.7510 0.7570 0.7385 0.5869 0.1922 
Accuracy 0.7481 0.7460 0.7416 0.7039 0.5429 0.5416 

Precision 0.7413 0.7405 0.7193 0.6653 0.5388 0.8571 
Recall 0.7680 0.7640 0.7990 0.8299 0.6443 0.1082 
Balanced Acc. 0.7479 0.7465 0.7411 0.7029 0.5421 0.5449 
AUC 0.82 0.81 0.81 N/A 0.55 0.53 
Log Loss 0.5283 0.5245 0.5272 N/A 7.3211 16.3259 
MSE 0.2519 0.2540 0.2584 0.2961 0.4571 0.4584 
Sharpe Ratio 0.8553 -0.147 -0.110 -0.2352 -0.0362 -0.0320 

 

The CascadeNN model achieved the highest F1-Score 

(0.7544) and accuracy (0.7481), indicating a superior 

balance between precision and recall. In contrast, the SLP 

and RBF Network models performed poorly, with 

accuracies barely above the 50% baseline, and the SLP 

model exhibiting an extremely low F1-Score, highlighting 

its inability to handle the complexity of the data. The LVQ 

model, while showing high recall, suffered from lower 

precision, resulting in a moderate F1-Score. Given its 

leading performance on the primary F1-Score and 

accuracy metrics, the CascadeNN is identified as the best-

performing model for further analysis. 

In-Depth Analysis of the Cascade Neural Network 

(CascadeNN) 

To provide a deeper understanding of the CascadeNN's 

performance, we present a detailed analysis of its 

classification behavior and learning characteristics. 

Classification Performance: The confusion matrix for 

the CascadeNN model on the validation set is presented 

in Figure 4. The model correctly identified 298 positive 

instances (True Positives) and 278 negative instances 

(True Negatives), while misclassifying 104 instances as 

positive (False Positives) and 90 as negative (False 

Negatives). This balanced performance underscores its 

robustness in predicting both upward and downward 

market movements. 

The plot shows the counts of true positive, true 

negative, false positive, and false negative predictions. 

The Receiver Operating Characteristic (ROC) curve, 

shown in Figure 5, further confirms the model's strong 

discriminative ability. The Area Under the Curve (AUC) 

of 0.82 indicates a high probability that the model will 

rank a randomly chosen positive instance higher than a 

randomly chosen negative one, which is crucial for a 

reliable financial forecasting tool. 

The Area Under the Curve (AUC) of 0.82 

demonstrates strong classification performance. 
Learning and Error Analysis: The learning curve for 

the CascadeNN model (Figure 6) illustrates stable 

learning. The training and validation scores converge as 

the training set size increases, and the small gap between 

the two curves suggests that the model is not significantly 

overfitting. The validation accuracy stabilizes around 74-

75%, indicating good generalization to unseen data. The 

distribution of prediction errors (Figure 7) is 

approximately centered around zero, which is 

characteristic of a well-calibrated model with unbiased 

predictions. 
 

 
 
Fig. 4: Confusion matrix for cascadenn on the validation set 
 

 
 
Fig. 5: ROC curve for cascadenn 
 

 
 
Fig. 6: Learning curve for cascadenn 
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Fig. 7: Error distribution for cascadenn 
 

The plot shows training and validation accuracy as a 

function of training set size. 

The histogram shows that prediction errors are 

concentrated around zero. 

Statistical Significance of Results 

To address the crucial question of whether the 
CascadeNN's superior performance is statistically 
significant, we conducted a McNemar's test (Pembury 

Smith and Ruxton, 2020) comparing its predictions on the 
test set against those of the other five models. The results 
are summarized in Table 4. 

The results of the McNemar's tests present a nuanced 
performance hierarchy. The most critical finding is the 
comparison between the CascadeNN and the MLP model. 
With a p-value of 0.18, which is well above the 0.05 
significance level, we cannot conclude that the 
CascadeNN is superior. Their performance is statistically 
equivalent, suggesting that the small difference in their 
metrics is likely due to random chance. 

In contrast, the CascadeNN demonstrates a clear and 

statistically significant advantage over the FFNN (p = 
0.03), and a highly significant superiority over the LVQ, 
RBF Network, and SLP models (p<0.001 for all). This 
empirical evidence provides robust validation that our 
top-performing architecture is not a statistical fluke when 
compared to the weaker models. This strongly supports a 
revised conclusion: rather than a single best model, our 
analysis identifies a top tier of performance occupied by 
both the Cascade Neural Network and the Multi-Layer 
Perceptron, which are the most effective and reliable 
choices for this forecasting problem. 
 
Table 4: McNemar's test for statistical significance 

(CascadeNN vs. other models) 

Comparison p-value 
Statistically 
Significant? (α = 0.05) 

CascadeNN vs. MLP < 0.18 No 

CascadeNN vs. FFNN < 0.03 Yes 
CascadeNN vs. LVQ < 0.001 Yes 
CascadeNN vs. RBF 
network 

< 0.001 Yes 

CascadeNN vs. SLP < 0.001 Yes 

To understand which input features were most 

influential in the CascadeNN's predictions, we performed 

a permutation importance analysis on the validation set. 

Figure 8 displays the most significant features. 

The feature importance plot (Figure 8) identifies the 
most significant features contributing to the model's 

predictions. Key indicators such as EMA_5, close price, 

and RSI_14 are highlighted as the top contributors. This 

information is crucial for traders and analysts as it 

provides insights into which technical indicators are most 

influential in the model's decision-making process. 

Understanding these factors can help refine trading 

strategies and improve the model's predictive accuracy. 

 

 
 
Fig. 8: Feature importance for CascadeNN 

 

Discussion 

This section interprets the empirical findings 
presented above, discusses their practical and ethical 

implications, compares them with prior work, 

acknowledges the study's limitations, and proposes 

directions for future research. 

Interpretation of Findings 

Our results clearly demonstrate a performance 

hierarchy among the tested feedforward neural networks. 

The superior performance of the CascadeNN and MLP 

models over simpler architectures like the SLP is 

expected, given their multi-layer structure and ability to 
model complex non-linear relationships. The key finding, 

however, is the slight but consistent edge of the 

CascadeNN. We hypothesize that its architecture, which 

is approximated in our implementation by a well-

regularized MLP with early stopping, finds a more 

parsimonious and robust set of weights. This structure 

may be inherently better at mitigating the vanishing 

gradient problem and capturing dependencies across 

different time scales, a crucial advantage in noisy 

financial markets. 
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The statistical significance tests confirmed that this 

advantage is not random. The fact that CascadeNN 

significantly outperformed most other models, and was 

competitive with the very similar MLP, provides strong 

evidence for its suitability. The feature importance 
analysis further grounds our results in financial theory, 

confirming that the model learned to prioritize well-

known indicators of short-term trend and momentum. 

Comparison With Prior Work and Practical 

Implications 

This study addresses the research gap identified in 

Section 2 by establishing a rigorous performance baseline. 

Unlike studies such as Zafeiriou and Kalles (2024) or Gao 

and Chai (2018) that focus on recurrent architectures, our 

work provides a foundational benchmark for six classical 

feedforward models. Our finding that a well-tuned 

CascadeNN/MLP can achieve ~75% validation accuracy 

provides a clear reference point. Any new, more complex 

model (e.g., LSTM, Transformer) proposed for this task 

should now be expected to significantly outperform this 

benchmark to justify its added complexity. 

For practitioners, our results offer several takeaways. 

First, they confirm that even traditional neural networks, 

when properly implemented with careful feature 

engineering and hyperparameter tuning, can hold 

predictive power, challenging the weak form of the 

Efficient Market Hypothesis. Second, the feature 

importance results can help traders focus on the most 

influential indicators. However, we must strongly caution 

against direct application for trading. A model with 75% 

accuracy will still be wrong 25% of the time, and without 

robust risk management, this can lead to substantial 

financial losses. The models presented herein are for 

academic and illustrative purposes only and do not 

constitute financial advice. 

Limitations and Future Research 

This study has several limitations. First, our analysis 

is based solely on technical indicators. The exclusion of 

fundamental economic data (e.g., interest rates, inflation) 

and sentiment data (e.g., news analysis) may limit the 

model's predictive ceiling. Future work should focus on 

creating hybrid models that integrate these diverse data 

sources. 

Second, our implementation of CascadeNN is an 

approximation using Scikit-learn's MLPClassifier. A 

custom implementation using frameworks like 

TensorFlow or PyTorch could more faithfully represent 

the true architecture and potentially yield different results. 

Third, while we used TimeSeriesSplit, the models 

were tested on a single historical period. Their 

performance might vary significantly under different 

market regimes. Out-of-sample testing on more recent, 

unseen data would be necessary to validate their real-

world robustness. 

Finally, future research should use this study's results 
as a baseline to explore more advanced models. A direct 

comparison between our best model (CascadeNN) and 
an LSTM or GRU, trained under identical conditions, 

would be a logical next step to quantify the value of 
recurrent memory in this context. Investigating 

reinforcement learning agents that use these models' 
predictions to make trading decisions would also be a 

promising avenue. 

Conclusion 

 This study conducted a rigorous and comprehensive 
comparative analysis of six traditional feedforward neural 
network models for the task of predicting the daily 
directional movement of the EUR/USD currency pair. 
Using a long-term dataset spanning 15 years and a 
systematic approach to feature engineering and 
hyperparameter tuning, we established a robust and 
reproducible performance benchmark. 

Our findings demonstrate a clear performance 
hierarchy, with the Cascade Neural Network 
(CascadeNN) emerging as the most effective model. It 
achieved a superior validation F1-Score of 0.7544 and 
an accuracy of 0.7481, and its performance was shown 
to be statistically significantly better than most of the 
other architectures tested. The success of the 
CascadeNN and the closely performing MLP highlights 
the necessity of multi-layer, non-linear architectures 
for capturing the complex dynamics inherent in 
financial time series. 

The primary contribution of this work is the 
establishment of this foundational baseline, which has 

often been overlooked in the literature in favor of more 
complex deep learning models. By providing this vital 

point of reference, our research enables a more 
meaningful and critical evaluation of future, more 

advanced techniques. Future work should focus on 
integrating fundamental and sentiment data and 

comparing these benchmarked models directly against 
state-of-the-art recurrent and hybrid architectures to 

precisely quantify their incremental benefits. 
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