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Abstract: Epilepsy, a widely recognized neurological disorder, results from 

irregularities in the transmission of electrical impulses among neurons in the 

brain. Over the last two decades, significant efforts have been made by 

researchers and clinicians to develop effective methods for its early detection 

and management. The electroencephalogram (EEG), a non-invasive tool 

used to monitor brainwave activity, has become a central device in seizure 

diagnosis. With recent advances, EEG-based analysis is increasingly 

supported by machine learning and metaheuristic optimization approaches to 

enhance diagnostic accuracy and efficiency. This research proposes an 

optimized framework for seizure detection that leverages a Regularized 

Extreme Learning Adaptive Neuro-Fuzzy Inference System (R-ELANFIS) 

as the primary classifier. To reduce computational overhead and improve 

solution accuracy, a hybrid metaheuristic algorithm combining Particle 

Swarm Optimization (PSO) and Parrot Optimization (PO) is applied to fine-

tune the model. The Bonn University EEG dataset, known for its reliable 

short-term seizure recordings, is used to evaluate system performance. Key 

classification metrics such as accuracy, sensitivity, and specificity reflect the 

model’s strong predictive capability with accuracy reaching up to 98.3%. The 

proposed method demonstrates the potential for high-performance EEG-

based seizure detection paving the way for future integration with edge 

computing devices to support remote clinical diagnostics and continuous 

monitoring in real-world healthcare applications. 

Keywords: R- ELANFIS, WPT, Seizure Detection, Sensitivity, Specificity, 

AUC, 10-fold cross-validation, Transformer, EEGNet. 

 

Introduction 

Health issue is an important factor and the 

complicacies arises related to this needs to face every 

sort of challenges. In this context, a brain disorder 

which is otherwise called as epilepsy is a challenging 

issue and from the past twenty years neurologists and 

researchers are devising new techniques to detect and 

predict the presence of disorder signals in brain. Due to 

this brain disorder, the symptoms observed in outer 

parts of the body is called as seizure. According to the 

statistical report of World Health Organization, nearly 
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50 million of the total population of the world are 

affected with this disease. This seizure symptoms are 

of two types: partial or focal seizure and generalized 

seizure. In case of partial seizure, the disease is 

observed in a small portion of the brain but in case of 

generalized seizure, the total brain is affected. Thus, 

generalized seizure is one type of life-threatening risk-

based seizure, happened in form of brain stroke, brain 

tumour etc. So, the clinical treatment is the only 

solution to escape from the seizure complexities 

(Shoka E. et al., 2023). The seizure signals are 

classified as pre-ictal, ictal and post-ictal. Figure 1 

delineates the states of the EEG signal along with the 

EEG signal representation of CHB-MIT dataset, Bonn 

University EEG dataset and Kaggle EEG dataset. 

Presently, metaheuristic algorithms are emerging as 

the most powerful and popularly used algorithms which 

are integrated with machine learning algorithms 

(Balam V., 2024). There are different types of 

metaheuristic algorithms such as: nature-inspired, bio-

inspired, swarm-inspired and trajectory-based 

algorithms. In this context, some of the well-known 

varieties of this kind are: Genetic Algorithms (GA), 

Particle Swarm Optimization (PSO) Algorithm. 

Grasshopper Optimization (GO) algorithm, Farmland 

Fertility (FF) algorithm, Cuckoo Search (CS) 

Algorithm, Parrot Optimization (PO)Algorithm etc. are 

devised for reducing complexities in the computational 

overhead (Ahmad I.  et al., 2024). 

Although notable progress has been made in seizure 

detection, several significant limitations remain. 

Numerous existing techniques involve intricate 

preprocessing, which hampers their practical use in 

real-time systems. Some models are tested only on 

specific datasets, limiting their generalizability across 

different EEG signals. Others demand high 

computational power or risk overfitting due to dataset-

specific features. Additionally, approaches using 

complex architectures, like adversarial networks or 

hybrid methods introduce challenges in tuning and 

implementation. These issues underline the importance 

of developing more streamlined, adaptable, and reliable 

models for effective and wide-ranging seizure 

detection. 

To address the limitations of earlier seizure 

detection models, we propose an enhanced approach 

that combines a Transformer-based EEGNet model for 

feature extraction with the Regularized Extreme 

Learning Adaptive Neuro-Fuzzy Inference System (R-

ELANFIS) classifier for accurate decision-making. To 

convert EEG signals effectively, we apply the Wavelet 

Packet Transform (WPT), which captures both time 

and frequency features. Furthermore, to improve 

convergence and model precision, we implement a 

hybrid optimization technique integrating Particle 

Swarm Optimization (PSO) with the Parrot 

Optimization (PO) algorithm. This hybrid method fine-

tunes the model parameters efficiently reducing 

training loss and time. Our final results, achieved at 100 

epochs, shows an accuracy of 98.3%, sensitivity of 

97.8%, specificity of 98.6%, AUC of 0.98, and low loss 

(0.043) in 24.01 seconds. 

The remaining parts of the paper is elaborated in 

section 2 to section 5. Section 2 includes Literature 

Review, Section 3 is the core part of the experiment 

explains about the Methodology used with the sub-

sections of 3.1 elaborates flow of work, 3.2 elaborates 

the features of experimental Bonn EEG dataset, 3.3 

states the techniques of EEG data pre-processing, 3.4 

states data augmentation, 3.5 states about the proposed 

Transformer enabled EEG Net model, 3.6 presents the 

EEG signal to text conversion technique, 3.7 presents 

the role of RELANFIS in the conversion process, 3.8 

presents the feature selection and  detection technique 

and 3.9 presents the fine-tune technique. Section 4 

presents experimental results and discussion and 

section 5 state the conclusion and future scope of the 

proposed work. 

 

Fig. 1.  EEG Signals
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Literature Review 

Seizure detection represents a challenging research 

domain that increasingly leverages robust machine 

learning techniques integrated with metaheuristic 

optimization approaches. This section reviews relevant 

prior research that informs the present study. 

Signal Processing and Feature Extraction 
Approaches 

Kaushik et al. (2022) proposed a seizure detection 

technique employing discrete wavelet transform 

(DWT) sub-bands tested on the Bonn University 

dataset, utilizing Hjorth parameters to preserve signal 

efficiency and achieving high classification accuracy. 

Raghu et al. (2019) implemented DWT followed by 

Support Vector Machine (SVM) classification for 

distinguishing seizure signals from normal brain 

activity, achieving 100% sensitivity on the CHB-MIT 

dataset and 94.21% accuracy on the Bonn dataset. 

Wavelet Packet Transform (WPT), which 

represents signals in joint time-frequency domains, has 

been extensively applied to EEG analysis. Xue et al. 

(2003) and Wu et al. (1996) provided comprehensive 

explanations of WPT methodology, including detailed 

decomposition procedures applicable to biomedical 

signal processing. Andrzejak et al. (2001) established 

fundamental approaches for representing brain 

electrical activity patterns to characterize brain states 

and quantify seizure signal presence. 

Deep Learning and Neural Network Approaches 

Li et al. (2024) and Liu et al. (2024) developed 

supervised contrastive learning frameworks for end-to-

end seizure detection by optimizing classification 

boundaries. Their Cos-CNN architecture achieved 75% 

memory cost reduction through quantization steps and 

enabled real-time, low-power operation via Field 

Programmable Gate Array (FPGA) implementation. 

Shea et al. (2020) proposed neonatal seizure 

detection directly from raw multi-channel EEG signals 

using Convolutional Neural Networks (CNN), 

compiling a dataset exceeding 834 hours and validating 

performance against publicly available benchmarks. 

Recent advances in deep learning for seizure detection 

have incorporated Long Short-Term Memory (LSTM) 

networks and attention-based mechanisms (Xu et al., 

2024; Ali et al., 2024; Grubov et al., 2024; Yamamoto 

et al., 2023) to capture temporal dependencies in EEG 

signals and improve detection accuracy for complex 

seizure patterns. 

Optimization-Based Approaches 

Mohapatra et al. (2022) implemented seizure 

detection using enhanced Atom Search Optimization 

(ASO) augmented with Lévy flight mechanisms, a 

stochastic optimization approach for constraint-based 

problems, achieving superior accuracy, sensitivity, and 

specificity metrics. The present study builds upon 

Parrot Optimizer (PO) techniques (Lian et al., 2024) as 

an enhanced metaheuristic algorithm that improves the 

velocity and position update mechanisms of traditional 

Particle Swarm Optimization (PSO) (Gad et al., 2022). 

Yang et al. (2021) developed a hybrid PSO-Sparrow 

Search Algorithm (SSA) approach, demonstrating 

performance advantages over conventional 

optimization techniques including Genetic Algorithms 

(GA), Firefly Algorithm (FFA), and Cuckoo Search. 

Zhu et al. (2011) devised PSO variants specifically 

designed for constrained optimization problems, 

outperforming existing optimization frameworks in 

benchmark evaluations. 

Intelligent Classification Systems 

Evolving Local Adaptive Neuro-Fuzzy Inference 

System (ELANFIS) represents an intelligent fuzzy 

logic-based classification technique applicable to 

decision-making and forecasting tasks. Shihabudheen 

et al. (2017), Tushar et al. (2015), and Yu et al. (2024) 

implemented Recurrent ELANFIS (R-ELANFIS) 

integrated with wavelet transform techniques, 

providing detailed implementation guidelines for 

intelligent support systems in biomedical applications. 

Related Neurological Disorder Detection 

Beyond epileptic seizure detection, related 

neurological disorder identification has received 

significant attention. Singh et al. (2024) and Divvala et 

al. (2024) investigated Alzheimer's disease detection 

methodologies, exploring preventive measures and 

early symptom identification to facilitate timely 

intervention. Qiu et al. (2024) emphasized the critical 

importance of Parkinson's disease detection models, 

given the life-threatening nature and progressive 

neurological deterioration associated with this 

condition. Fıçıcı et al. (2022) specifically addressed 

temporal lobe epilepsy detection, achieving high 

accuracy through specialized signal processing 

approaches. 

Table 1 summarizes additional research findings 
from the reviewed literature (references 28-49), 
presenting methodological approaches, datasets 
employed, and performance metrics achieved across 
various seizure detection studies. 
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Table 1. Findings from Review Papers 

References Database 
Preprocessing 

Technique 
Model Limitations 

(KhalidN.et al., 2024) UC San Dieg  (PSD) 
Gated Recurrent Unit 

(GRU) 

Limited generalizability; tested on 

a single dataset only 

(Islam T., et al., 2023) 
TUH EEG 

corpus database 

CWT, Spectrogram, 

and Wigner-Ville 

distribution 

DenseNet201, 

DenseNet169, 

High computational cost due to 

multiple complex transforms 

(Wang Q, et al.,  2023) Bonn 
bandpass filtering and 

ICA 

SVM-KSRC (kernel 

sparse representation 

classification) 

Kernel methods may not scale well 

with larger datasets 

(Xu Z.et al.,   2023) PhysioNet 
Bandpass filtering 

and ICA 
SVM and KNN 

Accuracy varies; lacks consistency 

across datasets 

(Khare S. K, et al., 2023) AZD and NC (AFAWT) Adazd-Net 
Limited public availability of AZD 

dataset hinders reproducibility 

(Wu T., et al.,  2023) CHB-MIT 

Bandpass Filtering 

Notch Filtering and 

ICA 

Spatial Feature 

Fused Convolutional Net

work (ScNet) 

Complex preprocessing may 

hinder real-time application 

(Rukhsar S., et al.,  2023) CHB-MIT Sequence pooling 
Lightweight Convolution 

Transformer (LCT). 

Sequence pooling may lose 

temporal detail 

(Tang S, et al., 2023) 
Luoxiong Road 

Station 

Area of Interest 

(AOI) Analysis and 

ICA 

CNN, LSTM 
Specific to activity detection; 

limited to single scenario 

(Jibon F. A, et al., 2023) 
CHB-MIT 

Dataset 
Stockwell transform 

Linear graph 

convolutional network 
(LGCN) 

May be overfitted to dataset-

specific features 

(SiddiqaH. A, et al., 

2023) 
CHFU, China 

Finite Impulse 

Response 
AutoML-based Random 

Forest estimator 

Lower accuracy and may lack 

robustness 

(KatusL.et al., 2023) 

West Kiang 

region of The 

Gambia 

Bandpass filter, ICA 
Functional near-infrared 

spectroscopy (fNIRS) 

fNIRS setup not standard in typical 

EEG studies 

(Mane S. A.et al., 2023) 
SEED and 

DEEP 
Azimuthal projection CNN and LSTM 

Projection methods may distort 

spatial features 

(Cao J. et al., 2023) 

Children’s 

Hospital, Zhejiang 

University School 

of Medicine 

Z-score 

normalization 

CNN and attenuation 

mechanism 

Over-reliance on normalization 

techniques 

(Cu X. et al., 2023) 
Children’s 

Hospital, Zhejiang 
University 

Z-score 

normalization and 

Min-Max 

normalization 

CNN 
Performance drops on real-world 

noisy data 

(HsiehY. Y. et al., 2022) CHB-MIT ICA 

Adversarial neural 

network with Joint-

Probability-

Discrepancy 

Adversarial training adds 

complexity, needs fine-tuning 

(Mallik P. et al., 2024) CHB-MIT DWT LSSVM 
Performance drops on real-world 

noisy data 

https://www.sciencedirect.com/topics/physics-and-astronomy/spectrogram
https://www.sciencedirect.com/topics/engineering/azimuthal
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Fig. 2. Steps of the Proposed Model including feature extraction and classification

Methodology 

Flow of Work 

The process begins with raw EEG signals from the 
nervous system, followed by normalization and feature 
extraction using Wavelet Packet Transform (WPT). 
Features from time, frequency, and chaotic domains are 
selected via ANOVA. A hybrid model combining PSO-
PO and Regularized ELANFIS is applied, and 
performance is validated through 10-fold cross-
validation to classify normal and seizure EEG signals. 
And the details of the steps are shown in Figure 2. 

Clinical Datasets 

Bonn university dataset which is collected from 
Physionet is a publicly available EEG database centre 
(Andrzejak R. G.et al., 2001). It is a multiclass EEG 
signal database which is collected from the url: 
https://www.upf.edu/web/ntsa/downloads/-
/asset_publisher/xvT6E4pczrBw/content/2001-
indications-of-nonlinear-deterministic-and-finite-
dimensional-structures-in-time-series-of-brain-
electrical-activity-dependence-on-recording-regi. 
There arefive classes present in the datasets, class A to 
class E and each dataset contains 100 txt files with 4096 
samples in ASCII format. Class A to class D contain 
normal signal and class E contains seizure signal. There 
are 100 channels present with each data set. When the 
signals are collect5ed from the patient, the electrodes 
are placed on the surface of the head of the patient 
positioning inside intracranial regions of the head for 
the time period of 23.6 seconds. Sample images are 
shown in Figure 3. 

Before preparing the data set for classification, the 
extracted data samples are then separated into training 
data and testing data. The time duration for the seizure 
signal in case of training data is 0.91 hours and testing 
data is 1.754 hours.  We use 51 number of seizure 
events for training data sample and 86 number of 
seizure events for testing data sample. 

Data Pre-Processing 

After successful data collection, the EEG images 
underwent a structured pre-processing pipeline to 
improve their quality and consistency. Initially, the 
images were converted to gray scale, followed by noise 
reduction using Gaussian and median filtering. 
Contrast was then enhanced using CLAHE to highlight 
important features. The images were resized to a 
standard dimension, and Min-Max normalization was 
applied to scale pixel values uniformly, ensuring 
readiness for accurate and efficient analysis. Figure 4 
shows the steps of the pre-processed images. 

Data Augmentation 

To enhance the variability of EEG image samples 
and improve the model’s generalization capability, a 
comprehensive data augmentation strategy was 
employed. This process helps mitigate overfitting by 
introducing diverse visual patterns into the training 
dataset. The applied transformations included image 
rotation, horizontal and vertical flipping, resizing, 
colour jittering, the addition of Gaussian noise, and 
intensity modifications. These augmentations simulate 
realistic alterations that could occur in EEG imaging 
conditions, thereby enabling the model to learn more 
robust and generalized representations. Examples of 
these augmented images are illustrated in Figure 5. 
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Fig. 3. Bonn dataset EEG signal 

 

Fig. 4. Pre-processed Images 

 

Fig. 5. Sample images of augment data  

 

Fig. 6. Transformer based EEGNet architecture 
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Transformer-Enhanced EEGNet Model 

The transformer-enhanced EEGNet model 
integrates the lightweight design of EEGNet with the 
attention-based capabilities of transformer 
architectures. While EEGNet efficiently captures 
spatial features from multi-channel EEG data through 
depth wise and separable convolutions, transformers 
contribute by learning long-term dependencies and 
global temporal dynamics. This hybrid structure is 
particularly effective for identifying seizure-related 
patterns, as it can focus on subtle changes across time 
and channels. Its ability to model both local and global 
features makes it a strong choice for accurate and 
efficient seizure detection using EEG data in real-time 
applications. Architecture of the model is shown in 
Figure 6. 

Converting EEG Signals to Text Using Key Features 

EEG signal data can be converted into a text-based 

format by extracting and quantifying relevant 

neurological features. These include variations in 

amplitude, spike frequency, presence of high-frequency 

oscillations (HFOs), and signal complexity metrics like 

entropy or variance. The transformer-EEGNet model first 

processes EEG input to derive these features. A threshold 

is applied to isolate significant events, reducing noise and 

irrelevant fluctuations. The resulting numerical values are 

then structured as rows in a text file, where each row 

represents an EEG segment. This output can be directly 

used for seizure classification or further analysis. 

Regularized ELANFIS 

To achieve accurate conversion of EEG images into 

structured text data, a combined framework using 

Transformer-based EEGNet (TransEEGNet) and the 

Regularized Extreme Learning Adaptive Neuro-Fuzzy 

Inference System (Regularized ELANFIS) is proposed. 

Regularized ELANFIS is an advance version of ANFIS 

classifier which is an integrated part of the Fuzzy System 

and machine learning algorithms enriched with language 

representation and knowledge-based data representation 

acting as fast as ELM (Shihabudheen et al., 2017). The 

rules as follows: 

𝑖𝑓(𝑥𝑖  𝑖𝑠 𝐴𝑖1) 𝑎𝑛𝑑 (𝑥2 𝑖𝑠 𝐴𝑖2)𝑎𝑛𝑑 ∙∙∙∙∙ 𝑎𝑛𝑑 (𝑥𝑛 𝑖𝑠 𝐴𝑖𝑛)
  (1)            

𝑅𝑢𝑙𝑒 𝑅1 ∶ 

𝑡ℎ𝑒𝑛 (𝑦1  𝑖𝑠 𝛽𝑖1), (𝑦2  𝑖𝑠  𝛽𝑖2),∙∙ ∙ ∙ ∙    (𝑦𝑚  𝑖𝑠 𝛽𝑖𝑚)  

(2)            

Where 𝑖 = 1,2,∙ ∙∙∙ 𝐿  (there are L lines used for  

𝑥 = [𝑥1, 𝑥2, ⋯ ∙, 𝑥𝑛]
𝑇  𝑖𝑠  𝑐𝑟𝑖𝑠𝑝 𝑖𝑛𝑝𝑢𝑡  and 𝑦 = [𝑦1, 𝑦2⋯ ∙

, 𝑦𝑚]
𝑇 is crisp output.        (3)            

𝐴𝑖𝑗(𝑗 = 1,2, . . . , 𝑛)  are the linguistic variables for the 

inputs and 𝛽𝑖𝑘(k=1,2, …, m) are the crisp variables. 

  

Here the 𝛽𝑖𝑘  variables can be expressed as  

𝛽𝑖𝑘  = 𝜌𝑖𝑘0   + 𝜌𝑖𝑘1 .𝑥1 + 𝜌𝑖𝑘2  .𝑥2 + 𝜌𝑖𝑘𝑖  .𝑥𝑛   (4)            

𝜌𝑖𝑘𝑙(𝑙 = 0,1,2, . . . . . 𝑛) are the real valued parameters. 

The members grades of the input variables 𝑥𝑗 satisfy 𝐴𝑖𝑗 

in the rule I can be expressed as 𝜇𝐴𝑖𝑗(𝑥𝑗). 

The fuzzy logic expression for the firing string can be 

represented as 

𝑤(𝑥) = 𝜇𝐴𝑖1(𝑥1)⊗ 𝜇𝐴𝑖(𝑥2)⊗ …⊗ 𝜇𝐴𝑖𝑛(𝑥𝑛) (5)            

Here ⊗ referes ‘and’ operator in fuzzy logic. 

The normalized firing strength of each rule can be 

expressed as 

𝑤(𝑥) =
𝑤(𝑥)

∑ 𝑤𝑖(𝑥)
𝐿
𝑖=1

    (6)            

‘then’ part of the expression is linear network having 𝑝𝑖𝑘𝑙 
as its weitht variables. Here the system output is computed 

as 

𝑦 =
∑ 𝛽𝑖𝑤𝑖(𝑥)
𝐿
𝑖=1

∑ 𝑤𝑖(𝑥)
𝐿
𝑖=1

= ∑ 𝛽𝑖
𝐿
𝑖=1 𝑤 , ; 𝛽𝑖 = (𝛽𝑖1 , 𝛽𝑖1 ,

. . .   𝛽𝑖𝑚)      (7)            

Figure 7 represents the structure of an ELANFIS classifier 

TransEEGNet captures detailed spatial and temporal 

patterns through its attention-driven architecture, making 

it effective for detecting seizure-related features. These 

features are then refined by ELANFIS, which uses fuzzy 

logic and regularized learning to interpret signal 

characteristics with greater precision. This integration 

improves noise resistance, enhances feature clarity, and 

generates meaningful text-based outputs suitable for 

clinical evaluation and automated decision support. 

 

Fig. 7. Structural Representation of ELANFIS 
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The structural components of ELANFIS have 5 layers, 

such as input layer, membership function layer, 

normalization layer, consequent parameter layer and 

output layer. 

Input layer: The nodes present in the input layer are the 

variables which are connected with the membership 

function layer 

Membership function layer: It is expressed 

mathematically as 

𝑔(𝑥𝑗: 𝑎, 𝑏, 𝑐) =
1

1+|
𝑥𝑗 − 𝑐𝑖𝑗
𝑎𝑖𝑗

|

2𝑏𝑖𝑗
  (8)            

Where 𝑎𝑖𝑗, 2𝑏𝑖𝑗 and 𝑐𝑖𝑗 are represented as the premise 

parameters in fuzzy systems. Here 𝑐𝑖𝑗 finds the position 

and 𝑎𝑖𝑗  and 2𝑏𝑖𝑗  are used for shape representation. The 

premise parameters are selected randomly and subsequent 

parameters 𝜌𝑖𝑘𝑖  are learned by least square estimation 

technique. We trained the model over 100 epochs, 

observing steady performance improvements and reduced 

training time per epoch using optimized integration. The 

training findings of hybrid model values are stored in 

Table 2 and graphical presentation of training models 

shown in Figure 8. The findings of the EEG images to text 

conversion values are stored in Table 3. 

Table 2. Training findings of hybrid model 

Epoch 
Accuracy 

(AC%) 

Sensitivity 

(SN%) 

Specificity 

(SP%) 
AUC 

Time 

Taken 

(min) 

10 96.4 95.8 96.9 0.95 1.5 

20 97.1 96.5 97.5 0.96 3.2 

40 97.6 97.1 97.9 0.967 6.1 

60 97.9 97.4 98.2 0.974 9 

80 98.1 97.6 98.4 0.977 11.8 

100 98.2 97.7 98.5 0.979 14.5 

Fig. 8. Graphical presentation of training model 

Table 3. EEG Image to Text Conversion Table 

Patient_ID 

Amplitude 

Change 

(µV) 

Spike 

Density 

(spikes/s) 

HFO 

Rate 

(Hz) 

Entropy Variance 

Threshold > 35.0 > 2.5 
> 

180.0 
> 0.75 > 1.0 

EEG_001 45.3 3.1 210.5 0.82 1.25 

EEG_002 38.7 2.8 185.2 0.76 1.11 

EEG_003 51.2 3.6 230.9 0.89 1.39 

EEG_004 29.4 1.9 142.7 0.69 0.95 

EEG_005 60.8 4.2 256.3 0.94 1.52 

Feature Selection and Detection 

Wavelet Packet Transform (WPT) is one of the higher 

forms of Discrete Wavelet Transform (DWT) which 

consists of Wavelet Packets formed by continuously 

applying wavelet transforms with the approximation and 

detail coefficients (Mallik P. et al., 2024).  Structurally it 

is presented as a binary tree representing each node as 

frequency sub bands. It applies the various decomposition 

techniques denoising, and signal compression. At first the 

input signal crossed through wavelet filters. Depending 

upon the signal strength, specialized nodes are chosen for 

successive processing and the process repeated. Figure 9 

presents the structure of WPT for the discrete sampled 

signal x. 

 

Fig. 9. Structure of a Wavelet Packet Transform Signal 

𝑥 = (𝑥0 , 𝑥1 , , . . . , 𝑥2𝑗−1 )
𝑇
= 𝑥 |𝐽|(0).  (9)            

The  (𝐽 − 1)st level is as per the DWT.  

Data crossed through filters.  

0𝑥|𝐽−1|(0) = 𝐶𝐽
0𝑥 |𝐽−1|(0) = 𝐶𝐽x   (10)            

0𝑥|𝐽−1|(0) = 𝐷𝐽
0𝑥 |𝐽|(0) = 𝐶𝐽𝑥  (11)            

0𝑥|𝐽|(𝜏) is used for wavelet packet coefficients at jth level 

in the 𝜏th band in the decomposition. 

The succeeding level of decomposition is  

0𝑥|𝐽−2|(0) = 𝐶𝐽−1
0𝑥|𝐽−1|(0)  (12)            

0𝑥|𝐽−2|(1) = 𝐷𝐽−1
0𝑥|𝐽−1|(0)  (13)            
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0𝑥|𝐽−2|(2) = 𝐶𝐽−1
0𝑥|𝐽−1|(1)  (14)            

0𝑥|𝐽−2|(3) = 𝐷𝐽−1
0𝑥|𝐽−1|(1)  (15)  

The above process repeats until it results one wavelet 

packet coefficient in each of the bands. With this WPT 

ensures 2𝐽 − 𝑗  number of bands at each level where 

𝑗𝜖 {𝐽, 𝐽 − 1, . . . , 0}. 

Fine-Tune the Model 

To enhance the overall efficiency and fine-tune the 
performance of our proposed model, we integrate a hybrid 
optimization strategy that combines Particle Swarm 
Optimization (PSO) with the Parrot Optimizer (PO), 
referred to as the PSO-PO framework. PSO, inspired by 
the collective behaviour of social swarms, is widely used 
due to its simplicity, low computational burden, and 
effective convergence characteristics. It operates by 
updating particle positions based on shared information 
within the swarm, making it suitable for solving a broad 
range of optimization problems. However, in complex 
and high-dimensional search spaces, PSO can suffer from 
premature convergence and get trapped in local optima. 
To mitigate this limitation, we incorporate the Parrot 
Optimizer (PO), a relatively novel metaheuristic inspired 
by the intelligent behavioural patterns of PyrrhuraMolinae 
parrots. These behaviours, such as foraging for food, 
maintaining social cohesion, communicating with peers, 
and reacting to unfamiliar stimuli, are translated into four 
distinct phases: inspiration, foraging, staying behaviour, 
and natural response to strangers. By embedding these 
biologically inspired phases, the PO component 
strengthens the exploration-exploitation balance of the 
hybrid model. 

The integration of PSO and PO allows the 
optimization process to maintain diversity in the 
population, escape local minima, and achieve global 
convergence more effectively. This hybrid PSO-PO 
approach significantly reduces training time, enhances 
parameter tuning accuracy, and improves the model’s 
robustness across varying datasets. Moreover, it 
contributes to computational efficiency and cost-
effectiveness making it well-suited for large-scale 
biomedical applications where precision and performance 
are critical. Thus, the PSO-PO optimizer not only fine-
tunes the learning process but also adds scalability and 
reliability to the system’s deployment in real-world 
scenarios. 

Mathematical Model of PSO-Parrot Optimization 
(PO) Algorithm 

Population initialization is expressed as  

𝑋𝑖
0 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑(0,1). (𝑢𝑏 − 𝑙𝑏)                 (16) 

𝑋𝑖
0is the position of ith parrot in initial phase where 𝑙𝑏 is 

the lower bound and 𝑢𝑏 is the upper bound. 

𝑟𝑎𝑛𝑑(0,1) is the random number in between 0 and 1. 

Foraging Behaviour 

It is expressed as 

𝑋𝑖
𝑡+1 = (𝑋𝑖

𝑡 − 𝑋𝑏𝑒𝑠𝑡). 𝐿𝑒𝑣𝑦(𝑑𝑖𝑚) + 𝑟𝑎𝑛𝑑(0,1). (1 −
𝑡

𝑀𝑎𝑥𝑖𝑡𝑟
)

2𝑡
𝑀𝑎𝑥𝑖𝑡𝑟 . 𝑋𝑚𝑒𝑎𝑛

𝑡        (17) 

𝑤ℎ𝑒𝑟𝑒 𝑋𝑖
𝑡 is the current position, 𝑋𝑖

𝑡+1 is the next 

position, 𝑋𝑚𝑒𝑎𝑛
𝑡  is the average location, and 𝐿𝑒𝑣𝑦(𝐷) is 

the Levy distribution. 

The average location is expressed as 

𝑋𝑚𝑒𝑎𝑛
𝑡 =

1

𝑁
∑ 𝑋𝑘

𝑡𝑁
𝑘=1    (18) 

The Levy distribution is expressed as  

{
  
 

  
 

𝐿𝑒𝑣𝑦(dism) =
𝜇.𝜎

|𝑣|
1
𝛾

𝜇~𝑁(0, 𝑑𝑖𝑚)

𝑣~𝑁(0, 𝑑𝑖𝑚)

𝜎 = (
𝜏(1+𝛾)∙𝑠𝑖𝑛(

𝜋𝛾
2
)

𝜏(
1+𝛾
2
)∙𝛾∙2

1+𝛾
2

)

𝛾+1

   (19) 

Staying Behaviour 

It is an immediate change in the looks of the parrot 

towards the owner’s body for a certain amount of time. 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑋𝑏𝑒𝑠𝑡 . 𝐿𝑒𝑣𝑦(𝑑𝑖𝑚) + 𝑟𝑎𝑛𝑑(0,1)  ∙
𝑜𝑛𝑒𝑠(1. 𝑑𝑖𝑚)(20) 

Communicating Behaviour 

It is expressed as                  (21) 

𝑋𝑖
𝑡+1 =

{
0.2 × 𝑟𝑎𝑛𝑑(0,1) × (1 −

𝑡

𝑀𝑎𝑥𝑖𝑡𝑟
) × (𝑋𝑖

𝑡 −𝑋𝑚𝑒𝑎𝑛
𝑡 ), 𝑃 ≤ 0.5

0.2 × 𝑟𝑎𝑛𝑑(0,1) × 𝑒𝑥𝑝 (−
𝑡

𝑟𝑎𝑛𝑑(0,1)×𝑀𝑎𝑥𝑖𝑡𝑟
) , 𝑃 > 0.5

     

Where 0.2 × 𝑟𝑎𝑛𝑑(0,1) × (1 −
𝑡

𝑀𝑎𝑥𝑖𝑡𝑟
) × (𝑋𝑖

𝑡 − 𝑋𝑚𝑒𝑎𝑛
𝑡 ) 

expresses the technique of an individual to join in the 

group. 

0.2 × 𝑟𝑎𝑛𝑑(0,1) × 𝑒𝑥𝑝 (−
𝑡

𝑟𝑎𝑛𝑑(0,1)×𝑀𝑎𝑥𝑖𝑡𝑟
)  expresses 

the way of an individual to fly away after communication. 

Fear of Stranger’s Behaviour 

Birds maintain distance when feel someone unfamiliar to 

keep them safe from unwanted danger. 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟𝑎𝑛𝑑(0, 1) ∙ 𝑐𝑜𝑠 (0.5𝜋 ∙
𝑡

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
) ∙ (𝑋𝑏𝑒𝑠𝑡 −

𝑋𝑖
𝑡) − cos(𝑟𝑎𝑛𝑑(0, 1) ∙ 𝜋) ∙ (

𝑡

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)

2
𝑀𝑎𝑥𝑖𝑡𝑒𝑟 ∙ (𝑋𝑖

𝑡 −
𝑋𝑏𝑒𝑠𝑡)                                                                                     (22) 
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Algorithm 1: Pseudocode of the PSO-PO Algorithm 

 

1 

 

Initialize the swarm and parrot parameters 

2 Initialize the position 𝑋𝑏𝑒𝑠𝑡 
3 For i=1: 𝑀𝑎𝑥𝑖𝑡𝑟  

4  For i=1: 𝑁 

5  Find 𝑋𝑏𝑒𝑠𝑡 of each particle 

6   𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1 (𝑝
𝑡
𝑏𝑒𝑠𝑡𝑖

− 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔

𝑡
𝑏𝑒𝑠𝑡

− 𝑥𝑖
𝑡  // velocity update in PSO 

7   𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1  //   Position update in PSO 

8   If  stopping criteria meets  

9   𝑋𝑏𝑒𝑠𝑡= Best position  

10   Else  

11       k=randi(1,4)   //           Parrot optimization 

12    If  k==1               // Foragingbehavior 

13    
𝑋𝑖
𝑡+1 = (𝑋𝑖

𝑡 − 𝑋𝑏𝑒𝑠𝑡). 𝐿𝑒𝑣𝑦(𝑑𝑖𝑚) + 𝑟𝑎𝑛𝑑(0,1). (1 −
𝑡

𝑀𝑎𝑥𝑖𝑡𝑟
)

2𝑡
𝑀𝑎𝑥𝑖𝑡𝑟

. 𝑋𝑀𝑒𝑎𝑛
𝑡  

14     Else if k==2                            // Staying behavior 

15    𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 +𝑋𝑏𝑒𝑠𝑡 . 𝐿𝑒𝑣𝑦(𝑑𝑖𝑚) + 𝑟𝑎𝑛𝑑(0,1)  × 𝑜𝑛𝑒𝑠(1. 𝑑𝑖𝑚) 
16    Else if k==3      //           Communicating behavior 

17    

𝑋𝑖
𝑡+1 =

{
 

 0.2 × 𝑟𝑎𝑛𝑑(0,1) × (1 −
𝑡

𝑀𝑎𝑥𝑖𝑡𝑟
) × (𝑋𝑖

𝑡 −𝑋𝑚𝑒𝑎𝑛
𝑡 ), 𝑃 ≤ 0.5

0.2 × 𝑟𝑎𝑛𝑑(0,1) × 𝑒𝑥𝑝 (−
𝑡

𝑟𝑎𝑛𝑑(0,1) × 𝑀𝑎𝑥𝑖𝑡𝑟
) , 𝑃 > 0.5

 

18    Elseif k==4          //   The fear of stranger’s behavior 

19    
𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟𝑎𝑛𝑑(0, 1) ∙ 𝑐𝑜𝑠 (0.5𝜋 ∙
𝑡

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
) ∙ (𝑋𝑏𝑒𝑠𝑡 −𝑋𝑖

𝑡) − cos (𝑟𝑎𝑛𝑑(0, 1) ∙ 𝜋)

∙ (
𝑡

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)

2
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

∙ (𝑋𝑖
𝑡 − 𝑋𝑏𝑒𝑠𝑡) 

       end          

20   end 

21 Return  𝑋𝑏𝑒𝑠𝑡 
 

Table 4. Training table for the proposed fine-tuned model 

Epoch Accuracy (AC%) Sensitivity (SN%) Specificity (SP%) AUC Loss Time Taken (sec) 

10 96.2 95.5 96.7 0.94 0.136 2.9 

20 96.9 96.1 97.2 0.955 0.112 8.31 

40 97.5 96.8 97.8 0.965 0.089 12.02 

60 97.9 97.3 98.2 0.972 0.071 15.99 

80 98.1 97.6 98.4 0.976 0.057 19.64 

100 98.3 97.8 98.6 0.98 0.043 24.01 
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Fig. 10. Flowchart of the Proposed PSO-PO Model 

Figure 10 delineates the sequence of steps of the 

proposed model by means of a flowchart and table 4 stores 

the values of the training data of the proposed fine-tuned 

model. 

Results and Discussion 

The implementation and training of the proposed 

WPT-PSO-PO-RELANFIS model were carried out on a 

high-performance computing system to ensure efficient 

execution and accurate convergence. The system was 

equipped with an Intel Core i7 11th Generation processor, 

32 GB of RAM, and an NVIDIA GeForce RTX 3080 

GPU with 10 GB of dedicated memory for accelerated 

computation. The model was developed using Python 3.9 

in a TensorFlow and Keras environment, executed on 

Ubuntu 20.04 LTS. All experiments were run with CUDA 

and cuDNN support to leverage GPU-based parallel 

processing and reduce training time. 

To train the proposed model effectively, we initially 

collected a total of 4,096 EEG images. To enhance the 

dataset's diversity and improve model generalization, we 

applied six augmentation techniques, resulting in an 

expanded dataset of 28,672 images. This enriched dataset 

was then divided into training, testing, and validation sets 

using a 70:15:15 ratio. This ensures that the model is 

trained on a large portion of the data while also being 

evaluated and validated on separate subsets to prevent 

overfitting. Table 5 illustrates the dataset distribution 

across each category. 

Table 5. Splitting with ratio 

Set Percentage Number of Images 

Training 70% 20,070 

Testing 15% 4,301 

Validation 15% 4,301 

Total 100% 28,672 

The result analysis of this experiment is performed by 

means of measurement performance parameters 

expressed as follows. 

Suppose ∝ 1, β1, γ1,  and δ1  are notations for true 

positive, true negative, false positive and false negative 

values. Then 

Accuracy(AC%) =
∝1+β1

α1+β1+γ1+δ1
× 100%                       (23) 

Sensitivity(SN%) =
α1

α1+δ1
× 100%                                  (24) 

Specificity(SP%) =
β1

β1+γ1
× 100%                                   (25) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒(𝑃𝑃𝑉)

=
𝛼1

𝛼1 + 𝛾1
× 100%                                                          (26) 

Matthews Correlation Coefficient (MCC)

=
𝛼1 × β1 − γ1. δ1

√(𝛼1 + 𝛽1) × (α1 + δ1) × (β1 + γ1) × (β1 + δ1)
  

× 100%                                                                              (27)    

Table 6 presents the performance parameters of the 

Bonn EEG dataset using hybridised PSO-PO algorithm 

with WPT feature extraction method and R-ELANFIS 

classifier.  

Table 6. Measurement performances of different datasets 

Performance Computation of different methods of the 

Bonn University dataset 

Proposed PSO-PO-WPT-RELANFIS Method 

EEG dataset 
AC 

(%) 

SN 

(%) 

SP 

(%) 

PPV 

(%) 

MCC 

(%) 

AUC 

(%) 

A-E 98.3 97.8 98.6 92.6 98.5 0.98 

C-E 93.8 94.8 92.9 93.6 90.5 0.91 

A-D-E 91.3 91.6 84.8 98.4 85.1 0.94 

AB-CD-E 84.9 89.90 85.6 97.7 78.6 0.92 

ABCD-E 92.0 94.8 90.5 88.6 83.4 0.95 
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Table 7. 10-fold Validation Over Our Proposed Model To 

Validate 

Fold 
Accuracy 

(AC%) 

Sensitivity 

(SN%) 

Specificity 

(SP%) 
AUC 

Time 

Taken 

(s) 

2 97.4 96.9 97.6 0.962 150 

3 97.6 97.1 97.8 0.965 180 

5 97.9 97.4 98 0.968 210 

7 98.1 97.6 98.2 0.973 240 

9 98.2 97.7 98.5 0.98 270 

10 98.3 97.8 98.6 0.98 300 

To evaluate the generalization ability of the WPT-

PSO-PO-RELANFIS model, k-fold cross-validation was 

employed. The dataset was divided into k subsets, and the 

model was trained k times, each time using a different 

subset as the validation set. This method helps to ensure 

robust performance and prevents overfitting. Table7 

stores the performance values of the proposed model and 

Table 8 stores the performance comparison values with 

existing algorithms. 

 

Table 8. Comparison with existing algorithms 

Optimization 

Algorithms 
AC (%) SN (%) SP (%) AUC (%) 

GA 87.51 71.5 74.97 0.695 

PSO 73.5 74.42 8.240 0.760 

BBO 71.3 65 76.47 0.745 

FPA 97.23 96.49 98.67 0.972 

GWO 95.5 96.3 94.84 0.965 

BA 94.33 95.77 91.56 0.943 

FA 96.8 93.25 91.12 0.93 

CS 94.3 96.44 91.4 0.934 

MFO 92.7 94.38 90.88 0.928 

Proposed WPT-

PSO-PO-
RELANFIS 

98.3 97.8 98.6 0.98 

For ensuring the validation of our proposed work, the 

measurement performances of our proposed model again 

compared with the recent research framework and the 

models added with their findings are stored in Table 9. 

Table 9. Performance comparison of the Proposed method with existing methods 

 

Plot 1. Comparison Result bar chart plot for table 8 values 

Authors Methods Dataset 
Measurement Parameters 

AC (%) SN (%) SP (%) 

(Mathew J. et al., 2023) 

Variational Mode 

Decomposition+root squared zeroth 

moment 

TUH 97.9 97.5 98 

HUP 90.7 90 91.4 

(Zhang W. et al., 2023) 

Multibit local neighborhood 

difference pattern +Artificial 

Rabbits Optimization 

Children’s 

Hospital, 

Zhejiang 

97.18 97.03 97.43 

(QiuS. et al., 2022) LSN+1D CNN CHB-MIT 97.19 96.44 96.2 

(Shayeste H. et al., 

2022) 
Heterogeneous Recurrence Analysis 

CHB-MIT 98.5 99.7 99.4 

ABMC 98.5 97.9 98.5 

(Zhao W. et al., 2023) EMA-GHE+RF+SMOTE+FPGA CHB-MIT - 95.2 99.3 

(Liu S.  et al., 2023) Power spectrum density CHB-MIT 98.8 - - 

(Yuan, S. et al., 2022) Adversarial Search + JPDDA CHZU 98.50 - - 

Proposed Method 
(Best Result Finding) WPT+PSO-

PO+R-ELANFIS 
Bonn 98.3 97.8 98.6 
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Plot 2. Comparison of Proposed method with existing methods for table 9 values. 

 

 

 
Plot 3. ROC-AUC plot of WPT-PSO-PO-R-ELANFIS 

for A-E dataset 

Plot 4. ROC-AUC plot of WPT-PSO-PO-R-ELANFIS for 

C-E dataset 

  
Plot 5. ROC-AUC plot of WPT-PSO-PO-R-ELANFIS 

for A-D-E dataset 

Plot 6. ROC-AUC plot of WPT-PSO-PO-R-ELANFIS for 

AB-CD-E dataset 
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Plot 7. ROC-AUC plot of WPT-PSO-PO-R-ELANFIS 

for ABCD-E dataset 

Plot.8 Model loss plot of WPT-PSO-PO-R-ELANFIS for 

A-E set 

The findings of Table 8 values are presented in the 

form of bar charts in Plot1 and Table 9 values are 

presented in the form of bar chart in Plot 2. 

Plot 3 presents the ROC-AUC curve of A-E dataset, 

Plot 4 presents the ROC-AUC curve of C-E dataset, Plot 

5 presents the ROC-AUC curve of A-D-E dataset and plot 

6 presents the ROC-AUC curve of AB-CD-E dataset. 

Plots 3 to 8 represent the ROC AUC curve for the 

mentioned Bonn University EEG dataset according to 

Table 6. 

Model loss curve represents the variation of error and 

its changes according to the measurement performance of 

training and testing set outcomes in the course of epochs. 

The purpose behind this model loss is to analyse the 

overfitting and underfitting cases. Plot 7 presents the 

ROC-AUC curve of ABCD-E dataset and the model loss 

curve of the proposed work for A-E dataset is shown in 

Plot 8. 

Conclusion 

Accurate seizure detection is an essential support to 

the neurologist to aware about the presence of seizure 

signals in the brain part of the patient. In this case the 

contribution of the metaheuristic optimization algorithms 

integrated with the machine learning algorithms plays the 

lead role to classify the seizure signals. It uses hybridized 

PSO and parrot optimization algorithm with the 

measurement outputs of accuracy of 98.3 %, sensitivity of 

97.8%, specificity of 98.6 %and ROC-AUC value as 0.98 

for the A-E dataset taken from Bonn university EEG 

dataset. We plan to integrate the edge devices with EEG 

ecosystem to avail immediate access for our forthcoming 

experiments. 
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