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Abstract: The Internet of Things (IoT) is revolutionizing industries by 

connecting billions of smart devices, enabling automation and information 

exchange. The expansion of IoT ecosystems has simultaneously increased 

the surface area for cyberattacks. These environments are particularly 
vulnerable to a wide range of threats, such as Distributed Denial-of-Service 

(DDoS), poisoning, brute-force SSH intrusions, and various network 

reconnaissance techniques. The dynamic nature of IoT traffic makes 

traditional security measures inadequate, thereby necessitating intelligent 

and adaptive solutions. This study leverages Artificial Intelligence (AI) to 

combat the growing cybersecurity challenges in IoT. An optimized Multi-

Layer Perceptron model is designed to identify and classify cyberattacks with 

high precision. Using the RT-IoT2022 dataset, which includes realistic 

network traffic from IoT devices and multiple attack vectors, the model is 

trained on the 35 most relevant features selected from a total of 85 using 

permutation importance. The dataset encompasses both benign and 
adversarial traffic collected via advanced monitoring tools like Wireshark 

and Zeek. Through rigorous preprocessing, feature engineering, and 

hyperparameter tuning, the proposed MLP model shows exceptional 

performance with an accuracy of 99.98. Comparative analysis further shows 

the superiority of the optimized MLP model over traditional ML algorithms.  

 

Keywords: Cybersecurity, Internet of Things, Artificial Intelligence, 

Cyberattacks, Intrusion Detection 

 

Introduction 

IoT has revolutionized modern digital infrastructure 

by enabling seamless interaction between physical 

devices through the internet (Farooqi et al., 2023). 

Initially conceptualized in the early 2000s, IoT has 

rapidly evolved from basic sensor networks to a 
sophisticated ecosystem encompassing smart homes, 

healthcare systems, industrial automation, and smart 

cities (Venčkauskas et al., 2024). By embedding sensors 

and actuators in everyday objects, IoT enables real-

time data collection, processing, and decision-making 

(Cherfi et al., 2025). With the integration of advanced 

communication protocols like 5G, edge computing, and 

cloud platforms, IoT now supports billions of 

interconnected devices globally. Current trends highlight 

the growing adoption of AI-powered IoT, Digital Twins, 

and blockchain-enabled secure transactions, emphasizing 
the shift toward intelligent, autonomous, and self-learning 

systems (Hisham et al., 2023).   

The expansion of IoT has also widened the threat 

surface for cyberattacks, leading to significant security 

and privacy challenges. IoT systems are inherently 

vulnerable due to resource-constrained devices, 

heterogeneous architectures, and weak authentication 
mechanisms (Gürfidan, 2024). Common cyber threats 

include DoS, DDoS, sniffing, botnet attacks, data 

exfiltration, firmware manipulation, and ransomware. 

According to recent cybersecurity reports, there has 

been a surge of over 300% in IoT-based attacks in the 

last five years, with threat actors increasingly 

exploiting unpatched devices and misconfigured 

networks (Alhchaimi, 2024). These vulnerabilities not 

only jeopardize user privacy and data integrity but also 

threaten critical infrastructure operations, making security 

a top priority in the IoT landscape (Mehmood et al., 

2025). To address these challenges, AI, ML, and DL 
have emerged as powerful tools for proactive threat 
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detection and classification in IoT environments. These 

technologies enable systems to learn from data, 

identify anomalous behavior, and adapt to evolving 

attack patterns in real time (Kamran et al., 2024). ML 

algorithms such as Random Forests, Support Vector 
Machines (SVM), and k-Nearest Neighbors (kNN), as 

well as DL architectures like Convolutional Neural 

Networks (CNNs), Long Short-Term Memory (LSTM), 

and Autoencoders, have been successfully applied to 

IDS for IoT. By leveraging pattern recognition, feature 

extraction, and model generalization, these intelligent 

models enhance the resilience and responsiveness of 

IoT networks (Airlangga, 2024). In this study, a Multi-

Layer Perceptron (MLP) model is used on the RT-IoT 

2022 dataset for the identification and classification of 

cyberattacks present in real-time IoT networks. 

Literature Review 

The literature on attack detection in IoT networks 

highlights various techniques, including ML, genetic 

algorithms, and statistical methods. While traditional 

methods face scalability and efficiency issues, recent 

advancements focus on lightweight, edge-based solutions 

that optimize feature selection and improve detection 

accuracy, addressing attacks. Malik and Dutta (2023) 

proposed an ML-based framework for detecting DDoS 

attacks in IoT networks using the IoT-CIDDS dataset. It 

emphasizes data enrichment, advanced feature 

engineering, and performance comparison of classifiers. 

Results show that RF achieved the best accuracy and 

efficiency with reduced false positives and optimal 

feature selection. The study focuses solely on DDoS 

attacks, uses limited models, and lacks evaluation across 

multiclass scenarios and real-time environments. Saiyed 

and Al-Anbagi (2024a) proposed DEEPShield, a deep 

ensemble learning system combining CNN and LSTM 

with unit pruning to detect high- and low-volume DDoS 

attacks in IoT environments. It introduces a novel HL-IoT 

dataset and demonstrates over 90% accuracy across 

multiple datasets, optimizing performance for edge 

deployment with reduced resource usage. The system may 

face generalization challenges across unseen attack types 

and lacks evaluation on real-world, heterogeneous IoT 

network configurations. 
Srivastava et al. (2023). This study addresses IoT 

security by proposing a flexible strategy to detect and 
counteract malicious activities without burdening IoT 

devices. Using ML, it compares Linear and Non-Linear 

SVM, showing that Non-Linear SVM significantly 

improves detection accuracy from 93 to 97.8%, enhancing 

security in diverse IoT environments. The approach lacks 

testing on large-scale real-world IoT networks and may 

struggle with scalability and evolving attack patterns. 

Alabsi et al. (2023) introduce a dual CNN-based 

framework for detecting IoT network attacks, where the 

first CNN selects crucial features and the second performs 

detection. Using the BoT IoT 2020 dataset, the model 

achieves high accuracy and outperforms traditional DL 

methods, showcasing its effectiveness in IoT threat 

detection. The model is limited by reliance on a single 
dataset and may face challenges when generalized to other 

IoT network scenarios.  

Alani and Damiani (2023) present a lightweight, 

explainable ensemble-based machine learning system for 

detecting reconnaissance attacks on IoT devices. 

Designed for resource-constrained environments, the 

system accurately identifies scanning behavior early in 

attack campaigns, achieving 99\% accuracy with very low 

false positive (0.6\%) and false negative (0.05\%) rates 

during testing. The system’s performance may vary with 

different attack types or newer datasets, and scalability 
across diverse IoT platforms remains untested. Saiyed and 

Al-Anbagi (2024b) propose the Genetic Algorithm and t-

Test for DDoS Attack Detection (GADAD) system for 

IoT networks. It uses edge-based technologies and a 

custom HL-IoT dataset to optimize feature selection with 

GAStats. The system trains various tree-based models, 

demonstrating improved detection efficiency and reduced 

computation time for DDoS attacks. The system may face 

scalability challenges in large-scale IoT networks with 

diverse attack types beyond DDoS. 

Preliminaries 

The growing ecosystem of the IoT has introduced new 

opportunities for innovation across multiple domains. 

However, its rapid expansion has also introduced various 

security vulnerabilities, prompting the need for robust 

cyberthreat detection mechanisms. This section outlines 

the fundamental concepts related to IoT and the 

cyberthreat landscape, followed by a detailed discussion 

of AI models commonly used for threat detection in IoT 

systems. 

IoT: Overview and Cybersecurity Challenges 

IoT represents a network of connected devices capable 

of gathering, transmitting, and processing data without 

any human intervention. While IoT enables enhanced 

automation, monitoring, and data-driven decision-

making, it also presents significant security and privacy 

concerns (Li, 2024). The heterogeneous nature of devices, 

constrained computational resources, lack of standardized 

security protocols, and the use of outdated firmware 

contribute to a wide attack surface. IoT systems are 

increasingly targeted by cyberattacks such as DoS, DDoS, 

MitM, spoofing, phishing, firmware modification, and 

botnet infiltration. These attacks aim to compromise data 
integrity, confidentiality, and availability, which can have 

catastrophic consequences, especially in sectors like 

healthcare, smart grids, and industrial control systems 

(Sharma and Babbar, 2023). 
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AI Models for Threat Detection 

To detect and classify cyberthreats in IoT 
environments, a wide range of ML and DL algorithms are 

employed. Below is an overview of several prominent 

models along with their mathematical formulations 

(Srinivasan, 2024). 

K-Nearest Neighbors 

Using the majority class of a data point's k closest 

neighbors in the feature space, KNN is a non-

parametric learning method for classification. The 

Euclidean distance is commonly used to calculate the 
similarity using Eq. 1: 

 

𝑑(𝑢, 𝑣) = √∑ (𝑢𝑖 − 𝑣𝑖)2𝑛
𝑖=1   (1) 

 

Where (𝑢 = 𝑢1, 𝑢2, … ,  𝑢𝑛)  and (𝑣 = 𝑣1, 𝑣2, … , 𝑣𝑛) 

are two data points in (𝑛)-dimension space. 

Logistic Regression 

A linear model called LR is applied to situations 

involving binary classification.  It uses the logistic 

function, which is provided in Eq. 2, to forecast the 

likelihood that a given input (x) belongs to a specific 

class: 
 
P(v = 1|u) = σ(wTu + b) (2) 
 

Where 𝑃(𝑣 = 1|𝑢),𝑤, 𝑏, and 𝑢 are the conditional 

probability that 𝑢 belongs to 1, the weight vector, bias, 

and input feature vector. 

Naïve Bayes 

According to Eq. 3, NB is a probabilistic classifier that 

relies on the Bayes theorem and assumes feature 

independence:  

 

𝑃(𝑣|𝑈) = (𝑃(𝑣) ∗ 𝛱𝑃(𝑢𝑖|𝑣))/𝑃(𝑈) (3) 

 

Where 𝑃(𝑣|𝑈) is the posterior probability of class 𝑣 

given predictor 𝑈. Bayes’ theorem, expressed as Eq. 4. It 
assumes conditional independence between features, 

meaning that each feature contributes independently to 

the probability of the class: 

 

Posterior 𝑃𝑟𝑖𝑜𝑟 ×  𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 / 𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒 (4) 

 

Support Vector Machine 

As shown in Eq. 5, SVM seeks to identify the best 

hyperplane that divides the classes with the greatest 

margin: 

 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 (5) 

Classification is determined by the sign of 

𝑓(𝑥):  𝑅𝑛 → 𝑅,  where 𝑤 and 𝑏 are the model parameters. 

Decision Tree 

To maximize information gain, a DT iteratively 

divides the dataset into subgroups according to feature 

values.  The entropy-based Information Gain (IG) is 

determined by Eq. 6: 
 

𝐼𝐺(𝑆, 𝐴) = 𝐸(𝑆) − ∑
|𝑆𝑣|

|𝑆|𝑣∈Values(𝐴) 𝐸(𝑆𝑣) (6) 

 
Where 𝑆,  𝐸(𝑆), and 𝐴 are the dataset, entropy, and 

attribute used for splitting, respectively, and  
 
𝐸(𝑆) = − ∑ 𝑝𝑖

𝑘
𝑖=1 log2 𝑝𝑖 (7) 

 
Where 𝑝𝑖  represents the proportion of class i in the 

dataset S, and k is the total number of classes. Entropy 

quantifies the impurity or uncertainty in the dataset. 

Random Forest 

RF is an ensemble of DT that outputs the mode of 

class predictions from individual trees. The general 

prediction for classification is given by Eq. 8: 
 
𝑣 = mode(𝑇1(𝑢), 𝑇2(𝑢), … , 𝑇𝑚(𝑢)) (8) 
 

Where Ti(u)is is the prediction of the i-th decision 

tree. The most frequently predicted class across DT is 

the mode, which can be defined as Eq. 9: 
 
mode(𝑎1 , 𝑎2 , … , 𝑎𝑚) =  arg max

𝑐
∑ 1(𝑎𝑖 = 𝑐)𝑚

𝑖=1  (9) 

 
Where 1(ai = c) is an indicator function that equals 

1 if ai = c, and 0 otherwise. 

Multi-Layer Perceptron 

MLP is a feedforward NN with one or more hidden 

layers. The output of a neuron in layer l is computed as 

Eq. 10: 
 
𝑎(𝑙) = σ(𝑊(𝑙)𝑎(𝑙−1) + 𝑏(𝑙)) (10) 
 

Where a(l)  is the activation at layer l, W(l) is the 

weight matrix, b(l) is the bias, and σ is the activation 

function. These models' capacity to manage intricate 

patterns and abnormalities has led to their widespread 

adoption for IoT intrusion detection.  This work uses 
the RT-IoT 2022 dataset and an MLP model to identify 

and categorize different kinds of cyberattacks in real-

time IoT networks. 

Materials and Methods 

This section outlines the methodological framework 
adopted for detecting and classifying cyberattacks in 
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real-time IoT environments. The proposed pipeline 
consists of four key stages: Data acquisition, 

preprocessing, feature selection and hyperparameter 
optimization, and classification using an MLP model. 

The overall objective is to accurately identify and 
categorize malicious activity within a heterogeneous 

IoT infrastructure. Figure 1 depicts the framework for 
the proposed model. 

 

 
 

Data Collection 

The vast, unique RT-IoT2022 dataset from the 

Kaggle repository simulates normal and adversarial 

processes in real-time IoT systems.  It simulates real-

world network environments with a variety of devices 

and attack scenarios.  The dataset includes 

ThingSpeak-LED, Wipro-Bulb, and MQTT-

Temperature sensor network activity.  Metasploit, 

Hping, Slowloris, and Nmap-based reconnaissance 

patterns (TCP scan, UDP scan, OS detection, FIN scan, 

and XMAS Tree scan) are simulated cyberattacks.  

ARP poisoning and DOS SYN attacks are added to 

represent further threats.  By connecting attacker and 

victim devices to a router, network traffic was 

recorded.  Zeek (previously Bro) with the Flowmeter 

plugin extracts bidirectional traffic features.  Traffic 

was captured and exported as PCAP files using 

Wireshark, an open-source network monitoring 

program.  Assailants have 50 machines while victims 

have 5 departments, 420 workstations, and 30 servers. 

The dataset encapsulates system logs and network 

traces from each device, with 80 extracted features. It 

includes 123,117 records spanning 9 attack types: 

DOSSYNHping, ARPPoisoning, NMAPUDPScan, 

NMAPXMASTreeScan, NMAPOSDetection, 

NMAPTCPScan, DDOSSlowloris, 

MetasploitBruteForceSSH, NMAPFINScan; and 3 

normal traffic patterns: MQTT, ThingSpeak, and 

WiproBulbDataset. 

Due to its comprehensiveness, real-world relevance, 

and deep coverage of multiple attack scenarios, the RT-

IoT 2022 dataset was chosen over other publicly 

available IoT security datasets.  RT-IoT 2022 mimics a 

genuine IoT architecture with a wide range of normal 

and harmful behaviors, unlike previous datasets that 

focused on network traffic or limited attack types.  It 

uses data from ThingSpeak-LED, Wipro-Bulb, and 

MQTT-based IoT devices and meticulously simulated 

attacks, including DDoS (Hping, Slowloris), ARP 

poisoning, SSH brute-force, and different Nmap 

scanning methods.  This dataset shows current IoT 

network traffic more realistically with 85 features 

collected using Wireshark, Zeek, and Flowmeter.  Its 

bidirectional traffic and system logs across 420 

machines and 50 attacker systems make it ideal for 

training sophisticated detection algorithms. 

Data Preprocessing 

The raw dataset was initially processed to handle 

missing values and remove redundant or irrelevant 

records. Noise and duplicates were eliminated to 

improve training consistency. Following data cleaning, 

normalization, and standardization were applied to 

ensure all feature values fall within a uniform range, 

particularly critical for MLP models sensitive to scale 

variations. The dataset was then divided into training 

and testing sets using an 80:20 split ratio. This ensured 

that the model was trained on a representative majority 

of the data while retaining sufficient unseen samples 

for performance evaluation. 

Feature Selection and Hyperparameter 

Optimization 

The selection of features has been performed using 

correlation-based analysis and feature importance 

metrics to decrease dimensionality and enhance model 

effectiveness. Out of the original 85 features, the top 

35 most relevant features were selected based on their 

contribution to classification accuracy. Table 1 shows 

the selected features along with their permutation 

importance. To optimize the MLP model, 

hyperparameter tuning was conducted using grid 

search and cross-validation. The objective was to 

minimize loss and maximize classification accuracy. 

The best-performing parameters identified through this 

process are: Activation Function: ReLU, hidden layer 

sizes: (100), (150), (200), L2 penalties: 0.0001, 

0.00005, batch sizes: 32, 64, 128, Learning Rate: 

Adaptive, and Solver: Adam. These refined 

hyperparameters were selected after extensive testing 

to balance learning capacity, convergence speed, and 

generalization. 
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Table 1: Features Based on Permutation Importance from DT Model 

Rank Feature Name Permutation 
Importance 

Rank Feature Name Permutation 
Importance 

1 flowACK\_flagcount 0.345 19 flowiat\_avg 0.020 

2 bwdpkts\_payloadavg 0.065 20 fwdiat\_min 0.018 
3 fwdpkts\_payloadavg 0.048 21 bwdbulk\_bytes 0.016 
4 bwdiat\_min 0.038 22 bwddata\_pktstot 0.015 
5 fwdpkts\_tot 0.032 23 flowpkts\_payloadstd 0.014 
6 bwdpkts\_payloadmin 0.031 24 bwdheader\_sizetot 0.014 
7 flowSYN\_flagcount 0.030 25 bwdiat\_tot 0.013 
8 flowiat\_min 0.029 26 bwdpkts\_tot 0.012 
9 bwdpkts\_payloadmax 0.027 27 bwdpkts\_persec 0.011 

10 bwdpkts\_persec 0.026 28 flowpkts\_payloadavg 0.010 
11 bwdpkts\_payloadstd 0.026 29 fwdheader\_sizemin 0.009 
12 flowFIN\_flagcount 0.025 30 flowpkts\_payloadmin 0.009 
13 flowCWR\_flagcount 0.024 31 flowpkts\_payloadtot 0.008 
14 bwdbulk\_rate 0.024 32 flowpkts\_persec 0.008 
15 bwdURG\_flagcount 0.023 33 flowduration 0.007 
16 bwdpkts\_payloadtot 0.023 34 bwdiat\_max 0.007 
17 fwdpkts\_payloadmax 0.021 35 fwdpkts\_payloadstd 0.006 

18 fwdpkts\_payloadtot 0.020    

 

Attack Detection and Classification Using 

Optimized MLP 

The preprocessed and feature-reduced dataset was 

used to train the improved MLP model, which was then 

used to categorize the traffic into harmful and normal 
categories.  An input layer, many hidden layers, and an 

output layer make up MLP, a deep feedforward neural 

network.  For weight optimization, it uses stochastic 

gradient descent and backpropagation.  Accuracy, 

precision, recall, F1-score, and ROC-AUC were among 

the performance measures used to assess the final model.  

The effectiveness of the suggested strategy was validated 

by the trained model's great skill in differentiating 

between benign and malevolent patterns in real-time IoT 

contexts. 

Results and Discussion 

This section presents the evaluation metrics used to 

evaluate the performance of the proposed model for IoT 

attack detection. All experiments have been implemented 

in Python 3.10 using the Scikit-learn and TensorFlow 

libraries. The experiments are conducted on a system 

equipped with an Intel Core i7-13700 CPU, 32 GB RAM, 

and an NVIDIA RTX 4060 GPU with 16 GB memory. 

The following subsections provide detailed insights into 

each metric, along with their respective equations and the 

performance outcomes derived from experimental 

analysis. 

Accuracy 

The percentage of correctly categorized cases out of 

all the samples is known as accuracy.  It gives a general 

indication of how accurate the model is. Higher accuracy 

indicates the model performs well in both positive and 

negative class predictions. Figure 2 and Table 2 illustrate 

the performance improvement of the MLP model after 

optimization. Before optimization, the model achieved an 

accuracy of 99.7888%, precision of 99.79%, recall of 

99.78%, and F1-score of 99.78%. After optimization, 

there was a noticeable enhancement across all metrics, 

with the accuracy rising to 99.9838%, precision to 

99.98%, recall to 99.98%, and F1-score also reaching 

99.98%. These results highlight the significant impact of 
the optimization process on the overall performance of the 

MLP model. 

Precision 

The precision measures the percentage of positive 

identifications that were truly accurate.  When false 

positive costs are substantial, it is essential. High 

precision suggests that the model returns more relevant 

than irrelevant results. 

Recall 

The ratio of true positives that are correctly identified 

is measured by recall, which is sometimes referred to as 

sensitivity or true positive rate. Recall is essential in 

applications where missing a positive prediction (false 

negative) has severe consequences. 
 
Table 2: Comparison of MLP Model Performance Before and 

After Optimization 

Metric Before Optimization 

(%) 

After Optimization 

(%) 

Accuracy 99.788 99.9838 

Precision 99.79 99.98 

Recall 99.78 99.98 

F1-Score 99.78 99.98 
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Fig. 2: Before optimization and after optimization analysis of 

the MLP model 

 

F1-Score 

The harmonic mean of recall and precision is known 

as the F1-Score.  It balances their trade-offs, particularly 

in cases where the distribution of classes is unbalanced. A 

higher F1-score indicates both high precision and high 

recall. 

Figure 3 and Table 3 present a performance 

comparison of the optimized MLP with various 

traditional ML models. The KNN model achieved 

98.67% accuracy, 98.70% precision, 98.65% recall, 

and 98.66% F1-score. LR followed with 97.85% 

accuracy, 97.90% precision, 97.82% recall, and 

97.85% F1-score. NB showed relatively lower 

performance with 94.32% accuracy, 94.10% precision, 

94.50% recall, and 94.30% F1-score. SVM performed 

well, scoring 98.92% across accuracy, precision, recall, 

and F1-score. DT achieved 99.21% in all four metrics, 

while RF slightly improved with 99.78%. The 

optimized MLP model recorded 99.79% in accuracy, 

precision, recall, and F1-score. Notably, the proposed 

model outperformed all others, achieving the highest 

scores of 99.98% across all evaluation metrics. 

 

Table 3: Comparison of Proposed Model with Other Machine 
Learning Models 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

KNN 98.67 98.70 98.65 98.66 

LR 97.85 97.90 97.82 97.85 

NB 94.32 94.10 94.50 94.30 

SVM 98.92 98.95 98.89 98.92 

DT 99.21 99.23 99.20 99.21 

RF 99.78 99.79 99.77 99.78 

MLP 99.79 99.79 99.78 99.78 

Proposed 99.98 99.98 99.98 99.98 

Table 4: Performance of Proposed Model under 5-Fold 
Stratified Cross-Validation 

Metric Mean ± Std(%) 

Accuracy 99.96±0.01 

Precision 99.95±0.02 
Recall 99.96±0.01 
F1-Score 99.95±0.01 
ROC-AUC 99.98±0.01 

 

 
 
Fig. 3: Comparison analysis of the proposed model with other 

ML algorithms 
 

This study used the MLP model because it can learn 

complicated, non-linear patterns in high-dimensional 

datasets like RT-IoT 2022.  Traditional ML models like 

KNN, NB, LR, and ensemble techniques like RF and 

SVM work well, but they struggle to capture the complex 
correlations between data in current IoT traffic.  DL 

model MLP is a flexible architecture for automatic feature 

extraction and representation learning.  To maximize its 

potential, adjust activation function, learning rate, hidden 

layers, and solver approaches using hyperparameter 

tuning and optimization procedures.  The improved MLP 

surpassed all benchmark models in detecting and 

classifying IoT security threats.  Table 4 presents the 

performance of the proposed model under 5-fold stratified 

cross-validation. The proposed optimized MLP model is 

lightweight, with a size of approximately 2.1 MB, making 
it suitable for resource-constrained IoT environments. It 

achieves an inference latency of ~2.3 ms per flow on a CPU 

and under 1 ms on a GPU, with a memory footprint below 

250 MB during runtime. These characteristics confirm its 

feasibility for real-time intrusion detection at IoT gateways. 

Although the optimized MLP is lightweight, further 

comparisons with TinyML and pruned DT would provide 

insights into edge deployment trade-offs. 

Real World Deployment and Scalability 

Considerations 

While the optimized MLP model demonstrates 

excellent performance in controlled experimental settings, 

practical deployment in large-scale IoT ecosystems 
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introduces additional challenges. IoT devices are typically 

resource-constrained in terms of memory, power, and 

processing capability. To address this, the proposed 

model can be deployed in a hierarchical manner, where 

lightweight intrusion detection agents operate on edge 
nodes or gateways, and more computationally demanding 

analysis is performed in fog or cloud layers. The 

scalability of the approach is ensured by the reduced 

feature set (35 out of 85), which lowers the computational 

overhead and minimizes latency in classification. 

Furthermore, the high precision and recall rates reduce the 

risk of false alarms, making the system suitable for real-time 

monitoring across thousands of heterogeneous IoT devices. 

Future enhancements such as model compression, 

quantization, and incremental learning can further support 

deployment in dynamic and large-scale environments. 

Limitations and Ethical Considerations 

Although the optimized MLP framework achieves 

near-perfect detection performance, several limitations 

remain. First, the RT-IoT2022 dataset, while realistic, 

may not fully capture the diversity of IoT hardware 

platforms, network topologies, and evolving attack types 

such as zero-day or ransomware, introducing potential 

dataset bias. This raises concerns about the 

generalizability of the results when deployed in 

heterogeneous or large-scale IoT environments. Second, 

the exceptionally high accuracy scores suggest possible 

risks of overfitting to the dataset’s characteristics, 

highlighting the need for further evaluation on unseen or 

real-world data streams. Third, the study did not 

incorporate adversarial robustness testing, which is 

increasingly relevant given adaptive attack strategies. 

From a deployment perspective, while the model is 

lightweight, integration into distributed IoT networks may 

require additional considerations such as secure update 

mechanisms, compatibility with low-power devices, and 

scalability under high traffic loads. Ethical concerns also 

arise in intrusion detection, as monitoring network traffic 

could inadvertently expose sensitive user information. 

Ensuring data anonymization, compliance with privacy 

regulations, and responsible use of detection outputs are 

therefore essential. Future research should explore 

privacy-preserving training methods, such as differential 

privacy and federated learning, alongside robustness 

enhancements to strengthen the trustworthiness and 

adaptability of IoT intrusion detection systems. 

Conclusion 

IoT connects smart devices, sensors, and cloud-based 

infrastructures, transforming many industries.  IoT 

settings are becoming more vulnerable to a variety of 

threats as they grow in size and complexity.  DoS, DDoS, 

brute-force SSH attacks, network scans, and ARP 

poisoning threaten IoT ecosystem data confidentiality, 

system availability, and operational integrity.  ML and DL 

have become useful tools for real-time attack detection 

and threat classification to address cybersecurity issues.  

We used the RT-IoT2022 dataset to optimize an MLP 
model that detects and classifies various cyberattacks.  

The realistic IoT dataset captured normal and hostile 

behaviors, providing a solid foundation for model training 

and evaluation.  The optimized MLP model, with 

hyperparameter tweaking and feature selection, achieved 

high accuracy (99.9838%), precision, recall, and F1-

scores nearing 99.98%.  The model outperforms KNN, 

LR, NB, SVM, DT, and RF in distinguishing normal and 

malicious network activities with excellent reliability and 

resilience.  Deploying the optimized model in real-time 

IoT contexts for live threat detection can expand this 
research.  Federated learning for privacy-preserving training 

across distributed IoT devices and transformer-based models 

for feature extraction can be explored in the future.  Adding 

attack scenarios and multi-source data streams could also 

increase the detection framework's generalization and 

adaptability in dynamic IoT environments. 
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