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Abstract: The Internet of Things (IoT) is revolutionizing industries by
connecting billions of smart devices, enabling automation and information
exchange. The expansion of 10T ecosystems has simultaneously increased
the surface area for cyberattacks. These environments are particularly
vulnerable to a wide range of threats, such as Distributed Denial-of-Service
(DDoS), poisoning, brute-force SSH intrusions, and various network
reconnaissance techniques. The dynamic nature of loT traffic makes
traditional security measures inadequate, thereby necessitating intelligent
and adaptive solutions. This study leverages Artificial Intelligence (Al) to
combat the growing cybersecurity challenges in 10T. An optimized Multi-
Layer Perceptron model is designed to identify and classify cyberattacks with
high precision. Using the RT-10T2022 dataset, which includes realistic
network traffic from 0T devices and multiple attack vectors, the model is
trained on the 35 most relevant features selected from a total of 85 using
permutation importance. The dataset encompasses both benign and
adversarial traffic collected via advanced monitoring tools like Wireshark
and Zeek. Through rigorous preprocessing, feature engineering, and
hyperparameter tuning, the proposed MLP model shows exceptional
performance with an accuracy of 99.98. Comparative analysis further shows
the superiority of the optimized MLP model over traditional ML algorithms.
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Introduction

10T has revolutionized modern digital infrastructure
by enabling seamless interaction between physical
devices through the internet (Farooqi et al., 2023).
Initially conceptualized in the early 2000s, 10T has
rapidly evolved from basic sensor networks to a
sophisticated ecosystem encompassing smart homes,
healthcare systems, industrial automation, and smart
cities (Venckauskas et al., 2024). By embedding sensors
and actuators in everyday objects, 10T enables real-
time data collection, processing, and decision-making
(Cherfi et al., 2025). With the integration of advanced
communication protocols like 5G, edge computing, and
cloud platforms, 1oT now supports billions of
interconnected devices globally. Current trends highlight
the growing adoption of Al-powered 10T, Digital Twins,
and blockchain-enabled secure transactions, emphasizing
the shift toward intelligent, autonomous, and self-learning
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systems (Hisham et al., 2023).

The expansion of 10T has also widened the threat
surface for cyberattacks, leading to significant security
and privacy challenges. 10T systems are inherently
vulnerable due to resource-constrained devices,
heterogeneous architectures, and weak authentication
mechanisms (Gurfidan, 2024). Common cyber threats
include DoS, DDoS, sniffing, botnet attacks, data
exfiltration, firmware manipulation, and ransomware.
According to recent cybersecurity reports, there has
been a surge of over 300% in loT-based attacks in the
last five years, with threat actors increasingly
exploiting unpatched devices and misconfigured
networks (Alhchaimi, 2024). These vulnerabilities not
only jeopardize user privacy and data integrity but also
threaten critical infrastructure operations, making security
a top priority in the loT landscape (Mehmood et al.,
2025). To address these challenges, Al, ML, and DL
have emerged as powerful tools for proactive threat
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detection and classification in loT environments. These
technologies enable systems to learn from data,
identify anomalous behavior, and adapt to evolving
attack patterns in real time (Kamran et al., 2024). ML
algorithms such as Random Forests, Support Vector
Machines (SVM), and k-Nearest Neighbors (kNN), as
well as DL architectures like Convolutional Neural
Networks (CNNSs), Long Short-Term Memory (LSTM),
and Autoencoders, have been successfully applied to
IDS for 10T. By leveraging pattern recognition, feature
extraction, and model generalization, these intelligent
models enhance the resilience and responsiveness of
10T networks (Airlangga, 2024). In this study, a Multi-
Layer Perceptron (MLP) model is used on the RT-1oT
2022 dataset for the identification and classification of
cyberattacks present in real-time 10T networks.

Literature Review

The literature on attack detection in loT networks
highlights various techniques, including ML, genetic
algorithms, and statistical methods. While traditional
methods face scalability and efficiency issues, recent
advancements focus on lightweight, edge-based solutions
that optimize feature selection and improve detection
accuracy, addressing attacks. Malik and Dutta (2023)
proposed an ML-based framework for detecting DDoS
attacks in 10T networks using the 10T-CIDDS dataset. It
emphasizes data enrichment, advanced feature
engineering, and performance comparison of classifiers.
Results show that RF achieved the best accuracy and
efficiency with reduced false positives and optimal
feature selection. The study focuses solely on DDoS
attacks, uses limited models, and lacks evaluation across
multiclass scenarios and real-time environments. Saiyed
and Al-Anbagi (2024a) proposed DEEPShield, a deep
ensemble learning system combining CNN and LSTM
with unit pruning to detect high- and low-volume DDoS
attacks in 10T environments. It introduces a novel HL-10T
dataset and demonstrates over 90% accuracy across
multiple datasets, optimizing performance for edge
deployment with reduced resource usage. The system may
face generalization challenges across unseen attack types
and lacks evaluation on real-world, heterogeneous loT
network configurations.

Srivastava et al. (2023). This study addresses loT
security by proposing a flexible strategy to detect and
counteract malicious activities without burdening loT
devices. Using ML, it compares Linear and Non-Linear
SVM, showing that Non-Linear SVM significantly
improves detection accuracy from 93 to 97.8%, enhancing
security in diverse 10T environments. The approach lacks
testing on large-scale real-world 10T networks and may
struggle with scalability and evolving attack patterns.
Alabsi et al. (2023) introduce a dual CNN-based
framework for detecting 10T network attacks, where the

first CNN selects crucial features and the second performs
detection. Using the BoT loT 2020 dataset, the model
achieves high accuracy and outperforms traditional DL
methods, showcasing its effectiveness in loT threat
detection. The model is limited by reliance on a single
dataset and may face challenges when generalized to other
10T network scenarios.

Alani and Damiani (2023) present a lightweight,
explainable ensemble-based machine learning system for
detecting reconnaissance attacks on 10T devices.
Designed for resource-constrained environments, the
system accurately identifies scanning behavior early in
attack campaigns, achieving 99\% accuracy with very low
false positive (0.6\%) and false negative (0.05\%) rates
during testing. The system’s performance may vary with
different attack types or newer datasets, and scalability
across diverse 10T platforms remains untested. Saiyed and
Al-Anbagi (2024b) propose the Genetic Algorithm and t-
Test for DDoS Attack Detection (GADAD) system for
loT networks. It uses edge-based technologies and a
custom HL-1oT dataset to optimize feature selection with
GAStats. The system trains various tree-based models,
demonstrating improved detection efficiency and reduced
computation time for DDoS attacks. The system may face
scalability challenges in large-scale 10T networks with
diverse attack types beyond DDoS.

Preliminaries

The growing ecosystem of the 10T has introduced new
opportunities for innovation across multiple domains.
However, its rapid expansion has also introduced various
security vulnerabilities, prompting the need for robust
cyberthreat detection mechanisms. This section outlines
the fundamental concepts related to loT and the
cyberthreat landscape, followed by a detailed discussion
of Al models commonly used for threat detection in loT
systems.

loT: Overview and Cybersecurity Challenges

10T represents a network of connected devices capable
of gathering, transmitting, and processing data without
any human intervention. While 10T enables enhanced
automation, monitoring, and data-driven decision-
making, it also presents significant security and privacy
concerns (Li, 2024). The heterogeneous nature of devices,
constrained computational resources, lack of standardized
security protocols, and the use of outdated firmware
contribute to a wide attack surface. loT systems are
increasingly targeted by cyberattacks such as DoS, DDoS,
MitM, spoofing, phishing, firmware modification, and
botnet infiltration. These attacks aim to compromise data
integrity, confidentiality, and availability, which can have
catastrophic consequences, especially in sectors like
healthcare, smart grids, and industrial control systems
(Sharma and Babbar, 2023).
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Al Models for Threat Detection

To detect and classify cyberthreats in 10T
environments, a wide range of ML and DL algorithms are
employed. Below is an overview of several prominent
models along with their mathematical formulations
(Srinivasan, 2024).

K-Nearest Neighbors

Using the majority class of a data point's k closest
neighbors in the feature space, KNN is a non-
parametric learning method for classification. The
Euclidean distance is commonly used to calculate the
similarity using Eqg. 1:

d(u,v) = Y2, (W — vy)? 1)

Where (u = uq,uy, ..., U,) and (v = vy, v,, ..., 10,)
are two data points in (n)-dimension space.

Logistic Regression

A linear model called LR is applied to situations
involving binary classification. It uses the logistic
function, which is provided in Eq. 2, to forecast the
likelihood that a given input (x) belongs to a specific
class:

P(v=1Ju) = o(wTu+b) (2)

Where P(v = 1|u),w, b, and u are the conditional
probability that u belongs to 1, the weight vector, bias,
and input feature vector.

Naive Bayes

According to Eq. 3, NB is a probabilistic classifier that
relies on the Bayes theorem and assumes feature
independence:

P|U) = (P(v) * TP (u;|v))/P(U) @)

Where P(v|U) is the posterior probability of class v
given predictor U. Bayes’ theorem, expressed as Eq. 4. It
assumes conditional independence between features,
meaning that each feature contributes independently to
the probability of the class:

Posterior Prior X Likelihood / Evidence 4

Support Vector Machine

As shown in Eg. 5, SVM seeks to identify the best
hyperplane that divides the classes with the greatest
margin:

f)=wlx+b (5)

Classification is determined by the sign of
f(x): R™ - R, where w and b are the model parameters.

Decision Tree

To maximize information gain, a DT iteratively
divides the dataset into subgroups according to feature
values. The entropy-based Information Gain (1G) is
determined by Eq. 6:

16(S,4) = E(S) = Zvevanesta) 1) E(S:) ®)

Where S, E(S), and A are the dataset, entropy, and
attribute used for splitting, respectively, and

E(S) = - XK pilog, p; 7

Where p; represents the proportion of class i in the
dataset S, and k is the total number of classes. Entropy
quantifies the impurity or uncertainty in the dataset.

Random Forest

RF is an ensemble of DT that outputs the mode of
class predictions from individual trees. The general
prediction for classification is given by Eq. 8:

? = mode (T, (w), T, (W), ..., Trn(w)) (8)

Where T;(u)is is the prediction of the i-th decision
tree. The most frequently predicted class across DT is
the mode, which can be defined as Eq. 9:

mode(ay, ay, ..., a,) = argmax e, 1(q; = ¢) 9)
c

Where 1(a; = ¢) is an indicator function that equals
1ifa; = c, and O otherwise.

Multi-Layer Perceptron

MLP is a feedforward NN with one or more hidden
layers. The output of a neuron in layer | is computed as
Eq. 10:

a® =o(WWal-b +p®) (10)

Where a® is the activation at layer 1, W® is the
weight matrix, b® is the bias, and o is the activation
function. These models' capacity to manage intricate
patterns and abnormalities has led to their widespread
adoption for 10T intrusion detection. This work uses
the RT-1oT 2022 dataset and an MLP model to identify
and categorize different kinds of cyberattacks in real-
time loT networks.

Materials and Methods

This section outlines the methodological framework
adopted for detecting and classifying cyberattacks in
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real-time 10T environments. The proposed pipeline
consists of four key stages: Data acquisition,
preprocessing, feature selection and hyperparameter
optimization, and classification using an MLP model.
The overall objective is to accurately identify and
categorize malicious activity within a heterogeneous
10T infrastructure. Figure 1 depicts the framework for
the proposed model.

Correlation

Cleaning and Analysis and

Normalization PCA Info

‘ Data Collection H Data Preprocessing H Feature Selection J
L Train-Test Split
Optimized MLP model
< B < (80:20) }

Hyper-
-parameter
Tuning

‘ Model Evaluation

ot i

Data Collection

The vast, unique RT-10T2022 dataset from the
Kaggle repository simulates normal and adversarial
processes in real-time 10T systems. It simulates real-
world network environments with a variety of devices

and attack scenarios. The dataset includes
ThingSpeak-LED,  Wipro-Bulb, and MQTT-
Temperature sensor network activity. Metasploit,

Hping, Slowloris, and Nmap-based reconnaissance
patterns (TCP scan, UDP scan, OS detection, FIN scan,
and XMAS Tree scan) are simulated cyberattacks.
ARP poisoning and DOS SYN attacks are added to
represent further threats. By connecting attacker and
victim devices to a router, network traffic was
recorded. Zeek (previously Bro) with the Flowmeter
plugin extracts bidirectional traffic features. Traffic
was captured and exported as PCAP files using
Wireshark, an open-source network monitoring
program. Assailants have 50 machines while victims
have 5 departments, 420 workstations, and 30 servers.
The dataset encapsulates system logs and network
traces from each device, with 80 extracted features. It
includes 123,117 records spanning 9 attack types:
DOSSYNHping, ARPPoisoning, NMAPUDPScan,
NMAPXMASTreeScan, NMAPOQOSDetection,
NMAPTCPScan, DDOSSlowloris,
MetasploitBruteForceSSH, NMAPFINScan; and 3
normal traffic patterns: MQTT, ThingSpeak, and
WiproBulbDataset.

Due to its comprehensiveness, real-world relevance,
and deep coverage of multiple attack scenarios, the RT-
loT 2022 dataset was chosen over other publicly
available 10T security datasets. RT-1oT 2022 mimics a
genuine loT architecture with a wide range of normal
and harmful behaviors, unlike previous datasets that
focused on network traffic or limited attack types. It
uses data from ThingSpeak-LED, Wipro-Bulb, and
MQTT-based 10T devices and meticulously simulated
attacks, including DDoS (Hping, Slowloris), ARP
poisoning, SSH brute-force, and different Nmap
scanning methods. This dataset shows current loT
network traffic more realistically with 85 features
collected using Wireshark, Zeek, and Flowmeter. Its
bidirectional traffic and system logs across 420
machines and 50 attacker systems make it ideal for
training sophisticated detection algorithms.

Data Preprocessing

The raw dataset was initially processed to handle
missing values and remove redundant or irrelevant
records. Noise and duplicates were eliminated to
improve training consistency. Following data cleaning,
normalization, and standardization were applied to
ensure all feature values fall within a uniform range,
particularly critical for MLP models sensitive to scale
variations. The dataset was then divided into training
and testing sets using an 80:20 split ratio. This ensured
that the model was trained on a representative majority
of the data while retaining sufficient unseen samples
for performance evaluation.

Feature Selection and
Optimization

Hyperparameter

The selection of features has been performed using
correlation-based analysis and feature importance
metrics to decrease dimensionality and enhance model
effectiveness. Out of the original 85 features, the top
35 most relevant features were selected based on their
contribution to classification accuracy. Table 1 shows
the selected features along with their permutation
importance. To optimize the MLP model,
hyperparameter tuning was conducted using grid
search and cross-validation. The objective was to
minimize loss and maximize classification accuracy.
The best-performing parameters identified through this
process are: Activation Function: ReLU, hidden layer
sizes: (100), (150), (200), L2 penalties: 0.0001,
0.00005, batch sizes: 32, 64, 128, Learning Rate:
Adaptive, and Solver: Adam. These refined
hyperparameters were selected after extensive testing
to balance learning capacity, convergence speed, and
generalization.
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Table 1: Features Based on Permutation Importance from DT Model

Rank Feature Name Permutation Rank Feature Name Permutation
Importance Importance
1 flowACK\_flagcount 0.345 19 flowiat\_avg 0.020
2 bwdpkts\_payloadavg 0.065 20 fwdiat\_min 0.018
3 fwdpkts\_payloadavg 0.048 21 bwdbulk\_bytes 0.016
4 bwdiat\_min 0.038 22 bwddata\_pktstot 0.015
5 fwdpkts\_tot 0.032 23 flowpkts\_payloadstd 0.014
6 bwdpkts\_payloadmin 0.031 24 bwdheader\_sizetot 0.014
7 flowSYN\_flagcount 0.030 25 bwdiat\_tot 0.013
8 flowiat\_min 0.029 26 bwdpkts\_tot 0.012
9 bwdpkts\_payloadmax 0.027 27 bwdpkts\_persec 0.011
10 bwdpkts\_persec 0.026 28 flowpkts\_payloadavg 0.010
11 bwdpkts\_payloadstd 0.026 29 fwdheader\_sizemin 0.009
12 flowFIN\_flagcount 0.025 30 flowpkts\_payloadmin 0.009
13 flowCWR\_flagcount 0.024 31 flowpkts\_payloadtot 0.008
14 bwdbulk\_rate 0.024 32 flowpkts\_persec 0.008
15 bwdURG\_flagcount 0.023 33 flowduration 0.007
16 bwdpkts\_payloadtot 0.023 34 bwdiat\_max 0.007
17 fwdpkts\_payloadmax 0.021 35 fwdpkts\_payloadstd 0.006
18 fwdpkts\ payloadtot 0.020
Attack Detection and Classification Using indicates the model performs well in both positive and

Optimized MLP

The preprocessed and feature-reduced dataset was
used to train the improved MLP model, which was then
used to categorize the traffic into harmful and normal
categories. An input layer, many hidden layers, and an
output layer make up MLP, a deep feedforward neural
network. For weight optimization, it uses stochastic
gradient descent and backpropagation.  Accuracy,
precision, recall, F1-score, and ROC-AUC were among
the performance measures used to assess the final model.
The effectiveness of the suggested strategy was validated
by the trained model's great skill in differentiating
between benign and malevolent patterns in real-time loT
contexts.

Results and Discussion

This section presents the evaluation metrics used to
evaluate the performance of the proposed model for loT
attack detection. All experiments have been implemented
in Python 3.10 using the Scikit-learn and TensorFlow
libraries. The experiments are conducted on a system
equipped with an Intel Core i7-13700 CPU, 32 GB RAM,
and an NVIDIA RTX 4060 GPU with 16 GB memory.
The following subsections provide detailed insights into
each metric, along with their respective equations and the
performance outcomes derived from experimental
analysis.

Accuracy

The percentage of correctly categorized cases out of
all the samples is known as accuracy. It gives a general
indication of how accurate the model is. Higher accuracy

negative class predictions. Figure 2 and Table 2 illustrate
the performance improvement of the MLP model after
optimization. Before optimization, the model achieved an
accuracy of 99.7888%, precision of 99.79%, recall of
99.78%, and Fl-score of 99.78%. After optimization,
there was a noticeable enhancement across all metrics,
with the accuracy rising to 99.9838%, precision to
99.98%, recall to 99.98%, and F1-score also reaching
99.98%. These results highlight the significant impact of
the optimization process on the overall performance of the
MLP model.

Precision

The precision measures the percentage of positive
identifications that were truly accurate. When false
positive costs are substantial, it is essential. High
precision suggests that the model returns more relevant
than irrelevant results.

Recall

The ratio of true positives that are correctly identified
is measured by recall, which is sometimes referred to as
sensitivity or true positive rate. Recall is essential in
applications where missing a positive prediction (false
negative) has severe consequences.

Table 2: Comparison of MLP Model Performance Before and
After Optimization

Metric Before Optimization ~ After Optimization
(%) (%)
Accuracy 99.788 99.9838
Precision 99.79 99.98
Recall 99.78 99.98
F1-Score 99.78 99.98
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Fig. 2: Before optimization and after optimization analysis of
the MLP model

F1-Score

The harmonic mean of recall and precision is known
as the F1-Score. It balances their trade-offs, particularly
in cases where the distribution of classes is unbalanced. A
higher F1-score indicates both high precision and high
recall.

Figure 3 and Table 3 present a performance
comparison of the optimized MLP with various
traditional ML models. The KNN model achieved
98.67% accuracy, 98.70% precision, 98.65% recall,
and 98.66% F1-score. LR followed with 97.85%
accuracy, 97.90% precision, 97.82% recall, and
97.85% F1-score. NB showed relatively lower
performance with 94.32% accuracy, 94.10% precision,
94.50% recall, and 94.30% F1-score. SVM performed
well, scoring 98.92% across accuracy, precision, recall,
and F1-score. DT achieved 99.21% in all four metrics,
while RF slightly improved with 99.78%. The
optimized MLP model recorded 99.79% in accuracy,
precision, recall, and F1-score. Notably, the proposed
model outperformed all others, achieving the highest
scores of 99.98% across all evaluation metrics.

Table 3: Comparison of Proposed Model with Other Machine
Learning Models

Model Accuracy  Precision  Recall F1-Score
(%) (%) (%) (%)
KNN 98.67 98.70 98.65  98.66
LR 97.85 97.90 97.82  97.85
NB 94.32 94.10 9450 94.30
SVM 98.92 98.95 98.89  98.92
DT 99.21 99.23 99.20 99.21
RF 99.78 99.79 99.77  99.78
MLP 99.79 99.79 99.78  99.78
Proposed 99.98 99.98 99.98  99.98

Table 4: Performance of Proposed Model under 5-Fold
Stratified Cross-Validation

Metric Mean + Std(%)
Accuracy 99.96+0.01
Precision 99.95+0.02
Recall 99.96+0.01
F1-Score 99.95+0.01
ROC-AUC 99.98+0.01

m KNN sNB mSVM =DT mRF =MLP = Proposed

100

LR
98
96
94 ‘ ‘
9
9%

Accuracy

Values(%)

-]

Precision Recall

Fl-score
Metrices

Fig. 3: Comparison analysis of the proposed model with other

ML algorithms

S

This study used the MLP model because it can learn
complicated, non-linear patterns in high-dimensional
datasets like RT-10T 2022. Traditional ML models like
KNN, NB, LR, and ensemble techniques like RF and
SVM work well, but they struggle to capture the complex
correlations between data in current loT traffic. DL
model MLP is a flexible architecture for automatic feature
extraction and representation learning. To maximize its
potential, adjust activation function, learning rate, hidden
layers, and solver approaches using hyperparameter
tuning and optimization procedures. The improved MLP
surpassed all benchmark models in detecting and
classifying loT security threats. Table 4 presents the
performance of the proposed model under 5-fold stratified
cross-validation. The proposed optimized MLP model is
lightweight, with a size of approximately 2.1 MB, making
it suitable for resource-constrained IoT environments. It
achieves an inference latency of ~2.3 ms per flow on a CPU
and under 1 ms on a GPU, with a memory footprint below
250 MB during runtime. These characteristics confirm its
feasibility for real-time intrusion detection at 10T gateways.
Although the optimized MLP is lightweight, further
comparisons with TinyML and pruned DT would provide
insights into edge deployment trade-offs.

Real World
Considerations

Deployment and  Scalability

While the optimized MLP model demonstrates
excellent performance in controlled experimental settings,
practical deployment in large-scale loT ecosystems
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introduces additional challenges. 10T devices are typically
resource-constrained in terms of memory, power, and
processing capability. To address this, the proposed
model can be deployed in a hierarchical manner, where
lightweight intrusion detection agents operate on edge
nodes or gateways, and more computationally demanding
analysis is performed in fog or cloud layers. The
scalability of the approach is ensured by the reduced
feature set (35 out of 85), which lowers the computational
overhead and minimizes latency in classification.
Furthermore, the high precision and recall rates reduce the
risk of false alarms, making the system suitable for real-time
monitoring across thousands of heterogeneous IoT devices.
Future enhancements such as model compression,
quantization, and incremental learning can further support
deployment in dynamic and large-scale environments.

Limitations and Ethical Considerations

Although the optimized MLP framework achieves
near-perfect detection performance, several limitations
remain. First, the RT-10T2022 dataset, while realistic,
may not fully capture the diversity of loT hardware
platforms, network topologies, and evolving attack types
such as zero-day or ransomware, introducing potential
dataset bias. This raises concerns about the
generalizability of the results when deployed in
heterogeneous or large-scale 10T environments. Second,
the exceptionally high accuracy scores suggest possible
risks of overfitting to the dataset’s characteristics,
highlighting the need for further evaluation on unseen or
real-world data streams. Third, the study did not
incorporate adversarial robustness testing, which is
increasingly relevant given adaptive attack strategies.
From a deployment perspective, while the model is
lightweight, integration into distributed 10T networks may
require additional considerations such as secure update
mechanisms, compatibility with low-power devices, and
scalability under high traffic loads. Ethical concerns also
arise in intrusion detection, as monitoring network traffic
could inadvertently expose sensitive user information.
Ensuring data anonymization, compliance with privacy
regulations, and responsible use of detection outputs are
therefore essential. Future research should explore
privacy-preserving training methods, such as differential
privacy and federated learning, alongside robustness
enhancements to strengthen the trustworthiness and
adaptability of 10T intrusion detection systems.

Conclusion

IoT connects smart devices, sensors, and cloud-based
infrastructures, transforming many industries.  loT
settings are becoming more vulnerable to a variety of
threats as they grow in size and complexity. DoS, DDoS,
brute-force  SSH attacks, network scans, and ARP

poisoning threaten 10T ecosystem data confidentiality,
system availability, and operational integrity. ML and DL
have become useful tools for real-time attack detection
and threat classification to address cybersecurity issues.
We used the RT-10T2022 dataset to optimize an MLP
model that detects and classifies various cyberattacks.
The realistic 10T dataset captured normal and hostile
behaviors, providing a solid foundation for model training
and evaluation. The optimized MLP model, with
hyperparameter tweaking and feature selection, achieved
high accuracy (99.9838%), precision, recall, and F1-
scores nearing 99.98%. The model outperforms KNN,
LR, NB, SVM, DT, and RF in distinguishing normal and
malicious network activities with excellent reliability and
resilience. Deploying the optimized model in real-time
loT contexts for live threat detection can expand this
research. Federated learning for privacy-preserving training
across distributed loT devices and transformer-based models
for feature extraction can be explored in the future. Adding
attack scenarios and multi-source data streams could also
increase the detection framework's generalization and
adaptability in dynamic loT environments.
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