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Abstract: Epilepsy, a widely recognized neurological disorder, results from
irregularities in the transmission of electrical impulses among neurons in the
brain. Over the last two decades, significant efforts have been made by
researchers and clinicians to develop effective methods for its early detection
and management. The electroencephalogram (EEG), a non-invasive tool
used to monitor brainwave activity, has become a central device in seizure
diagnosis. With recent advances, EEG-based analysis is increasingly
supported by machine learning and metaheuristic optimization approaches to
enhance diagnostic accuracy and efficiency. This research proposes an
optimized framework for seizure detection that leverages a Regularized
Extreme Learning Adaptive Neuro-Fuzzy Inference System (R-ELANFIS)
as the primary classifier. To reduce computational overhead and improve
solution accuracy, a hybrid metaheuristic algorithm combining Particle
Swarm Optimization (PSO) and Parrot Optimization (PO) is applied to fine-
tune the model. The Bonn University EEG dataset, known for its reliable
short-term seizure recordings, is used to evaluate system performance. Key
classification metrics such as accuracy, sensitivity, and specificity reflect the
model’s strong predictive capability with accuracy reaching up to 98.3%. The
proposed method demonstrates the potential for high-performance EEG-
based seizure detection paving the way for future integration with edge
computing devices to support remote clinical diagnostics and continuous
monitoring in real-world healthcare applications.

Keywords: R- ELANFIS, WPT, Seizure Detection, Sensitivity, Specificity,
AUC, 10-fold cross-validation, Transformer, EEGNet.

Introduction

Health issue is an important factor and the
complicacies arises related to this needs to face every
sort of challenges. In this context, a brain disorder
which is otherwise called as epilepsy is a challenging
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issue and from the past twenty years neurologists and
researchers are devising new techniques to detect and
predict the presence of disorder signals in brain. Due to
this brain disorder, the symptoms observed in outer
parts of the body is called as seizure. According to the
statistical report of World Health Organization, nearly
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50 million of the total population of the world are
affected with this disease. This seizure symptoms are
of two types: partial or focal seizure and generalized
seizure. In case of partial seizure, the disease is
observed in a small portion of the brain but in case of
generalized seizure, the total brain is affected. Thus,
generalized seizure is one type of life-threatening risk-
based seizure, happened in form of brain stroke, brain
tumour etc. So, the clinical treatment is the only
solution to escape from the seizure complexities
(Shoka E. et al., 2023). The seizure signals are
classified as pre-ictal, ictal and post-ictal. Figure 1
delineates the states of the EEG signal along with the
EEG signal representation of CHB-MIT dataset, Bonn
University EEG dataset and Kaggle EEG dataset.

Presently, metaheuristic algorithms are emerging as
the most powerful and popularly used algorithms which
are integrated with machine learning algorithms
(Balam V., 2024). There are different types of
metaheuristic algorithms such as: nature-inspired, bio-
inspired, swarm-inspired and trajectory-based
algorithms. In this context, some of the well-known
varieties of this kind are: Genetic Algorithms (GA),
Particle Swarm Optimization (PSO) Algorithm.
Grasshopper Optimization (GO) algorithm, Farmland
Fertility (FF) algorithm, Cuckoo Search (CS)
Algorithm, Parrot Optimization (PO)Algorithm etc. are
devised for reducing complexities in the computational
overhead (Ahmad I. et al., 2024).

Although notable progress has been made in seizure
detection, several significant limitations remain.
Numerous existing techniques involve intricate
preprocessing, which hampers their practical use in
real-time systems. Some models are tested only on
specific datasets, limiting their generalizability across
different EEG signals. Others demand high
computational power or risk overfitting due to dataset-
specific features. Additionally, approaches using
complex architectures, like adversarial networks or

hybrid methods introduce challenges in tuning and
implementation. These issues underline the importance
of developing more streamlined, adaptable, and reliable
models for effective and wide-ranging seizure
detection.

To address the limitations of earlier seizure
detection models, we propose an enhanced approach
that combines a Transformer-based EEGNet model for
feature extraction with the Regularized Extreme
Learning Adaptive Neuro-Fuzzy Inference System (R-
ELANFIS) classifier for accurate decision-making. To
convert EEG signals effectively, we apply the Wavelet
Packet Transform (WPT), which captures both time
and frequency features. Furthermore, to improve
convergence and model precision, we implement a
hybrid optimization technique integrating Particle
Swarm  Optimization (PSO) with the Parrot
Optimization (PO) algorithm. This hybrid method fine-
tunes the model parameters efficiently reducing
training loss and time. Our final results, achieved at 100
epochs, shows an accuracy of 98.3%, sensitivity of
97.8%, specificity of 98.6%, AUC of 0.98, and low loss
(0.043) in 24.01 seconds.

The remaining parts of the paper is elaborated in
section 2 to section 5. Section 2 includes Literature
Review, Section 3 is the core part of the experiment
explains about the Methodology used with the sub-
sections of 3.1 elaborates flow of work, 3.2 elaborates
the features of experimental Bonn EEG dataset, 3.3
states the techniques of EEG data pre-processing, 3.4
states data augmentation, 3.5 states about the proposed
Transformer enabled EEG Net model, 3.6 presents the
EEG signal to text conversion technique, 3.7 presents
the role of RELANFIS in the conversion process, 3.8
presents the feature selection and detection technique
and 3.9 presents the fine-tune technique. Section 4
presents experimental results and discussion and
section 5 state the conclusion and future scope of the
proposed work.
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Fig. 1. EEG Signals
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Literature Review

Seizure detection represents a challenging research
domain that increasingly leverages robust machine
learning techniques integrated with metaheuristic
optimization approaches. This section reviews relevant
prior research that informs the present study.

Signal Processing and Feature Extraction
Approaches

Kaushik et al. (2022) proposed a seizure detection
technique employing discrete wavelet transform
(DWT) sub-bands tested on the Bonn University
dataset, utilizing Hjorth parameters to preserve signal
efficiency and achieving high classification accuracy.
Raghu et al. (2019) implemented DWT followed by
Support Vector Machine (SVM) classification for
distinguishing seizure signals from normal brain
activity, achieving 100% sensitivity on the CHB-MIT
dataset and 94.21% accuracy on the Bonn dataset.

Wavelet Packet Transform (WPT), which
represents signals in joint time-frequency domains, has
been extensively applied to EEG analysis. Xue et al.
(2003) and Wu et al. (1996) provided comprehensive
explanations of WPT methodology, including detailed
decomposition procedures applicable to biomedical
signal processing. Andrzejak et al. (2001) established
fundamental approaches for representing brain
electrical activity patterns to characterize brain states
and quantify seizure signal presence.

Deep Learning and Neural Network Approaches

Li et al. (2024) and Liu et al. (2024) developed
supervised contrastive learning frameworks for end-to-
end seizure detection by optimizing classification
boundaries. Their Cos-CNN architecture achieved 75%
memory cost reduction through quantization steps and
enabled real-time, low-power operation via Field
Programmable Gate Array (FPGA) implementation.

Shea et al. (2020) proposed neonatal seizure
detection directly from raw multi-channel EEG signals
using Convolutional Neural Networks (CNN),
compiling a dataset exceeding 834 hours and validating
performance against publicly available benchmarks.
Recent advances in deep learning for seizure detection
have incorporated Long Short-Term Memory (LSTM)
networks and attention-based mechanisms (Xu et al.,
2024; Ali et al., 2024; Grubov et al., 2024; Yamamoto
et al., 2023) to capture temporal dependencies in EEG
signals and improve detection accuracy for complex
seizure patterns.

Optimization-Based Approaches

Mohapatra et al. (2022) implemented seizure
detection using enhanced Atom Search Optimization
(ASO) augmented with Lévy flight mechanisms, a
stochastic optimization approach for constraint-based
problems, achieving superior accuracy, sensitivity, and
specificity metrics. The present study builds upon
Parrot Optimizer (PO) techniques (Lian et al., 2024) as
an enhanced metaheuristic algorithm that improves the
velocity and position update mechanisms of traditional
Particle Swarm Optimization (PSO) (Gad et al., 2022).

Yang etal. (2021) developed a hybrid PSO-Sparrow
Search Algorithm (SSA) approach, demonstrating
performance advantages over conventional
optimization techniques including Genetic Algorithms
(GA), Firefly Algorithm (FFA), and Cuckoo Search.
Zhu et al. (2011) devised PSO variants specifically
designed for constrained optimization problems,
outperforming existing optimization frameworks in
benchmark evaluations.

Intelligent Classification Systems

Evolving Local Adaptive Neuro-Fuzzy Inference
System (ELANFIS) represents an intelligent fuzzy
logic-based classification technique applicable to
decision-making and forecasting tasks. Shihabudheen
et al. (2017), Tushar et al. (2015), and Yu et al. (2024)
implemented Recurrent ELANFIS (R-ELANFIS)
integrated with wavelet transform techniques,
providing detailed implementation guidelines for
intelligent support systems in biomedical applications.

Related Neurological Disorder Detection

Beyond epileptic seizure detection, related
neurological disorder identification has received
significant attention. Singh et al. (2024) and Divvala et
al. (2024) investigated Alzheimer's disease detection
methodologies, exploring preventive measures and
early symptom identification to facilitate timely
intervention. Qiu et al. (2024) emphasized the critical
importance of Parkinson's disease detection models,
given the life-threatening nature and progressive
neurological deterioration associated with this
condition. Figict et al. (2022) specifically addressed
temporal lobe epilepsy detection, achieving high
accuracy through specialized signal processing
approaches.

Table 1 summarizes additional research findings
from the reviewed literature (references 28-49),
presenting methodological approaches, datasets
employed, and performance metrics achieved across
various seizure detection studies.
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Table 1. Findings from Review Papers

Preprocessing

References Database Technique Model Limitations
. . Gated Recurrent Unit Limited generalizability; tested on
(KhalidN.et al., 2024) UC San Dieg (PSD) (GRU) a single dataset only
(Islam T., et al., 2023) TUH EEG C:r\:(;r’\sipilcetf\%;ﬁ?’ DenseNet201, High computational cost due to
? v corpus database & DenseNet169, multiple complex transforms

(Wang Q, et al., 2023)

(Xu Z.etal, 2023)

(Khare S. K, et al., 2023)

(WuT., etal., 2023)

(Rukhsar S., et al., 2023)

(Tang S, et al., 2023)

(Jibon F. A, et al., 2023)

(SiddiqaH. A, et al.,
2023)

(KatusL.et al., 2023)

(Mane S. A.et al., 2023)

(Cao J. et al., 2023)

(Cu X. et al., 2023)

(HsiehY. Y. et al., 2022)

(Mallik P. et al., 2024)

Bonn

PhysioNet

AZD and NC

CHB-MIT

CHB-MIT

Luoxiong Road
Station

CHB-MIT
Dataset

CHFU, China

West Kiang
region of The
Gambia

SEED and
DEEP

Children’s
Hospital, Zhejiang
University School

of Medicine

Children’s
Hospital, Zhejiang
University

CHB-MIT

CHB-MIT

distribution

bandpass filtering and
ICA

Bandpass filtering
and ICA

(AFAWT)

Bandpass Filtering
Notch Filtering and
ICA

Sequence pooling

Area of Interest
(AOI) Analysis and
ICA

Stockwell transform

Finite Impulse
Response

Bandpass filter, ICA

Azimuthal projection

Z-score
normalization

Z-score
normalization and
Min-Max
normalization

ICA

DWT

SVM-KSRC (kernel
sparse representation
classification)

SVM and KNN

Adazd-Net

Spatial Feature
Fused Convolutional Net
work (ScNet)

Lightweight Convolution
Transformer (LCT).

CNN, LSTM

Linear graph
convolutional network
(LGCN)

AutoML-based Random
Forest estimator

Functional near-infrared
spectroscopy (fNIRS)

CNN and LSTM

CNN and attenuation
mechanism

CNN

Adversarial neural
network with Joint-
Probability-
Discrepancy

LSSVM

Kernel methods may not scale well
with larger datasets

Accuracy varies; lacks consistency
across datasets
Limited public availability of AZD

dataset hinders reproducibility

Complex preprocessing may
hinder real-time application

Sequence pooling may lose
temporal detail

Specific to activity detection;
limited to single scenario

May be overfitted to dataset-
specific features

Lower accuracy and may lack
robustness

fNIRS setup not standard in typical
EEG studies

Projection methods may distort
spatial features

Over-reliance on normalization
techniques

Performance drops on real-world
noisy data

Adversarial training adds
complexity, needs fine-tuning

Performance drops on real-world
noisy data
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Fig. 2. Steps of the Proposed Model including feature extraction and classification

Methodology

Flow of Work

The process begins with raw EEG signals from the
nervous system, followed by normalization and feature
extraction using Wavelet Packet Transform (WPT).
Features from time, frequency, and chaotic domains are
selected via ANOVA. A hybrid model combining PSO-
PO and Regularized ELANFIS is applied, and
performance is validated through 10-fold cross-
validation to classify normal and seizure EEG signals.
And the details of the steps are shown in Figure 2.

Clinical Datasets

Bonn university dataset which is collected from
Physionet is a publicly available EEG database centre
(Andrzejak R. G.et al., 2001). It is a multiclass EEG
signal database which is collected from the url:
https://www.upf.edu/web/ntsa/downloads/-
/asset_publisher/xvT6E4pczrBw/content/2001-
indications-of-nonlinear-deterministic-and-finite-
dimensional-structures-in-time-series-of-brain-
electrical-activity-dependence-on-recording-regi.
There arefive classes present in the datasets, class A to
class E and each dataset contains 100 txt files with 4096
samples in ASCII format. Class A to class D contain
normal signal and class E contains seizure signal. There
are 100 channels present with each data set. When the
signals are collectSed from the patient, the electrodes
are placed on the surface of the head of the patient
positioning inside intracranial regions of the head for
the time period of 23.6 seconds. Sample images are
shown in Figure 3.

Before preparing the data set for classification, the
extracted data samples are then separated into training
data and testing data. The time duration for the seizure
signal in case of training data is 0.91 hours and testing
data is 1.754 hours. We use 51 number of seizure
events for training data sample and 86 number of
seizure events for testing data sample.

Data Pre-Processing

After successful data collection, the EEG images
underwent a structured pre-processing pipeline to
improve their quality and consistency. Initially, the
images were converted to gray scale, followed by noise
reduction using Gaussian and median filtering.
Contrast was then enhanced using CLAHE to highlight
important features. The images were resized to a
standard dimension, and Min-Max normalization was
applied to scale pixel values uniformly, ensuring
readiness for accurate and efficient analysis. Figure 4
shows the steps of the pre-processed images.

Data Augmentation

To enhance the variability of EEG image samples
and improve the model’s generalization capability, a
comprehensive data augmentation strategy was
employed. This process helps mitigate overfitting by
introducing diverse visual patterns into the training
dataset. The applied transformations included image
rotation, horizontal and vertical flipping, resizing,
colour jittering, the addition of Gaussian noise, and
intensity modifications. These augmentations simulate
realistic alterations that could occur in EEG imaging
conditions, thereby enabling the model to learn more
robust and generalized representations. Examples of
these augmented images are illustrated in Figure 5.
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Transformer-Enhanced EEGNet Model

The  transformer-enhanced = EEGNet  model
integrates the lightweight design of EEGNet with the
attention-based capabilities of transformer
architectures. While EEGNet efficiently captures
spatial features from multi-channel EEG data through
depth wise and separable convolutions, transformers
contribute by learning long-term dependencies and
global temporal dynamics. This hybrid structure is
particularly effective for identifying seizure-related
patterns, as it can focus on subtle changes across time
and channels. Its ability to model both local and global
features makes it a strong choice for accurate and
efficient seizure detection using EEG data in real-time
applications. Architecture of the model is shown in
Figure 6.

Converting EEG Signals to Text Using Key Features

EEG signal data can be converted into a text-based
format by extracting and quantifying relevant
neurological features. These include variations in
amplitude, spike frequency, presence of high-frequency
oscillations (HFOs), and signal complexity metrics like
entropy or variance. The transformer-EEGNet model first
processes EEG input to derive these features. A threshold
is applied to isolate significant events, reducing noise and
irrelevant fluctuations. The resulting numerical values are
then structured as rows in a text file, where each row
represents an EEG segment. This output can be directly
used for seizure classification or further analysis.

Regularized ELANFIS

To achieve accurate conversion of EEG images into
structured text data, a combined framework using
Transformer-based EEGNet (TransEEGNet) and the
Regularized Extreme Learning Adaptive Neuro-Fuzzy
Inference System (Regularized ELANFIS) is proposed.
Regularized ELANFIS is an advance version of ANFIS
classifier which is an integrated part of the Fuzzy System
and machine learning algorithms enriched with language
representation and knowledge-based data representation
acting as fast as ELM (Shihabudheen et al., 2017). The
rules as follows:

if (x; is A;1) and (x;, is Aiy)and - and (x, is Ai,)
(1)
Rule R, :

then (y1 is i), (V2 is Biz) =+ (Vm IS Bim)
(2)
Where i = 1,2, -+ L (there are L lines used for

X = [xl’xz; Y xn]T is CTiSp input and y = [yll Yo oo
, YT is crisp output. 3)

Aij(j=1.2,...,n) are the linguistic variables for the
inputs and ;. (k=1,2, ..., m) are the crisp variables.

Here the f;;, variables can be expressed as

Bik = Pixo + Pix1 X1+ Pia X2 + Piki Xn “)
pi(1=0,12,..... n) are the real valued parameters.

The members grades of the input variables x; satisfy A;;
in the rule I can be expressed as A (xj).

The fuzzy logic expression for the firing string can be
represented as

w(x) = Ha;y (x)® #Ai(xz) R .Q Ha;, (x5) (5)
Here ® referes ‘and’ operator in fuzzy logic.

The normalized firing strength of each rule can be
expressed as

ELcI 6)

.
W) =3 w®

‘then’ part of the expression is linear network having p;y;
as its weitht variables. Here the system output is computed
as

i Biwi(x)

}’:m:Z%ﬂBiW , 5 Bi=Bi, B
=

oo Bim) (N
Figure 7 represents the structure of an ELANFIS classifier

TransEEGNet captures detailed spatial and temporal
patterns through its attention-driven architecture, making
it effective for detecting seizure-related features. These
features are then refined by ELANFIS, which uses fuzzy
logic and regularized learning to interpret signal
characteristics with greater precision. This integration
improves noise resistance, enhances feature clarity, and
generates meaningful text-based outputs suitable for
clinical evaluation and automated decision support.

Fuzzy memebership Normalization

multiplication layer layer

Input layer

’
o i — ¥ ,/ Output layer
— w s, v
—_—
’ 1‘ -
wﬁ_ v

Y By Consequent
“®  parameter layer

Fig. 7. Structural Representation of ELANFIS
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The structural components of ELANFIS have 5 layers,
such as input layer, membership function layer,
normalization layer, consequent parameter layer and
output layer.

Input layer: The nodes present in the input layer are the
variables which are connected with the membership
function layer

Membership  function layer: It is  expressed
mathematically as
1
g(xj:a,b,c) Zﬁ (8)
1+ =4
ai]-

Where a;j, 2b;j and ¢;; are represented as the premise
parameters in fuzzy systems. Here ¢;; finds the position
and a;; and 2b;; are used for shape representation. The
premise parameters are selected randomly and subsequent
parameters p;;; are learned by least square estimation
technique. We trained the model over 100 epochs,
observing steady performance improvements and reduced
training time per epoch using optimized integration. The
training findings of hybrid model values are stored in
Table 2 and graphical presentation of training models
shown in Figure 8. The findings of the EEG images to text
conversion values are stored in Table 3.

Table 2. Training findings of hybrid model

Table 3. EEG Image to Text Conversion Table

Amplitude Spike HFO
Patient_ID Change Density Rate Entropy Variance
(rv) (spikes/s)  (Hz)
>

Threshold >35.0 >2.5 180.0 >0.75 >1.0
EEG_001 453 3.1 210.5 0.82 1.25
EEG_002 38.7 2.8 185.2 0.76 1.11
EEG_003 51.2 3.6 230.9 0.89 1.39
EEG_004 29.4 1.9 142.7 0.69 0.95
EEG_005 60.8 42 256.3 0.94 1.52

PN e Time
Accuracy Sensitivity  Specificity
Epoch " aco)  (SN%) sp%)  AUC ?ﬂx?
10 96.4 95.8 96.9 0.95 1.5
20 97.1 96.5 97.5 0.96 32
40 97.6 97.1 97.9 0.967 6.1
60 97.9 97.4 98.2 0.974 9
80 98.1 97.6 98.4 0.977 11.8
100 98.2 97.7 98.5 0.979 14.5
099 1
0.98
0.97
‘ o Accuracy (AC%)
0.96 ‘t ‘ ‘ B Sensitivity (SN%)
i |
i l ‘l ]‘1 ;l Specificity (SP%)
095 7 [
mAUC
0.94 it il
093

Fig. 8. Graphical presentation of training model

Feature Selection and Detection

Wavelet Packet Transform (WPT) is one of the higher
forms of Discrete Wavelet Transform (DWT) which
consists of Wavelet Packets formed by continuously
applying wavelet transforms with the approximation and
detail coefficients (Mallik P. et al., 2024). Structurally it
is presented as a binary tree representing each node as
frequency sub bands. It applies the various decomposition
techniques denoising, and signal compression. At first the
input signal crossed through wavelet filters. Depending
upon the signal strength, specialized nodes are chosen for
successive processing and the process repeated. Figure 9
presents the structure of WPT for the discrete sampled
signal x.

(&}
‘ 0 X ‘

<y 0y

41
‘ ° )((ﬂ)( J ‘

Cyq Dya Cua Dy

0 Xy +2 0 X,q)t+2)

0 Xz 2

AN

4-3) 3-3) 53
o )(u]( o )((u]( 0X r](

0 Xz

J-3) J-3) (J-3) J-3)
0 Ky 2| 0 Xy 0 X5 0 K0

[1] xtn](.lﬂ)

Fig. 9. Structure of a Wavelet Packet Transform Signal

T
x, ) =xV(0). ©
The (J — 1)* level is as per the DWT.

v = (50, 5100en

Data crossed through filters.
O0xl/=1(0) = ¢,°%V11(0) = C;x (10)
0xl=11(0) = D,°xV1(0) = C)x (11)

9% V1(7) is used for wavelet packet coefficients at j™ level
in the T band in the decomposition.

The succeeding level of decomposition is
O0xl/=21(0) = €;_,°xV~(0) (12)
OxI]—ZI(l) = D]_loxll-ll(g) (13)
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0xl=21(2) = €, %%V~ (1) (14)
O0xl/=21(3) = D,_,"xV=1I(1) (15)

The above process repeats until it results one wavelet
packet coefficient in each of the bands. With this WPT
ensures 2/ — j number of bands at each level where

je{,J—1,...,0}
Fine-Tune the Model

To enhance the overall efficiency and fine-tune the
performance of our proposed model, we integrate a hybrid
optimization strategy that combines Particle Swarm
Optimization (PSO) with the Parrot Optimizer (PO),
referred to as the PSO-PO framework. PSO, inspired by
the collective behaviour of social swarms, is widely used
due to its simplicity, low computational burden, and
effective convergence characteristics. It operates by
updating particle positions based on shared information
within the swarm, making it suitable for solving a broad
range of optimization problems. However, in complex
and high-dimensional search spaces, PSO can suffer from
premature convergence and get trapped in local optima.
To mitigate this limitation, we incorporate the Parrot
Optimizer (PO), a relatively novel metaheuristic inspired
by the intelligent behavioural patterns of PyrrhuraMolinae
parrots. These behaviours, such as foraging for food,
maintaining social cohesion, communicating with peers,
and reacting to unfamiliar stimuli, are translated into four
distinct phases: inspiration, foraging, staying behaviour,
and natural response to strangers. By embedding these
biologically inspired phases, the PO component
strengthens the exploration-exploitation balance of the
hybrid model.

The integration of PSO and PO allows the
optimization process to maintain diversity in the
population, escape local minima, and achieve global
convergence more effectively. This hybrid PSO-PO
approach significantly reduces training time, enhances
parameter tuning accuracy, and improves the model’s
robustness across varying datasets. Moreover, it
contributes to computational efficiency and cost-
effectiveness making it well-suited for large-scale
biomedical applications where precision and performance
are critical. Thus, the PSO-PO optimizer not only fine-
tunes the learning process but also adds scalability and
reliability to the system’s deployment in real-world
scenarios.

Mathematical Model of PSO-Parrot Optimization
(PO) Algorithm

Population initialization is expressed as
X? = 1b + rand(0,1). (ub — lb) (16)

XPis the position of ith parrot in initial phase where Ib is
the lower bound and ub is the upper bound.

rand (0,1) is the random number in between 0 and 1.
Foraging Behaviour
It is expressed as

XE = (Xf = Xpesg)Lrevy(dim) +rand (0,1). (1 -

t.
N T (17

where X} is the current position, X/ ** is the next
position, X},.qr, is the average location, and Levy(D) is
the Levy distribution.

The average location is expressed as
1
Xrtnean = ;Zﬁl:lxlﬁ (18)
The Levy distribution is expressed as
Levy(dism) = £%
vl
u~N(0,dim)
{ v~N(0,dim) (19)

r(1+y)-sin(¥) et
0=\ T
(F)r2 2

Staying Behaviour

It is an immediate change in the looks of the parrot
towards the owner’s body for a certain amount of time.

XY = X! + Xpese. Levy(dim) + rand (0,1) -
ones(1.dim)(20)

Communicating Behaviour
It is expressed as 21)
)(.H'1 =

12

0.2 X rand(0,1) X (1 S

Maxity

0.2 X rand(0,1) X exp (—

) X (Xt = XEpan), P < 0.5

t
rand(0,1)xMax;,

) X (Xlt - Xrtnean)
expresses the technique of an individual to join in the

group.
t

0.2 X rand(0,1) X exp (— rand O DxMaxs,

the way of an individual to fly away after communication.

),P>0.5

t
Maxiey

Where 0.2 x rand(0,1) x (1 -

) eXpresses

Fear of Stranger’s Behaviour

Birds maintain distance when feel someone unfamiliar to
keep them safe from unwanted danger.

Xt =Xt + rand(0,1) - cos (0.571’ : —zt—) * (Xpest —
X5 = cos(rand(0,1) - ) - (; Mg xt -

Maxiter
Xbest)

(22)
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Algorithm 1: Pseudocode of the PSO-PO Algorithm

O 0 1 ONWnph W~

—_ = =
W= O

14
15
16
17

18
19

20
21

Initialize the swarm and parrot parameters
Initialize the position Xpes¢
Fori=1: Max;,,

Fori=1: N
Find X5 of each particle
vit = wvf + ony (ptbesti - xf) + co12(9" 5 — Xt // velocity update in PSO

xttt = xt + vf*? // Position update in PSO

If stopping criteria meets
Xpese= Best position

Max

itr

Maxip,
Xt
4 Mean

XY = X! 4 Xpese. Levy(dim) + rand (0,1) x ones(1.dim)

Else
k=randi(1,4) // Parrot optimization
If k== // Foragingbehavior
X = (X} — Xpest)- Levy(dim) + rand(0,1). (1 -
Else if k==2 // Staying behavior
Else ifk==3 // Communicating behavior
(0.2 x rand(0,1) x (1 -
X_t+1 —
L
0.2 X rand(0,1) X exp (—
Elseif k== /I The fear of stranger’s behavior
Xt =Xt +rand(0,1) - cos (0.51‘[ :
2
()
Maxiter
end
end
Return Xpeqp

itr

' (th - Xbest)

rand(0,1) X Max;;,

) X (X! — XL o), P < 0.5

),P>0.5

)  (Xpest — X}) — cos (rand(0,1) - m)

Table 4. Training table for the proposed fine-tuned model

Epoch Accuracy (AC%) Sensitivity (SN%) Specificity (SP%) AUC Loss Time Taken (sec)
10 96.2 95.5 96.7 0.94 0.136 2.9
20 96.9 96.1 97.2 0.955 0.112 8.31
40 97.5 96.8 97.8 0.965 0.089 12.02
60 97.9 97.3 98.2 0.972 0.071 15.99
80 98.1 97.6 98.4 0.976 0.057 19.64
100 98.3 97.8 98.6 0.98 0.043 24.01
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Initialize N, Max;;

| Find X, __; of each particle |

¥

‘ v = e 71 (PR been % Car (B e %) |

¥

*® 1—!—1=x t+v t+1

return

k=1
| foraging behawviour - o
k=2
| staying behawviour ¢
) . . k=3
communicating behaviour
=4

| fear of strangers behavour

e~

return xbﬁt

top

Fig. 10. Flowchart of the Proposed PSO-PO Model

Figure 10 delineates the sequence of steps of the
proposed model by means of a flowchart and table 4 stores
the values of the training data of the proposed fine-tuned
model.

Results and Discussion

The implementation and training of the proposed
WPT-PSO-PO-RELANFIS model were carried out on a
high-performance computing system to ensure efficient
execution and accurate convergence. The system was
equipped with an Intel Core 17 11th Generation processor,
32 GB of RAM, and an NVIDIA GeForce RTX 3080
GPU with 10 GB of dedicated memory for accelerated
computation. The model was developed using Python 3.9
in a TensorFlow and Keras environment, executed on
Ubuntu 20.04 LTS. All experiments were run with CUDA
and cuDNN support to leverage GPU-based parallel
processing and reduce training time.

To train the proposed model effectively, we initially
collected a total of 4,096 EEG images. To enhance the
dataset's diversity and improve model generalization, we
applied six augmentation techniques, resulting in an
expanded dataset of 28,672 images. This enriched dataset
was then divided into training, testing, and validation sets

using a 70:15:15 ratio. This ensures that the model is
trained on a large portion of the data while also being
evaluated and validated on separate subsets to prevent
overfitting. Table 5 illustrates the dataset distribution
across each category.

Table 5. Splitting with ratio

Set Percentage Number of Images
Training 70% 20,070
Testing 15% 4,301
Validation 15% 4,301
Total 100% 28,672

The result analysis of this experiment is performed by
means of measurement performance parameters
expressed as follows.

Suppose « 1,31,y1, and 61 are notations for true
positive, true negative, false positive and false negative
values. Then

Accuracy(AC%) = #ﬁm x 100% (23)
Sensitivity(SN%) = PPRTIR 100% 24)
Specificity(SP%) = o X 100% (25)

PositivePredictedValue (PPV)

= ———x 1009 26
al +vy1 % (26)

Matthews Correlation Coefficient (MCC)
_ al x 1 —vy1.81

J(@l+ B1) x (al +81) x (B1 +y1) x (B1 + 81)
X 100% 27)

Table 6 presents the performance parameters of the
Bonn EEG dataset using hybridised PSO-PO algorithm
with WPT feature extraction method and R-ELANFIS
classifier.

Table 6. Measurement performances of different datasets

Performance Computation of different methods of the
Bonn University dataset

Proposed PSO-PO-WPT-RELANFIS Method

AC SN SpP PPV MCC AUC
EEGdataset (o) (%) (%) (%) (%) (%)

A-E 98.3 97.8 98.6 926 98.5 0.98
C-E 93.8 94.8 929 93.6 90.5 0.91
A-D-E 91.3 91.6 84.8 984 85.1 0.94
AB-CD-E 84.9 89.90 856 977 78.6 0.92
ABCD-E 92.0 94.8 90.5 88.6 83.4 0.95
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Table 7. 10-fold Validation Over Our Proposed Model To
Validate

Foig  Accurmey  Semstvity Specificity TT(II)‘
2 97.4 96.9 97.6 0.962 150
3 97.6 97.1 97.8 0.965 180
5 97.9 97.4 98 0.968 210
7 98.1 97.6 98.2 0.973 240
9 98.2 91.7 98.5 0.98 270
10 98.3 97.8 98.6 0.98 300

To evaluate the generalization ability of the WPT-
PSO-PO-RELANFIS model, k-fold cross-validation was
employed. The dataset was divided into k subsets, and the
model was trained k times, each time using a different
subset as the validation set. This method helps to ensure
robust performance and prevents overfitting. Table7
stores the performance values of the proposed model and
Table 8 stores the performance comparison values with
existing algorithms.

Table 8. Comparison with existing algorithms

Oﬁgﬁfﬁ:ﬁ’s“ AC (%) SN(%) SP(%) AUC (%)
GA 87.51 71.5 74.97 0.695
PSO 73.5 74.42 8.240 0.760
BBO 71.3 65 76.47 0.745
FPA 97.23 96.49 98.67 0.972
GWO 95.5 96.3 94.84  0.965
BA 94.33 95.77 91.56 0.943
FA 96.8 93.25 91.12 0.93
CS 94.3 96.44 91.4 0.934
MFO 92.7 94.38 90.88 0.928

Proposed WPT-

PSO-PO- 98.3 97.8 98.6 0.98
RELANFIS

For ensuring the validation of our proposed work, the
measurement performances of our proposed model again
compared with the recent research framework and the
models added with their findings are stored in Table 9.

Table 9. Performance comparison of the Proposed method with existing methods

Measurement Parameters

Authors Methods Dataset
AC (%) SN (%) SP (%)
Variational Mode TUH 97.9 97.5 98
(Mathew J. et al., 2023)  Decomposition+root squared zeroth
moment HUP 90.7 90 91.4
Multibit local neighborhood Children’s
(Zhang W. et al., 2023) difference pattern +Artificial Hospital, 97.18 97.03 97.43
Rabbits Optimization Zhejiang
(QiusS. et al., 2022) LSN+1D CNN CHB-MIT 97.19 96.44 96.2
(Shayeste H. etal. . CHB-MIT 98.5 99.7 99.4
’ Heterogeneous Recurrence Analysis
2022) ABMC 98.5 97.9 98.5
(Zhao W. et al., 2023) EMA-GHE+RF+SMOTE+FPGA CHB-MIT - 95.2 99.3
(Liu S. etal., 2023) Power spectrum density CHB-MIT 98.8 - -
(Yuan, S. et al., 2022) Adversarial Search + JPDDA CHZU 98.50 - -
Proposed Method ~ (D¢St Result Finding) WPT+PSO- Bonn 98.3 97.8 98.6

PO+R-ELANFIS

GA PSO BBO FPA GWO

PM

BA FA cs MFO

Measurement Parameters

WAC(%) ®SN(%)

Plot 1. Comparison Result bar chart plot for table 8 values

SP(%)

AUC(%)
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Comparision of proposed method with existing methods

Indices
Nmﬂg
o wn o W o
]

W ACC(%) MSEN(%) ™ SPE(%)

Plot 2. Comparison of Proposed method with existing methods for table 9 values.

Receiver Operating Characteristic (A-E) Receiver Operating Characteristic (C-E)
1.0 1.0
0.8+ 08 |
£ 06
> £ 0.6
E = WPT-PSO-PO-R-ELANFIS, AUC=0.98 S
4 E = WPT-PSO-PO-R-ELANFIS, AUC=0.91
# 04| 2
w
9 0.4
0.2
0.2 1
0.0 . ‘ ‘ .
0.0 02 0.4 0.6 0.8 10
1-SPECIFICITY 0.0 T T T \
0.0 0.2 0.4 0.6 0.8 10
1-SPECIFICITY
Plot 3. ROC-AUC plot of WPT-PSO-PO-R-ELANFIS  Plot 4. ROC-AUC plot of WPT-PSO-PO-R-ELANFIS for
for A-E dataset C-E dataset
Receiver Operating Characteristic (A-D-E) Receiver Operating Characteristic (AB-CD-E)
1.0 1.0
0.8 1 0.8
£ 0.6+ £ 0.6 -
E —— WPT-PSO-PO-R-ELANFIS, AUC=0.94 E == WPT-PSO-PO-R-ELANFIS, AUC=0.92
Z 2
® 04 B 041
0.24 0.2
0.0 ‘ T ; : 0.0 . ‘ T T
0.0 02 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
L-SPECIFICITY 1-SPECIFICITY
Plot 5. ROC-AUC plot of WPT-PSO-PO-R-ELANFIS  Plot 6. ROC-AUC plot of WPT-PSO-PO-R-ELANFIS for
for A-D-E dataset AB-CD-E dataset
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Receiver Operating Characteristic (ABCD-E)

1.0 1

0.8 1

e
o
.

= \WPT-PSO-PO-R-ELANFIS, AUC=0.95

SENSITIVITY

=
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0.0 0.2 0.4 0.6 0.8 10
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Plot 7. ROC-AUC plot of WPT-PSO-PO-R-ELANFIS
for ABCD-E dataset

The findings of Table 8 values are presented in the
form of bar charts in Plotl and Table 9 values are
presented in the form of bar chart in Plot 2.

Plot 3 presents the ROC-AUC curve of A-E dataset,
Plot 4 presents the ROC-AUC curve of C-E dataset, Plot
5 presents the ROC-AUC curve of A-D-E dataset and plot
6 presents the ROC-AUC curve of AB-CD-E dataset.

Plots 3 to 8 represent the ROC AUC curve for the
mentioned Bonn University EEG dataset according to
Table 6.

Model loss curve represents the variation of error and
its changes according to the measurement performance of
training and testing set outcomes in the course of epochs.
The purpose behind this model loss is to analyse the
overfitting and underfitting cases. Plot 7 presents the
ROC-AUC curve of ABCD-E dataset and the model loss
curve of the proposed work for A-E dataset is shown in
Plot 8.

Conclusion

Accurate seizure detection is an essential support to
the neurologist to aware about the presence of seizure
signals in the brain part of the patient. In this case the
contribution of the metaheuristic optimization algorithms
integrated with the machine learning algorithms plays the
lead role to classify the seizure signals. It uses hybridized
PSO and parrot optimization algorithm with the
measurement outputs of accuracy of 98.3 %, sensitivity of
97.8%, specificity of 98.6 %and ROC-AUC value as 0.98
for the A-E dataset taken from Bonn university EEG
dataset. We plan to integrate the edge devices with EEG

model loss

0307 — train

test
0.45 1
0.40 1
, 0351
) 0.30 1
0.25 1
0.20 1

0 5 10 15 20 25 20
epoch
Plot.8 Model loss plot of WPT-PSO-PO-R-ELANFIS for
A-E set

ecosystem to avail immediate access for our forthcoming
experiments.

Data Availability

The dataset used in this study is publicly available from
the Bonn University dataset repository. The specific
dataset can be accessed at the following link:
https://www.upf.edu/web/ntsa/downloads/-
/asset_publisher/xvT6E4pczrBw/content/2001-
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