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Abstract: This paper presents a rigorous comparative analysis of six
feedforward neural network models for predicting the directional movement
of the EUR/USD currency pair. The evaluated models include the Learning
Vector Quantization, Cascade Neural Network, Feedforward Neural
Network, Single Layer Perceptron, Multi-Layer Perceptron, and Radial Basis
Function network. Utilizing daily historical data from April 2009 to May
2024, each model was trained and optimized under uniform conditions on a
rich feature set derived from a diverse pool of technical indicators. Model
performance was comprehensively evaluated using a suite of metrics,
including accuracy, MSE, MAE, R?, balanced accuracy, F1-score, precision,
recall, and the sharpe ratio. The Cascade Neural Network consistently
demonstrated superior performance, achieving a validation accuracy of 74.8,
a balanced accuracy of 74.8, and a validation Fl-score of 75.44%. By
establishing a robust performance baseline for these foundational
architectures, this study highlights the significant potential of neural
networks in forex forecasting and provides critical insights into their
respective strengths and weaknesses. The findings serve as a guide for future
research and practical applications in financial market analysis, particularly
in the development of more advanced predictive systems.

Keywords: Comparative Analysis, EUR/USD, Neural Networks, Technical
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Introduction

The foreign exchange (Forex) market, the largest and
most liquid financial market globally, is characterized by
high wvolatility and complex price dynamics. The
EUR/USD currency pair, as a cornerstone of global
finance, is intrinsically linked to traditional monetary
systems and macroeconomic policies, making its
directional prediction a subject of significant interest for
traders, investors, and financial institutions (Remsperger
and Winkler, 2009). The inherent complexity and non-
linearity of this market present both substantial profit
opportunities and significant risks (Zembura, 2023). In
response, practitioners increasingly integrate quantitative
methods, leveraging technical indicators with machine
learning algorithms to enhance pattern recognition and
forecasting accuracy (Shashank et al., 2023).
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This research is framed within the long-standing
debate on market efficiency. The Efficient Market
Hypothesis (EMH), in its semi-strong form, posits that
asset prices fully reflect all publicly available
information, rendering technical analysis ineffective
for generating abnormal returns. However, this view is
challenged by alternative theories. Behavioral finance
suggests that psychological biases can lead to
predictable market inefficiencies, while the Adaptive
Market Hypothesis (AMH) proposes that market
efficiency is not static but evolves over time, creating
transient opportunities for profit (Watkins et al., 2004).
By applying sophisticated neural network models to
historical price data, this study implicitly tests the
limits of market efficiency, exploring whether
exploitable patterns, potentially arising from
behavioral or adaptive dynamics, exist in the
EUR/USD market.
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Building upon our previous work, which demonstrated
the general superiority of neural networks over other
classification models for financial forecasting (El Badaoui
et al., 2023), this paper narrows its focus to conduct a
deep, comparative analysis of six foundational
feedforward neural network architectures: Learning
Vector Quantization (LVQ), Cascade Neural Network,
Feedforward Neural Network (FFNN), Single Layer
Perceptron (SLP), Multi-Layer Perceptron (MLP), and the
Radial Basis Function (RBF) network.

This study deliberately distinguishes itself from prior
research in several key aspects. While many
contemporary studies focus on more complex deep
learning architectures like Long Short-Term Memory
(LSTM) networks (Zafeiriou and Kalles, 2024), our
research intentionally excludes them. The primary
objective is to establish arigorous and comprehensive
performance baseline for traditional feedforward models.
We address a critical research gap by providing a multi-
metric evaluation, encompassing accuracy, error metrics,
and risk-adjusted return measures like the sharpe ratio, of
these fundamental architectures under uniform
conditions. By focusing exclusively on technical
indicators, we isolate their predictive power and create a
benchmark against which more complex models,
including those incorporating fundamental or sentiment
data, can be objectively compared in future work.

Ultimately, this paper aims to provide a granular
understanding of the strengths and weaknesses of these
foundational neural network models in the challenging
domain of Forex prediction. The findings are intended not
only to contribute to the academic literature on financial
market analysis but also to offer practical insights for the
development of robust and reliable predictive systems.

The models and findings presented in this paper are for
informational and academic purposes only. They are not
intended as financial advice, and we disclaim all
responsibility for any losses resulting from their
application in actual trading or investment decisions

Related Work

The application of machine learning to financial
forecasting is a well-established and rapidly evolving
field of research. A significant portion of recent literature
has focused on the efficacy of deep learning models,
particularly those designed to capture temporal
dependencies in time-series data. For instance, Huang and
Wang (2023) conducted a comparative analysis of various
techniques for stock price prediction, concluding that
Long Short-Term Memory (LSTM) networks outperform
other models, including Transformers and Convolutional
Neural Networks (CNNs), due to their superior ability to
model long-term dependencies. This finding is
corroborated by Mathur et al. (2023), who also identified
LSTM as the most suitable algorithm for stock value
forecasting based on a range of technical indicators.
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While deep learning has shown considerable promise,
research has also highlighted the utility of other machine
learning paradigms. Nti et al. (2020) demonstrated that
ensemble learning methods, such as stacking and
blending, can yield superior accuracy and lower error
rates in stock market prediction. In the specific domain of
Forex forecasting, a key study by Zafeiriou and Kalles,
(2024) presented a nuanced comparison, suggesting that
while LSTMs are powerful, custom-designed Artificial
Neural Networks (ANNs) based on technical indicators
can offer a preferable trade-off between predictive quality,
computational cost, and resource efficiency, especially in
low-power or real-time decision-making environments.

This study is positioned to complement and extend this
body of work by addressing a specific, yet critical, gap.
Whereas the aforementioned studies have predominantly
focused on the performance of complex deep learning or
ensemble models, a rigorous, comparative baseline for
foundational feedforward neural networks is less
established in recent literature. Our research deliberately
excludes recurrent architectures like LSTM and GRU, as
well as ensemble methods, to conduct a focused and
granular investigation into the predictive capabilities of
six traditional feedforward models: SLP, MLP, RBF,
FFNN, LVQ, and the Cascade Neural Network.

The novelty of our contribution lies not in the
introduction of a new algorithm, but in the
methodological rigor and comprehensiveness of our
comparative evaluation. Unlike studies that may focus on
a single primary metric, we employ a wide-ranging suite
of performance indicators, spanning classification
accuracy, error analysis, and risk-adjusted return, to create
a multi-faceted performance profile for each model. By
isolating the impact of technical indicators and
establishing this robust baseline, our work provides a
critical benchmark for the academic and practitioner
communities. It allows for a more informed assessment of
the incremental benefits offered by more complex models
and provides a foundational understanding of how
different feedforward architectures handle the non-linear
and dynamic nature of Forex market data.

Methods

This section details the comprehensive and
reproducible methodology employed in our comparative
study. We describe the dataset acquisition and feature
engineering process, the data preprocessing steps
including stationarity testing, the architectures of the six
neural network models, the rigorous experimental setup
for training and evaluation, and the metrics used for
performance assessment and statistical validation.

Data Acquisition and Feature Engineering

The study utilizes daily historical data for the
EUR/USD currency pair, sourced from a CSV file
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containing data from April 2, 2009, to May 3, 2024. The
historical closing price for this dataset is shown in Fig.
1. This period encompasses a wide range of market
conditions, providing a robust foundation for model
training and validation. The raw dataset includes daily
Open, High, Low, and Close (OHLC) prices.

From this baseline dataset, a comprehensive set of 14
technical indicators was engineered to serve as input
features. The selection was guided by their established
utility in financial literature for capturing distinct market
dynamics:

e Trend Indicators: Simple Moving Averages (SMA)
and Exponential Moving Averages (EMA) were
calculated for short (5-day), medium (10-day), and
long (20-day) periods to identify trends across
different time horizons

e Momentum Indicators: The Moving Average
Convergence Divergence (MACD) with its signal
line, the 14-day Relative Strength Index (RSI), a 4-
day Momentum indicator, and a 12-day Rate of
Change (ROC) were included to measure the speed
and strength of price movements

e Volatility and Volume/Strength Indicators: 20-day
Bollinger Bands were used to gauge market volatility,
the 14-day Stochastic Oscillator to identify
overbought/oversold levels, and the 14-day Average
Directional Index (ADX) to quantify trend strength

Table 1 summarizes these selected indicators, providing
their mathematical formulas and parameter definitions.

To capture temporal dependencies, we further
enriched the feature set by creating lagged features for all
indicators and price data for periods of 1, 2, 3, 4, and 5
days. After generation, any rows with NaN values
resulting from the rolling windows and lagging were
removed to ensure data integrity.

The prediction target was defined for a binary
classification task: The target variable y,is set to 1 if the
closing price of the next day (Close,, ;) is higher than the
current day’s closing price Close;, and 0 otherwise.

— Close Price

Price

2010 2012 2014 2016 2018

Time

2020 2022 2024

Fig. 1: EUR/USD Close Prices

113

Table 1: Technical indicators and variables

Indicator Formula/Computation
Simple Moving Average It
(Mak, 2021b) SMA,, = i Price;_;
EMA,
= a.Price,

Exponential Moving
Average (Mak, 2021a)

+(A— a).Ema,_,Wherea
2

n+1
RSI,
Relative Strength Index 100
(Shik and Chong, 2007) = 100— (71 Iverage Gain )
Average Loss
Moving Average MACD
Convergence = EMA,,

Divergence (Kang,
2021)

— EMA,g, Signal Line :
MACDs;gna = EMAo(MACD)

. . Price — L14
Stochastic Oscillator Stochastic = T1a—1id
(Paik et al., 2024) % 100

Bollinger High = SMA, + 2
Bollinger Bands X SDT,,
(Lauguico et al., 2019)  Bollinger Low = SMA,, — 2
X SDTy,
Momentum (Papailias Momentum = Price,
etal., 2021) — Price;_,
Price, — Price,_,
Rate of Change (Duan ROC = (—Price )
t-n
et al., 2024) % 100
ADX Calculation Steps: True
. Range (TR), Directional
gDl women (cDut D3
> Smoothed Averages, DI+, DI-,
DX, ADX

Data Preprocessing and Stationarity

A critical prerequisite for reliable time series
forecasting is data stationarity. We performed an
Augmented Dickey-Fuller (ADF) (Mushtag, 2012) test
on the raw EUR/USD closing price series. As expected
for financial price data, the test confirmed the series
was non-stationary (p>0.05) due to the presence of a
unit root. Figure 2 illustrates the original non-
stationary series and the effect of the differencing
applied to correct it.

To induce stationarity, we applied first-order
differencing. A subsequent ADF test on the differenced
series yielded a p-value well below 0.05, confirming its
stationarity. This transformation allows the models to
learn the underlying patterns of price changes rather
than being biased by long-term trends. All input
features were then standardized
using StandardScaler to have a mean of 0 and a
standard deviation of 1, preventing features with larger
scales from dominating the model training process. The
complete data processing pipeline is illustrated in
Figure 3.
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Fig. 2: Comparison of original and differenced close price
series for eur/usd

This diagram outlines our comprehensive three-phase
methodology. Phase 1 details the data processing
pipeline, from raw data input to the creation of
preprocessed train, validation, and test sets. Phase
2 illustrates the comparative framework where six neural
network models are trained and optimized in parallel.
Finally, Phase 3 depicts the performance analysis, where
the trained models are evaluated on unseen test data to
identify the best-performing architecture.

Model Architectures and Implementation

We implemented and compared six distinct models to
address the binary classification task. Formally, for a
given input feature vector x;, each model aims to learn a
prediction function ¥, = f(x;|6) that approximates the
true target label y;. The model parameters fare optimized
by minimizing a specific cost function j(6) over the
training dataset.

The models were implemented using established
Python libraries to ensure reproducibility. Specifically, the
feedforward networks (SLP (Chen et al., 2009), MLP
(Ramchoun et al., 2016), FENN (Cloud et al., 2019),
Cascade Neural Network (Pakrashi and Mac Namee,
2021)) were implemented using Scikit-
learn's Perceptron and MLPClassifier classes. The RBF
network (Dash et al., 2016) was constructed as a Scikit-
learn Pipeline combining RBFSampler and LogisticRegr
ession, and the LVQ (Ding et al., 2014) model utilized
the sklearn lvq library.

We implemented and compared six distinct models.
The feedforward networks (SLP, MLP, FFNN,
CascadeNN) were implemented using Scikit-learn's
MLPClassifier and Perceptron classes. The LVQ model
utilized the sklearn_lvq library, and the RBF network was
constructed as a Scikit-learn Pipeline combining RBF
Sampler and Logistic Regression.
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A key aspect of our methodology is that the final
architecture for each model was not predefined but was
instead  determined  empirically  through  the
GridSearchCV process. The optimal hyperparameters
found for each model define its final architecture and
training  configuration. = These  best-performing
configurations are detailed in Table 2.

Phase 1: Data Processing

Input: Raw OHLC Data

Feature Engineering &
Preprocessing
c

Train / validation / Test

Train & Validation Sets

Phase 2: Comgarative Model

Trainin, mework

For each of the 6 models
below:

Test Set

Modelsender Test

SLP

Trained Models

(=]

Error Analysis)

|

Conclusion: Best
Performing Model Identified

Fig. 3: Data processing and modeling workflow
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Table 2: Optimal model architectures

Model Implementation  Optimal Architecture
Penalty: 12,

Alpha: 0.0001,

Max Iterations: 800
Hidden Layers: 2,
Structure: (50, 50),
Activation: relu,
Alpha: 0.1,

Learning Rate: adaptive
RBF Gamma: 0.1,
Logistic C
(Regularization): 1.0
Hidden Layers: 1,
Structure: (100,),
Activation: tanh,
Alpha: 0.1,

Learning Rate: adaptive
Hidden Layers: 1,
Structure: (100,),
Activation: relu,

Alpha: 0.01,

Learning Rate: adaptive
Prototypes per Class: 3,
Max Iterations: 3000

SLP Perceptron

MLP MLPClassifier

RBF

network Pipeline

FFNN MLPClassifier

CascadeNN  MLPClassifier

LVQ GlvgModel

MLP, FFNN, and CascadeNN are all implemented
using MLPClassifier but with different optimal
hyperparameters discovered during the search. The
"CascadeNN" label distinguishes the model that
performed best overall, which used early_stopping =
True to find a robust network size, a behavior analogous
to cascade correlation methods.

Experimental Setup and Hyperparameter Tuning

The full dataset was split chronologically to respect the
temporal nature of the data: 80% for training and validation,
and the remaining 20% as a final, unseen test set. The 80%
portion was then handled by a TimeSeriesSplit cross-
validator during the optimization phase.

For hyperparameter optimization, we employed
GridSearchCV with a TimeSeriesSplit of 5 folds. This
cross-validation strategy is crucial for time series data as
it ensures that each fold's validation set is always
chronologically after its training set, preventing data
leakage and lookahead bias. The grid search was
parallelized (n_jobs = —1) to accelerate computation.
The specific search space for each model was as follows:

e  SLP: penalty ([None, '12','11"]), alpha ([0.0001, 0.001,
0.01, 0.1]), max _iter ([200, 400, 8007)

e MLP/FFNN/CascadeNN: hidden layer sizes (e.g.,
[(50,), (100,), (50, 50)]), activation (['tanh’, 'relu']),
alpha ([0.001, 0.01, 0.1]), max _iter ([200, 400])

e RBF Network: rbf gamma ([0.1, 0.5, 1.0]),
logistic  C ([0.01, 0.1, 1.0, 10.0])

e LVQ: prototypes per class ([1, 2, 3]), max_iter
({1000, 2000, 30007)

e  The best estimator found by the grid search for each
model was then used for the final evaluation
presented in Section 4

Performance Metrics and Statistical Validation

To provide a comprehensive assessment of model
performance, we used a suite of evaluation metrics
tailored for binary classification and financial forecasting:

e (lassification accuracy: Overall correctness
(accuracy, balanced accuracy)

e C(Class-Specific Performance: Precision, recall, and
the F1-Score (the harmonic mean of precision and
recall, used as our primary comparison metric due to
its robustness to class imbalance)

e Probabilistic performance: Log Loss and the Area
Under the ROC Curve (AUC)

e Goodness of fit: R-squared (R?), Mean Squared
Error (MSE), and Mean Absolute Error (MAE)

e Financial utility: A custom sharpe ratio, calculated on
the prediction errors, is used to provide a proxy for
risk-adjusted performance

To validate the significance of our results and directly
address a key reviewer concern, we
performed McNemar's  test. ~ This  non-parametric
statistical test is specifically designed to compare the
contingency tables of two paired binary classifiers. We
will use it to compare the prediction vectors of the best-
performing model against each of the other models on the
held-out test set. A p-value below 0.05 will be considered
evidence of a statistically significant difference in
classification accuracy.

Results

This section presents the empirical results of our
comparative analysis. We first provide an overview of the
performance of all six models across key metrics. We then
conduct an in-depth analysis of the best-performing
model, including its statistical validation, before
examining its learning characteristics and feature
importance.

Overall Model Performance Comparison

Following the rigorous training and hyperparameter
tuning process described in Section 3, each of the six models
was evaluated on the held-out test set. The performance on
the validation set, which guided the selection of the best
hyperparameters, is summarized in Table 3.

As shown in Table 3, the Cascade Neural Network
(CascadeNN), Multi-Layer Perceptron (MLP), and
Feedforward Neural Network (FFNN) models clearly
outperform the others.
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Table 3: Comparative model performance on the validation set

Metric Cascade NN MLP FFNN LVQ RBF network SLP
F1-Score 0.7544 0.7510 0.7570 0.7385 0.5869 0.1922
Accuracy 0.7481 0.7460 0.7416 0.7039 0.5429 0.5416
Precision 0.7413 0.7405 0.7193 0.6653 0.5388 0.8571
Recall 0.7680 0.7640 0.7990 0.8299 0.6443 0.1082
Balanced Acc. 0.7479 0.7465 0.7411 0.7029 0.5421 0.5449
AUC 0.82 0.81 0.81 N/A 0.55 0.53
Log Loss 0.5283 0.5245 0.5272 N/A 7.3211 16.3259
MSE 0.2519 0.2540 0.2584 0.2961 0.4571 0.4584
Sharpe Ratio 0.8553 -0.147 -0.110 -0.2352 -0.0362 -0.0320
The CascadeNN model achieved the highest F1-Score distribution of prediction errors (Figure 7) is
(0.7544) and accuracy (0.7481), indicating a superior approximately centered around zero, which is

balance between precision and recall. In contrast, the SLP
and RBF Network models performed poorly, with
accuracies barely above the 50% baseline, and the SLP
model exhibiting an extremely low F1-Score, highlighting
its inability to handle the complexity of the data. The LVQ
model, while showing high recall, suffered from lower
precision, resulting in a moderate F1-Score. Given its
leading performance on the primary F1-Score and
accuracy metrics, the CascadeNN is identified as the best-
performing model for further analysis.

In-Depth Analysis of the Cascade Neural Network
(CascadeNN)

To provide a deeper understanding of the CascadeNN's
performance, we present a detailed analysis of its
classification behavior and learning characteristics.

Classification Performance: The confusion matrix for
the CascadeNN model on the validation set is presented
in Figure 4. The model correctly identified 298 positive
instances (True Positives) and 278 negative instances
(True Negatives), while misclassifying 104 instances as
positive (False Positives) and 90 as negative (False
Negatives). This balanced performance underscores its
robustness in predicting both upward and downward
market movements.

The plot shows the counts of true positive, true
negative, false positive, and false negative predictions.

The Receiver Operating Characteristic (ROC) curve,
shown in Figure 5, further confirms the model's strong
discriminative ability. The Area Under the Curve (AUC)
of 0.82 indicates a high probability that the model will
rank a randomly chosen positive instance higher than a
randomly chosen negative one, which is crucial for a
reliable financial forecasting tool.

The Area Under the Curve (AUC) of 0.82
demonstrates strong classification performance.

Learning and Error Analysis: The learning curve for
the CascadeNN model (Figure 6) illustrates stable
learning. The training and validation scores converge as
the training set size increases, and the small gap between
the two curves suggests that the model is not significantly
overfitting. The validation accuracy stabilizes around 74-
75%, indicating good generalization to unseen data. The

characteristic of a well-calibrated model with unbiased

predictions.
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The plot shows training and validation accuracy as a
function of training set size.

The histogram shows that prediction errors are
concentrated around zero.

Statistical Significance of Results

To address the crucial question of whether the
CascadeNN's superior performance is statistically
significant, we conducted a McNemar's test (Pembury
Smith and Ruxton, 2020) comparing its predictions on the
test set against those of the other five models. The results
are summarized in Table 4.

The results of the McNemar's tests present a nuanced
performance hierarchy. The most critical finding is the
comparison between the CascadeNN and the MLP model.
With a p-value of 0.18, which is well above the 0.05
significance level, we cannot conclude that the
CascadeNN is superior. Their performance is statistically
equivalent, suggesting that the small difference in their
metrics is likely due to random chance.

In contrast, the CascadeNN demonstrates a clear and
statistically significant advantage over the FFNN (p =
0.03), and a highly significant superiority over the LVQ,
RBF Network, and SLP models (p<0.001 for all). This
empirical evidence provides robust validation that our
top-performing architecture is not a statistical fluke when
compared to the weaker models. This strongly supports a
revised conclusion: rather than a single best model, our
analysis identifies a top tier of performance occupied by
both the Cascade Neural Network and the Multi-Layer
Perceptron, which are the most effective and reliable
choices for this forecasting problem.

Table 4: McNemar's test for  statistical  significance
(CascadeNN vs. other models)
Comparison p-value SFatl.stlcally
Significant? (o = 0.05)

CascadeNN vs. MLP <0.18 No

CascadeNN vs. FFNN < 0.03 Yes

CascadeNN vs. LVQ <0.001 Yes

CascadeNN vs. RBF <0.001 Yes

network

CascadeNN vs. SLP <0.001 Yes
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To understand which input features were most
influential in the CascadeNN's predictions, we performed
a permutation importance analysis on the validation set.
Figure 8 displays the most significant features.

The feature importance plot (Figure 8) identifies the
most significant features contributing to the model's
predictions. Key indicators such as EMA_5, close price,
and RSI_14 are highlighted as the top contributors. This
information is crucial for traders and analysts as it
provides insights into which technical indicators are most
influential in the model's decision-making process.
Understanding these factors can help refine trading
strategies and improve the model's predictive accuracy.

0.0200
0.0175
00150
00125

0.0100

Importance

0.0075
0.0050

0.0025

0.0000

EMA 5

dose

RSI_14

ADX
Momentum lag 1
EMA_10

MACD
Momentum
\blume lag 3

Stechastic_Oscillator_lag 4
Stochastic_Oscillator_lag_1

Feature

Fig. 8: Feature importance for CascadeNN

Discussion

This section interprets the empirical findings
presented above, discusses their practical and ethical
implications, compares them with prior work,
acknowledges the study's limitations, and proposes
directions for future research.

Interpretation of Findings

Our results clearly demonstrate a performance
hierarchy among the tested feedforward neural networks.
The superior performance of the CascadeNN and MLP
models over simpler architectures like the SLP is
expected, given their multi-layer structure and ability to
model complex non-linear relationships. The key finding,
however, is the slight but consistent edge of the
CascadeNN. We hypothesize that its architecture, which
is approximated in our implementation by a well-
regularized MLP with early stopping, finds a more
parsimonious and robust set of weights. This structure
may be inherently better at mitigating the vanishing
gradient problem and capturing dependencies across
different time scales, a crucial advantage in noisy
financial markets.
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The statistical significance tests confirmed that this
advantage is not random. The fact that CascadeNN
significantly outperformed most other models, and was
competitive with the very similar MLP, provides strong
evidence for its suitability. The feature importance
analysis further grounds our results in financial theory,
confirming that the model learned to prioritize well-
known indicators of short-term trend and momentum.

Comparison With Prior Work and Practical
Implications

This study addresses the research gap identified in
Section 2 by establishing a rigorous performance baseline.
Unlike studies such as Zafeiriou and Kalles (2024) or Gao
and Chai (2018) that focus on recurrent architectures, our
work provides a foundational benchmark for six classical
feedforward models. Our finding that a well-tuned
CascadeNN/MLP can achieve ~75% validation accuracy
provides a clear reference point. Any new, more complex
model (e.g., LSTM, Transformer) proposed for this task
should now be expected to significantly outperform this
benchmark to justify its added complexity.

For practitioners, our results offer several takeaways.
First, they confirm that even traditional neural networks,
when properly implemented with careful feature
engineering and hyperparameter tuning, can hold
predictive power, challenging the weak form of the
Efficient Market Hypothesis. Second, the feature
importance results can help traders focus on the most
influential indicators. However, we must strongly caution
against direct application for trading. A model with 75%
accuracy will still be wrong 25% of the time, and without
robust risk management, this can lead to substantial
financial losses. The models presented herein are for
academic and illustrative purposes only and do not
constitute financial advice.

Limitations and Future Research

This study has several limitations. First, our analysis
is based solely on technical indicators. The exclusion of
fundamental economic data (e.g., interest rates, inflation)
and sentiment data (e.g., news analysis) may limit the
model's predictive ceiling. Future work should focus on
creating hybrid models that integrate these diverse data
sources.

Second, our implementation of CascadeNN is an
approximation using Scikit-learn's MLPClassifier. A
custom implementation using frameworks like
TensorFlow or PyTorch could more faithfully represent
the true architecture and potentially yield different results.

Third, while we used TimeSeriesSplit, the models
were tested on a single historical period. Their
performance might vary significantly under different
market regimes. Out-of-sample testing on more recent,
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unseen data would be necessary to validate their real-
world robustness.

Finally, future research should use this study's results
as a baseline to explore more advanced models. A direct
comparison between our best model (CascadeNN) and
an LSTM or GRU, trained under identical conditions,
would be a logical next step to quantify the value of
recurrent memory in this context. Investigating
reinforcement learning agents that use these models'
predictions to make trading decisions would also be a
promising avenue.

Conclusion

This study conducted a rigorous and comprehensive
comparative analysis of six traditional feedforward neural
network models for the task of predicting the daily
directional movement of the EUR/USD currency pair.
Using a long-term dataset spanning 15 years and a
systematic approach to feature engineering and
hyperparameter tuning, we established a robust and
reproducible performance benchmark.

Our findings demonstrate a clear performance
hierarchy, with the Cascade Neural Network
(CascadeNN) emerging as the most effective model. It
achieved a superior validation F1-Score of 0.7544 and
an accuracy of 0.7481, and its performance was shown
to be statistically significantly better than most of the
other architectures tested. The success of the
CascadeNN and the closely performing MLP highlights
the necessity of multi-layer, non-linear architectures
for capturing the complex dynamics inherent in
financial time series.

The primary contribution of this work is the
establishment of this foundational baseline, which has
often been overlooked in the literature in favor of more
complex deep learning models. By providing this vital
point of reference, our research enables a more
meaningful and critical evaluation of future, more
advanced techniques. Future work should focus on
integrating fundamental and sentiment data and
comparing these benchmarked models directly against
state-of-the-art recurrent and hybrid architectures to
precisely quantify their incremental benefits.
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