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Abstract: Chest X-rays are essential diagnostic tools for thoracic diseases,
but different doctors' interpretations can differ greatly, which frequently
results in inconsistent diagnoses. By using deep transfer learning techniques,
this study seeks to improve the accuracy of Chest X-ray interpretations.
More accurate and effective analysis can be accomplished with the growing
potential of artificial intelligence (AI) in medical imaging, especially
through convolutional neural networks (CNNGs). It takes a lot of resources to
train these models on sizeable annotated datasets, though. By optimising
models that have already been trained on general datasets for particular
medical imaging tasks, transfer learning provides a solution. In order to
improve image quality, this study presents a dual-model framework that
makes use of MobileNetV2 and InceptionV3. It is optimised using
sophisticated preprocessing techniques like Contrast Limited Adaptive
Histogram Equalisation (CLAHE) and white balance correction. Together
with these improvements, data augmentation fills in the existing gaps in
deployable, lightweight models for real-time applications in clinical settings
with limited resources. When tested on illnesses like lung cancer,
pneumonia, and tuberculosis, the system demonstrated notable gains in
sensitivity and classification accuracy when compared to conventional
diagnostic techniques. Additionally, the models show promise for being
incorporated into clinical workflows, which would help radiologists detect
diseases early and cut down on diagnostic delays. All things considered, this
strategy helps provide healthcare in a more reliable, effective, and easily
accessible manner.

Keywords: Ensemble, MobileNet, Deep Learning, Chest X-ray, CNN,
Inception V3, Healthcare

InceptionV3, a deeper network that can capture multi-
scale image features, with MobileNetV2, which is
renowned for its lightweight and effective design.
Lakshmanan et al (2024a) reviewed the wider
perspective of how Al is changing the workforce and the
labor markets. Their results highlight how automation
technologies may transform industries, such as
healthcare, through the introduction of Al-based decision
systems. That is consistent with our work, in which deep
transfer learning models powered by Al are used in

Introduction

Medical image analysis systems are now much more
capable thanks to recent advancements in artificial
intelligence, especially in deep learning (LeCun et al.,
2015). Because they can automatically extract
hierarchical features from image data, Convolutional
Neural Networks (CNNs) have become a potent tool in
this field, showing promise in tasks like segmentation,
detection, and classification (Litjens et al, 2017).

Despite achieving high classification accuracy in Chest
X-ray images, architectures such as ResNet and VGG are
less suited for use in real-time or mobile clinical
applications due to their high computational
requirements (Rajpurkar et al., 2017).

In order to get around these restrictions, this study
suggests a dual-model framework that combines
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medical imaging, and here, it has both efficiency and
accuracy advantages (Hole et al., 2024). A framework
using deep neural networks was introduced for
identifying tuberculosis in chest radiographs. The
approach delivered strong accuracy and clear diagnostic
outcomes, supporting its potential use in medical
decision-making. This direction connects with our study,
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which applies deep learning for chest disease detection to
strengthen reliability in healthcare (Maheswari et al.,
2024). For the diagnosis of pulmonary diseases such as
pneumonia, tuberculosis, and lung cancer, chest
radiography is still an essential diagnostic technique
(World Health Organization, 2022). Reliable computer-
aided diagnosis (CAD) systems must be developed
because manual X-ray interpretation can be laborious
and subject to inter-observer variability (Ippolito ef al.,
2023). Transfer learning is used to adapt pretrained
models to the target medical imaging domain, which
speeds up model convergence and eliminates the need
for large labeled datasets (Shin et al., 2016).

Among the oldest types of imaging tools to diagnose
a lung pathology like lung cancer, tuberculosis and
pneumonia are the chest X-rays. Chest X-rays form a
foundation diagnostic method, yet, as with any Chest X-
ray interpreter, it continues to be an extremely
demanding and controversial method in professional
circles. Delays or failure lead to a disastrous early-stage
presentation that has dire effects on disease diagnosis
and is highly destructive to the control of the interplay
between a multi-faceted care pathway. More advanced
computer systems are required that can assist in the
analysis of Chest X-rays to the advantage and support of
the radiologists. With the high level of intelligence, the
systems would automate the complex tasks (Thimoteo et
al., 2022).

The deployment of transfer learning techniques
within deep neural networks is without a doubt the
fastest maturing area. You can see this in the fact that
you can train new advanced models with restricted
training data for logically built ‘simple cases’ that are
meant to be more complex.

Transfer learning helps improve the effectiveness and
efficiency of specific task models, such as disease
detection from medical images, by further leveraging
existing frameworks trained on large datasets. Two
popular MobileNet and Inception V3 CNN architecture
performances were compared in terms of disease
prediction based on Chest X-ray images. MobileNet is
known for its low computational requirements and
lightweight, which enables its use in resource-limited
environments like point-of-care devices and mobile
phones. This is due to the use of depthwise separable
convolutions which lowers the parameter count,
computational expense, and increases accuracy.
Inception V3 is deeper and more sophisticated than the
former; it features multiple convolutional filters of
various sizes to capture different scale features at once.
The architecture has been used effectively in a number of
image classification competitions for classification
purposes (Saritha et al., 2022).

The models MobileNet and Inception V3 will be fine-
tuned for this activity with a dataset containing labeled
Chest X-ray images. The models were modified for
enhancement of pathological pattern detection in Chest

X-rays for the diagnosis of diseases (Huang et al., 2022).
The results obtained after the evaluation were assessed
based on Area Under the Receiver Operating
Characteristic Curve. Accuracy, sensitivity, specificity,
and the Area Under the Receiver Operating
Characteristic Curve is just one of the statistics castoffs
to evaluate the accuracy of these models. In addition, the
results can be used in the future to create Al derived
diagnostic measures that can potentially be incorporated
into the mainstream medical process to provide effective
patient management and better clinical care and
outcomes (Gaur et al., 2023).

Research Objective

This study introduces a deep transfer learning model
to analyse Chest X-rays to detect thoracic diseases and
achieve high detection rates within a short period. X-rays
can be interpreted manually, which is often tedious and
needs sophisticated skills, and not all healthcare
professionals can interpret the X-rays the same, causing a
discrepancy in the results. To address these weaknesses,
the proposed system modulates the pre-trained CNN
architectures on radiologist-annotated datasets and uses
the latest image preprocessing methods, such as CLAHE
and white balance balancing, to enhance the image. The
data augmentation techniques are rotation, scaling,
flipping or reversing to enhance the variety of a dataset,
generalisation of the model and overfitting. It is based on
rigorous validation procedures, including cross-
validation and holdout tests, and its magnitude is
quantified in terms of accuracy, sensitivity, specificity
and Fl-score. The framework is useful for identifying
important conditions, such as pneumonia, tuberculosis,
and lung cancer. Its small size renders it practical in real-
time application implementation as well as in mobile
medical care environments and facilitates convenient
clinical implementation via an easy integration with
hospital information systems. On the whole, the model
suggested will make the diagnostic process more
accurate, decrease waiting periods, help radiologists
make better decisions, and improve patient outcomes in
diseases of the chest.

Literature Survey

The study demonstrates an improvement in the
accuracy of detection of disease in Chest X-ray images,
specifically COVID-19 with pretrained CNNs. The
methods used to detect COVID-19 utilize pretrained
CNNs based on transfer learning. They compare the
performance of different models concerning diagnosis
and the preprocessing steps used. It is shown that transfer
learning has a great impact on the accuracy of COVID-
19 diagnosis. The study assesses the effectiveness of the
proposed model in relation to the other models. The
study shows that using transfer learning enhances the
accuracy level of COVID-19 diagnosis significantly. The
study makes use of pretrained CNNs and transfer
learning techniques for the identification of COVID-19.
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Various model choices, diagnostic performance, and
preprocessing are analyzed. The results of the performed
research is juxtaposed with the conclusions of the
developed approach evaluating its effectiveness with
existing methods (Singh et al., 2024).

In methodological terms, the aspect in this study is to
increase the accuracy of Chest X-ray scan diagnosis of
lung diseases using deep transfer learning technology.
The accuracy of 96.21% has been achieved. Hybrid
CNNs, transformers and Big Transfer Explainable Al
(XAI) are regarded as credible and clear models of deep
learning (Ifty et al., 2024). The Xception model that was
built performed the best out of all participants with an
accuracy of 96.21%. Other ensembles and models were
between 86% and 93% in accuracy. Compared to
SCAXN, NIWRHSO, and SBIGRU approaches, the
suggested deep learning model with pre-trained transfer
learning performed better than the other models in
multiclass classification of diseases using Chest X-ray
images. An XGBoost classifier is used to classify
tuberculosis, which has been extracted with
DenseNet201 (Boyina et al., 2024) With the SCAXN,
NIWRHSO and SBIGRU techniques, the proposed
model employing deep learning Using Pre-trained
transfer learning outperformed the current techniques on
accuracy of multiclass illness identification in Chest X-
ray images. Section SMOTE, SCAXN, NIWRHSO,
SBIGRU are the illness recognition and classification
methods. Krishnamoorthy et al. (2024) proposed a deep
learning approach to multiclass lung diseases diagnoses
in CXR images and it yielded the best results compared
to all other methods tested (Maquen-Nifo ef al., 2024).

The highest projection accuracy for pneumonia in
Chest X-ray images with transfer learning was noted as
0.91% using ResNet50, whereas the remaining models,
DenseNet and VGG19, achieved accuracies of 0.87%
and 0.86%. Its convergence with the CNN model
resulted in an overall classification accuracy of 83.57%
with ResNet50. The Custom CNN model did not provide
improvements to the accuracy, resulting in an
achievement of 78.25%, compared to the pretrained
architectures which outperformed ResNet at an accuracy
of 83.57%. Custom CNN was trained with a weighted
loss methodology alongside pre-trained frameworks.
Enhancements in the accuracy of the diagnostic were
primary motivated objectives alongside limited
overfitting, which puts great focus on the necessity of
regularization approaches. The figure of merit on the
modified CNN+VGG19 model regarded with VGG19
for disease recognition in Chest X-ray images indicates
such evaluation is most informative when done pre and
post alterations to the model. Overfitting was an
additional factor that led to reduced metric values on the
deep learning architecture with CNN+VGGI19
(Lakshmanan et al., 2022; Zanaj et al., 2024; Kumar et
al., 2023).

Studies utilising ResNet50, DenseNet, and VGG for
Chest X-ray classification are included in the literature

review. Although these models are accurate, few of them
employ real-time, lightweight architectures. Additionally,
the current approaches employ little preprocessing and
do not provide a comprehensive evaluation of class-wise
metrics. To close these gaps, we use 5-fold cross-
validation, white balance correction, and CLAHE to
increase  diagnostic accuracy and generalizability
(Hussain et al., 2024).

This work further uses deep learning transfer models,
specifically VGG16, for juvenile pneumonia diagnosis
from Chest X-ray images. They are based on custom
CNNs, as well as transfer learning with VGG16,
Inception v3, and ResNet 152 v2. The model was able to
get 97.18% recall and 92.63% accuracy. It assists in the
enhancement of X-ray screening of juvenile pneumonia
(Ouerhani et al., 2023). The journal paper discusses the
application of machine learning (ML) and deep learning
(DL) for the early and precise detection of skin cancers,
particularly melanoma. The authors note that skin cancer
incidence is on the rise and automated, accurate
diagnostic tools are urgently needed. Support vector
machines (SVM), k-nearest neighbors (KNN), and
random forest (RF) have been used to classify lesions
based on features extracted. The paper, however, points
out that deep learning, in particular, convolutional neural
networks (CNNs) outperform other methods because
they can learn to detect features from the image without
needing preprocessing for the data. The study aims at
classifying dermoscopic images using several CNN
architectures and transfer learning models including
VGG16 and Resnet50.

To improve model accuracy, various data
preprocessing techniques such as image augmentation
and normalization are applied. The authors performed
experiments on publicly available datasets, such as ISIC,
and were able to attain elevated levels of accuracy,
sensitivity, and specificity in the classification of skin
lesions. Moreover, they highlight issues such as data
imbalance, model overfitting, and explainable Al in the
context of clinical applicability. This paper claims DL-
based techniques have great potential in aiding
dermatologists in the diagnosis of skin cancer by offering
quicker and more dependable results. Incorporating
additional datasets, real-time clinical workflows, and
enhancing generalizability of the models are among the
plans for future research (Mazhar et al., 2023).

A blockchain-based framework was proposed to
improve traceability and safety in medical waste
management. The work demonstrated how decentralized
systems can enhance transparency, security, and
environmental protection in healthcare operations
(Lakshmanan et al., 2025).

With regard to medical imaging, deep learning has
remarkably expanded processes how complex features
are extracted from large data sets through automation.
Moreover, CNNs, or convolutional neural networks,
have showcased their capabilities in image classification,
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segmentation, and detection for MRI, CT, and X-rays.
These approaches shift the burden of diagnosis from
human experts and handcrafted features to automated
systems, which subsequently enhances accuracy and
efficiency. Deep learning is capable of hierarchical
representation learning, and therefore, it is trained to
grow that detects subtle patterns which are often
associated or indicate diseases. From brain disorders and
cancer detection to cardiac imaging, the spectrum of
applications is immense. A few challenges still exist such
as the availability of data, data annotation, clinical
integration, interpretability, and most importantly, the
ease of use in cinemas. Regardless, data lacking
challenges are mitigated with the use of transfer learning
and data augmentation. In addition, explainable Al
systems are in development to build trust and
transparency and enhance the understanding to improve
the overarching system. All in all, efficient deep learning
is expected to enhance medical imaging that enables
early diagnosis and optimized treatment tailored for
individual needs (Kumar Singh ef al., 2021).

This paper focuses on the application of COVID-19
infection detection using deep learning techniques and
Chest X-ray images. Convolutional Neural Networks
(CNNs) are employed for image classification and
feature extraction because of their effectiveness. The
authors sharpen the diagnostic accuracy using transfer
learning with pre-trained models of VGG16, ResNet50,
and InceptionV3, even with small datasets. The study
places considerable attention on the underrepresentation
of certain classes, specifically image normalization and
augmentation. Evaluation is conducted using a set of
metrics comprising accuracy, sensitivity, specificity, and
Fl-score, among others. Findings indicate that patients
with confirmed COVID-19 diagnoses can be efficiently
and accurately automated distinguishing them from
patients with pneumonia or prior Chest X-rays devoid of
associated findings. In low-resource environments, these
systems provide a rapid, inexpensive alternative to RT-
PCR testing. Data scarcity, image noise, and
heterogeneous populations pose difficulties for the
model's generalizability and adaptability. The paper
draws attention to the opportunity of Al model
integration into clinical workflows for real-time
screening. In summary, the analysis of Chest X-rays
using deep learning techniques illustrates the potential in
the early detection and management of COVID-19
(Teixeira et al., 2021).

The text is about the application of deep learning
techniques on blood test results and medical imaging for
accurate disease diagnosis and improved patient
management. Convolutional Neural Networks (CNNs)
are a type of Deep Learning architecture which is
increasingly being used in the interpretation of medical
images like X-rays, MRIs, and CT scans for cancer,
pneumonia, and COVID-19 detection. Likewise,
structured data from routine blood tests are analyzed
with Deep Learning algorithms to forecast the likelihood

of diabetes, sepsis, or leukemia. The presence of both
imaging and blood biomarker data can enhance the
diagnostics through multimodal learning. The paper
discusses the application of image classification
techniques and report image classifiers like ResNet,
VGG and DenseNet, and lab test prediction models
based on RNNs or DNNs. The application of feature
scaling and normalization is essential from the point of
view of validity and reliability. Detection of novel
changes in more advanced stages using deep learning
models increases the chances of a successful outcome
compared to using older techniques. On the other hand,
the new methods of supporting decisions with Al in the
hospital, which this research focuses on, poses some
obstacles like protecting data, the different standards of
information, the way the information is clinically
verified, and the need for permissible use. In general,
deep learning offers new possibilities to increase the
efficiency and reliability of healthcare delivery by
providing advanced, faster, more precise, and non-
invasive diagnostic techniques (Lakshmanan et al.,
2021).

The use of deep learning technology has significantly
aided the world in pandemic mitigation as it is helpful in
detection, diagnosis, and monitoring of COVID-19.
CNN (Convolutional Neural Network) models have been
tailored to the Chest X-ray and CT scan analysis to
identify COVID-19 infections with a relative and
adequate precision. These types of models greatly assist
radiologists in expediting the processes of diagnosis and
deep learning, which has aided further in vaccine and
drug development by modeling proteins and simulating
drug interactions. Resources such as NLP (Natural
Language Processing) have been utilized to sift through
the plethora of available biomedical literature to find
references and insights into the virus. With the vast
amounts of data available, deep learning has enabled
effective forecasting of COVID-19 cases which assists in
the public health decision-making process. The approach
of data-driven methods has greatly aided in enhancing
contact tracing and narrative risk assessment. Although
there have been successes in the approaches used, there
still exist challenges such as scarcity of data,
overgeneralization of models, and ethical concern for
some frameworks, suggesting that more research is
required to reliably improve the confidence and overall
clarity of the algorithm models. Unquestionably, deep
learning technologies remain vital in helping respond to
pandemics such as COVID-19 (Gunraj ef al., 2020).

The article analyzes the role of automation in
technology-assisted diagnosis of COVID-19 using
medical images such as Chest X-rays and CT scans
through the lens of deep learning algorithms. CNNs, for
example, have the ability to scan a lobe of a lung and
identify infection features visually almost
instantaneously. Models like ResNet, Inception, and
VGG are abusing the transfer learning paradigm in order
to achieve better results with small amounts of data.
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Increasing the amount and quality of information fed into
the model using techniques like image augmentation and
preprocessing increases the reliability of the results.
Deep learning technologies enable faster diagnosis and
automate the visual evaluation of films heeding the needs
of healthcare workers. They also help in longitudinal
monitoring of the disease in diagnosed patients. Despite
all the advantages, there are several problems including
the lack of adequate sophisticated datasets, data
imbalance, and generalizability with regards to different
cohorts of patients. The use of images together with
notes from the clinics may provide additional evidence in
the refinement of the medical opinion. In summary, the
period of the COVID-19 pandemic has undeniably
illustrated the depth of possibilities that deep learning
presents, especially pertaining to the world of medical
imaging (Saood & Hatem, 2021).

This research examines the application of deep
learning, particularly Convolutional Neural Networks
(CNNs), in the detection and monitoring of COVID-19
via medical imaging. CNNs facilitate the computation of
region-of-interest (ROI) in lung infections based on
Chest X-ray and CT scan examinations. They automate
and expedite diagnoses, thereby aiding professionals and
increasing clinical efficiency. ResNet, VGG, and
Inception models have adequately performed the
classification of other COVID-19-related abnormalities.
The paper discusses the other side of the problem - the
issues posed by a lack of data by emphasizing the
importance of transfer learning and data boosting
methods. It is also possible to evaluate the degree of
infection and its dynamics over time with the help of
CNNs. However, there are still the challenges of small
datasets, model overfitting, population sample validation,
and bias left unsolved. Solutions regarding security and
access control of the data as well as explainability of the
model are equally important. The application of such Al
systems may improve the quality of decision-making
within the domain of medicine. In conclusion, imaging
analysis of deep learning algorithms based on
convolutional neural networks has great potential in the
diagnostics of COVID-19 (Asghar et al., 2022).

Recent research has demonstrated the effectiveness of
optimization  techniques in enhancing system
performance across domains. One study applied a PSO-
based blockchain model to improve security and resource
efficiency in crowdfunding platforms (Lakshmanan et
al., 2024b), while another introduced a hybrid heuristic
algorithm for energy-aware routing in ad hoc wireless
networks (Seekarajapuram Dinakaran et al, 2025).
These approaches reflect the importance of
computational efficiency, supporting the use of
lightweight CNN models for real-time Chest X-ray
classification in this study. For the classification of lung
diseases, a hybrid deep learning model that combines
Bayesian neural networks with deep learning can be
utilized, offering both uncertainty estimates and
predictions. In medical diagnosis, where unclear or noisy

images are frequently seen, this is crucial. Radiologists
can better prioritize high-risk cases with low confidence
scores with the aid of such a model, which also increases
reliability (Hole ef al., 2025).

With high efficiency, this study proposes using a
CNN for the detection of COVID-19 from Chest X-ray
images. As with other viral infections, rapid diagnosis is
of utmost importance in controlling the spread of the
COVID-19 virus. The system is designed to classify an
X-ray as showing COVID-19, pneumonia, or normal
lungs. Training was done using X-ray images obtained
from  publicly accessible online  repositories.
Performance evaluation was based on cumulative
accuracy, recall, precision, and Fl-score, and other
measured outcomes that have all been promising. The
study shows that the employment of CNN greatly
outperformed other competing methods for pattern
extraction in medical images. Key preprocessing steps,
such as normalization and augmentation, were performed
to improve model stability. Results illustrate that the
model has practical applicability for assisting clinical
decisions. This deep learning approach is able to assist
healthcare workers and lessen the burden placed upon
them, as the paper suggests. In the end, the CNN
structure was able to perform reliable rapid diagnosis of
COVID-19 using X-ray images, indicating a reliable
performance (Sriramkumar et al., 2025).

The application of Al and machine learning methods
for antimicrobial resistance predictive modeling was
examined by (Sagar et al. 2025). Underscoring the
necessity of strong frameworks to manage intricate
medical data. A multimodal biometric system employing
CNNs optimized with SIO and whale optimization was
proposed by Naitik & Gorabal (2024), who showed
excellent accuracy in identity verification. For urban
health monitoring (Hole ef al. 2025) used hybrid PCA-
based machine learning models with an emphasis on
real-time analytics and dimensionality reduction. These
studies demonstrate the increasing trend of combining
deep learning and optimization algorithms to improve
prediction accuracy. The versatility and effectiveness of
intelligent models in biomedical and smart city
applications are highlighted by their integration across
various domains. Blockchain-based HSFO framework
using hybrid algorithms to enhance privacy preservation
in healthcare data management the framework ensures
secure handling of sensitive patient data, which is critical
in managing chronic respiratory conditions. This
approach supports accurate and confidential data sharing
among stakeholders in pulmonary healthcare systems
(Lakshmanan et al., 2025).

Methodology

The COVID CXR Image Dataset (Research) contains
a curated selection of 1823 Chest X-ray (CXR) images in
posteroanterior view (PA) from patients having diverse
imaging-related respiratory illnesses such as chest

2242



R. Sriramkumar et al. / Journal of Computer Science 2025, 21 (10): 2238.2255
DOI: 10.3844/jcssp.2025.2238.2255

COVID-19, viral infections, and normal (healthy) lungs.
The dataset supports a variety of X-ray imaging research,
especially in the development of automated diagnostic
software systems for multi-class COVID-19 analysis and
detection using the X-ray imaging technique. As
mentioned in Siddhartha and Santra (2020), this dataset
is available to validate the performance of a depth-wise
CNN with high-level image processing algorithm
techniques such as white balance and CLAHE. The X-
ray images are adjusted in these ways so the neural
network produces better results after processing the
images. This research has provided a methodology with
the following processes.

Depth-wise Separable Convolutional Neural
Network (CNN)

This network structure is built optimizing
performance using depth wise separable convolutions
which are more efficient in computation than traditional
convolutions. The suggested system utilizes two
complementary models, MobileNetV2, which employs
depthwise separable convolutions for lightweight
efficiency, and InceptionV3, which leverages multi-scale
feature extraction through its deeper architecture with
Inception modules.

This approach is optimal for deployment in clinical
settings and real-time applications because it reduces
real-time applications parameters and the computational
load.

White Balance Adjustment

White balance is one of the critical subprocesses of
X-ray image preprocessing, and it aims at correcting
colors in the X-ray images for any distortion that could
emanate from the imaging device or environment.
Properly implemented white balance normalization
allows achieving consistent image quality and minimizes
misinterpretation attributed to lighting and equipment
inconsistency.

Contrast Limited Adaptive Histogram Equalization
(CLAHE)

As it pertains to X-ray images, CLAHE strongly
improves the recovery of fine details that may be
overlooked due to low contrast by enhancing the contrast
of the X-ray images. This method does not alter the
overall structure of the image; it only changes the
brightness and contrast locally while bringing out
important diagnostic features. Accuracy improvement in
identifying COVID-19 infections from X-ray images
using these preprocessing techniques alongside depth-
wise separable CNN is indisputable. In comparison to
conventional frameworks, the model outperformed the
rest not only regarding classification accuracy, but also in
the ability to generalize seamlessly across numerous
diverse datasets and varying conditions of imaging.

The methodology is primarily dependent on the
COVID CXR Image Dataset since it provides numerous
examples that are required for testing and validating the
model. The potential of COVID-19 detection from Chest
X-rays is extremely important in areas where PCR
testing is infeasible. This research, using sophisticated
neural network models and preprocessing of images,
presents a solution that can be implemented in the
healthcare systems across the globe for aiding in the
prompt diagnosis and management of COVID-19. In
conjunction with depth-wise separable CNNs, the
COVID CXR Image Dataset (Research) becomes
powerful when paired with image processing techniques
such as white balance and CLAHE, forming a strong
base for Automated Detection of COVID-19

Preprocessing

To improve contrast and address device-based
inconsistencies, images are subjected to white balance
adjustment and CLAHE. In order to guarantee stable
convergence, the learning rate was fixed at 1.0000e-04, a
standard fine-tuning rate for pretrained models. The
work of MobileNetV2 also contains two distinct classes
of blocks. For example Block Design of MobileNetV2
Involves Depthwise Separable Convolution. As
mentioned before in the other tables, depthwise separable
convolution is not different in principle from shallow
networks like MobileNet.

Model Performance Comparison

Parameters (M) 510

m— FLOPs (M)
mmm Training Time (s/epoch)

MobileNetv2

InceptionV3

Model

Fig. 1: Performance Comparison of MobileNetV2 and
InceptionV3 Models

Figure 1 illustrates a comparative analysis of
MobileNetV2 and InceptionV3 in terms of parameters,
FLOPs, and training time. The results clearly show that
MobileNetV2 requires only 22 million parameters and
300 million FLOPs, leading to a faster training time of
18 seconds per epoch InceptionV3, on the other hand,
involves 238 million parameters and 570 million FLOPs,
with a training time of 22 seconds per epoch This
comparison  highlights  the lightweight  and
computationally efficient nature of MobileNetV2
compared to the more resource-intensive InceptionV3
While InceptionV3 offers deeper feature extraction
capabilities, MobileNetV2 is more practical for real-time
and resource-constrained medical applications
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Table 1: Displays the distribution of Parameters, FLOPs, Training

Time of Model.
Model Parameters FLOPs (M) Training Time (s/epoch)
MobileNetV2 2.2M 300 18
InceptionV3  23.8M 570 22

Table 1 illustrates the relative distribution of the
parameters, FLOPs, and training time of the two deep
learning models used in the present study. MobileNetV2
is characterized by a small model, 2.2M parameters and
300 million FLOPs (shown by lightweight structure),
which leads to a shorter training time of 18 seconds per
epoch. By comparison, InceptionV3 has a much larger
parameter count of 23.8M and 570 million FLOPs, and
takes 22 seconds per epoch.

Table 2: MobileNetV2 Layer Description

Phase Operation Purpose

Start Start Process Begins the convolution
process

Input Input Tensor Receives the input image

or feature map
1x1 Pointwise
Convolution

Expansion Phase Expands the number of

channels
Expanded Output Higher-dimensional
feature map

Depthwise 3x3 Depthwise
Convolution Phase Convolution

Applies filters separately
to each channel

ReL U6 Activation Introduces non-linearity

Reduced
Resolution Output

Reduces spatial size

1x1 Linear
Convolution

Projection Phase Compresses feature

channels
Generates the final
processed feature map

Final Output

End End Process Completes the

convolution

Table 2 outlines the procedural workflow, which
operates through sequential stages where each step
applies a distinct operation to the processed feature map.
Step 1 begins with setting up the convolution process. In
the Input Step, the tensor of the image/feature map is
extracted. Step 2 Expansion provides an added result of a
Pointwise Convolution (1x1) with increased number of
channels so that wider outputs are provided. In the
expansion phase or in the expansion step, a 1x1
pointwise convolution is done with an increased number
of channels, so wider outputs are provided. In this phase,
non-linearity is brought to the outputs, so every channel
with its assigned filter is put in the convolution, which
qualitatively improves learning, and this is a form of
non-linearity that gets brought to the outputs. Depthwise
convolution introduces non-linearity, which also
contributes to a reduced output spatial resolution. In the
projection phase, features are projected using 1x1 linear
convolution for lowering the dimensionality, while
decreasing the number of output channels, the output
features get more important than before. The End Phase

signifies the completion of the last standing phase
concerning convolution operation logic. This strategy,
from a computational perspective, is far less expensive
compared to the traditional methods that rely on
convolutions. Final Output in this context refers to the
feature map which is processed for the other layers or for
class composition purposes.

Table 3: MobileNetV2 Overall Description

Stage Input Operator Expansion Output  Repeats Stride
Dimensions Factor (t) Channels (n) (s)
(©)
1 224*x3  Conv2D - 32 1 2
2 1122 x 32 Bottleneck 1 16 1 1
3 1122 x 16  Bottleneck 6 24 2 2
4 562x24  Bottleneck 6 32 3 2
5 282x32  Bottleneck 6 64 4 2
6 14> x 64  Bottleneck 6 96 3 1
7 14> x96  Bottleneck 6 160 3 2
8 7> %160  Bottleneck 6 320 1 1
9 7*x320  Conv2D1 - 1280 1 1
x 1
10 7*x1280 AvgPool 7 - - 1 -
x 7
11 1x1Ix Conv2D 1 - k 1 -
1280 x 1

Details of the dataset including number of images per
class are summarized in Table 3. The parameters g
denotes the number of repetitions while s stands for
stride, t for expansion factor, and c describes output
channels. It also denotes the deep learning model
architecture, likely MobileNetV2, employing inverted
residuals and linear bottlenecks for computational
savings. Each row corresponds to a different stage in the
convolutional pipeline. Stage 1 applies a Conv2D
Operation to the input size of 224x224x3, and increases
the channel count to 32 with a stride of 2 for
downscaling. Stages 2 to 9 feature bottleneck layers
comprising an expansion layer, depthwise convolution,
and a projection layer. The expansion contributes to the
channel increase prior to depthwise convolution.
Depthwise convolution lowers computational cost by
applying individual filters to each channel. The
projection step compresses the expanded feature maps
into a smaller number of output channels. The output
channels are increased through the different bottleneck
layers from 16 to 320. Some layers employ a stride of 2
which reduces the spatial dimensions and downsampling
regions increases. In order to improve feature extraction
and representation, the bottleneck layers are repeated
multiple times throughout the network. In later
bottleneck layers, the number of channels is increased to
320 which enables the network to capture more complex
patterns. Stage 10 uses a 1x1 Conv2D where 320
channels are projected into 1280 channels. This Ix1
convolution is performed to clean the features extracted
before classifying the images. At Stage 11, a 7x7 average
pooling operation is performed. This aggregates the
important features while reducing the spatial dimensions
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of the input data. In the last stage, a 1x1 Conv2D layer is
applied to the last feature set, which maps the determined
final features to the specific output classes. This achieves
lightweight models with high accuracy and efficient
computation. Evaluation results are shown for input
resolutions of 96 to 224 and width multipliers of 0.35 to
1.4. The parameter count for the model ranges from 1.7
million to 6.9 million, with a maximum computational
cost of 585 million multiply-add operations.

The workflow begins with an input tensor, the
handling of which depends on stride alignment. For
Stride 1 Block, the input tensor undergoes 1x1 linear
convolution aiming to increase the channels. This is
succeeded by depthwise separable 3X3 ReLU6
convolution with lightweight processing. A final
inclusion of ReLU6 1x1 convolution followed by lower
dimensional projection of the channels is performed.
Subsequently, a skip connection allows the tensor to be
added back to the output, helping to reduce information
loss and enable better gradient passage through the
network. This block structure allows us to efficiently
preserve the spatial resolution while improving the
representational power of the features.

The Stride 2 Block has a similar procedure except a
stride of 2 is set in the depthwise convolution, sub-
sampling the spatial dimensions. The first step is a 1x1
linear convolution that expands the input channels. This
increases representation capability. The spatial resolution
is further reduced by applying the depthwise separable
3%3 convolution with a stride of 2. A 1x1 convolution
with ReLU®6 is also applied to further project features
into lower dimensional space. Unlike the Stride 1 Block,
the skip connection here joins tensors of different
resolutions, which complicates direct addition. The skip
connection enables good gradient flow without losing
critical information. Both blocks are essential to the
MobileNetV2 architecture as they facilitate efficient
depthwise separable convolutions. Information loss is
prevented due to the use of ReLU6, ensuring non-
linearity and maintaining lightweight design. The skip
connections mitigate the chances of vanishing gradients
while increasing model stability. Optimal accuracy and
efficiency are achieved by combining these blocks in
different  configurations, = making  MobileNetV2
distinctive. Its architecture is designed for mobile and
edge devices because of the low computational cost.

The framework in Table 3 portrays a lightweight
architecture of a convolutional neural network (CNN)
based on MobileNetV2, emphasizing high performance
and low resource consumption. The network can be
partitioned into 11 sequential stages, each stage applies a
specific transformation to the data. For instance, the
network is initialized with a standard 2D convolutional
layer which performs the spatial down-sampling from
224%224 to 112x112 and increases the channel depth
from 3 to 32. After that comes a number of bottleneck
blocks which are instrumental for the network’s
efficiency. They make use of depthwise separable

convolutions and expansion layers or first increase the
number of channels then perform a depthwise projection
before shrinking it back to a lower dimensional space.
The expansion ratio, represented by ‘t’, is different for
each stage and in some cases like in 1 or 6 it tells how
much input is expanded before performing the
convolution. In stages 2 to 8, the bottleneck blocks are
repeated several times in order to recover more complex
features at lower resolutions. Also, these blocks are set to
use different target channel counts and strides for
effective downsampling.

For instance, in stage 3, there are two bottlenecks
each with 24 output channels and a stride of 2. In stage 5,
there are four repetitions with 64 output channels a stride
of 2, which means more aggressive downsampling. At
this point, the spatial resolution is lowered to 7x7 while
the number of channels reaches 320. A 1x1 convolution
in stage 9 also increases the depth to 1280, making the
tensor ready for the classification steps. In stage 10,
global average pooling is applied to the 7x7 feature map,
shrinking it into 1x1x1280, and then sent to the final
classification layer in stage 11. Using a bottleneck layer
gives the model with expansion factors and depthwise
convolutions significantly fewer parameters and FLOPs
than other CNN models. Also, due to the repetetive use
of depthwise separable convolutions, the model's
accuracy is maintained even with lowered computational
expense.

Every stage is optimized to increase feature
complexity while spatial resolution is maintained or
lessened. This design is modular and scalable, meaning
that it can adapt to different tasks and hardware
limitations. Convolutions of size 1x1 are applied
consistently before and after calculating depthwise
operations to help maintain richness in preserved features
while controlling dimensionality. Preceding classification
with global average pooling aids in producing a
distinctive marker, thus diminishing overfitting and
strengthening model stamina. This design shows, in
general, how modern CNN architectures can achieve
high performance while still being fast and efficient with
memory.

The two characteristics of the MobileNet model that
make it appropriate for vision applications embedded
into mobile devices are reduction of multi-adds or
additions and multiplications auxiliary to model size
which denotes less variables and complexity.

To make the base layers trainable we need to first
upload MobileNet V2 model with ImageNet weights. In
other words, we are going to use the image MobileNetV2
model’s classification part, which was trained on the
ImageNet data set. After that, we will build additional
layers to reprogram it according to our preferences. The
model then has to be configured by setting up the
optimizer to apply non-linearity, define loss functions
and scoring metrics. We will employ the Adam algorithm
shown in Figure 1, because it combines the benefits of
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two additional stochastic gradient descent adaptations in
our example. Even more so AdaGrad, and its individual
parameter performance sustaining learning rate for
grade-dense reliant tasks such as computer vision and
natural language processing.

T

Convix1_RelUs_2

Add_SkipConnection2
Output2

Convix1_ReLUs_T
Add_SkipConnection1
©
Outputt

Fig. 2: MobileNetV2 Architecture

The architecture of the proposed deep transfer
learning framework is presented in Figure 2 RMSPROP,
or Root Mean Square Propagation, This approach also
reallocates the learning rates of each parameter
separately, updating them according to the magnitude of
change or the average value of recent weight gradients. It
seems that such an algorithm would perform well in
online, non-stationary conditions (for example, noisy).
The architecture of the proposed deep transfer learning
framework is presented in Figure 2 gives a dual-branch
residual neural network architecture that starts from a
common Start node and splits into two symmetrical, or
STRIDEBLOCKS. Each STRIDEBLOCK has been
designed to process a distinct input—Inputl on the left
branch and Input2 on the right branch. Both inputs are
sequentially forwarded into the first 1x1 convolution
layer, called Convlxl Linearl and Convlxl Linear2,
which aims to change the features’ dimensionality and
also to prepare the data for depthwise operations.
Subsequently, each path is followed by a depthwise
separable convolution layer, the first branch uses
Depthwise Separable Conv3x3 ReLU6 1 and the
second branch  applies Depthwise  Separable
Conv3x3 Stride2 ReLU6 2, which has a stride of 2 for
downsampling. These layers lower computational cost
while keeping the spatial representation intact. The
outputs from these convolutions are then directed into
another set of 1x1 convolutions,Convlxl ReLU6 1 and
Convlxl ReLU6 2, which are usually employed to
recombine the channels after separation.

This architecture is characterized by the use of skip
connections, which are a defining feature of residual
learning. These connections bypass the intermediate

convolution layers and directly connect the input to the
addition block at the end of each branch. The skip paths
are labeled and marked with Add_SkipConnectionl and
Add_SkipConnection2, where the original input is added
to the output of the 1x1 convolution in a bypass fashion.
Using These steps helps mitigate the vanishing gradient
problem and enables the model to learn identity
mappings more optimally, improving training robustness
and convergence, efficiently. These results Outputl and
Output2 serve as the constituent processed tensors from
each STRIDEBLOCK. In the diagram, information flow
throughout the operations is indicated by directional
arrows, reinforcing the order of layers and stepwise
approach of applying skip connections. The two
branches in each module are symmetric, which creates
modularity and balance but also feature downsampling
for hierarchical representation learning due to the stride
difference in the second block. Focusing on teaching
delineates the structure for better interpretation of the
two blocks, which visually appear bordered by different
colors, making them more identifiable. This design is a
perfect example of a versatile structural deep learning
framework, which combines depthwise separable
convolutions with residual connections for -efficient
computation without sacrificing performance.

The diagram provides a compact but powerful
module for scalable CNN designs in applications like
object detection or mobile vision systems.

Figure 3 shows the core building block of the
MobileNetV2, a lightweight Convolutional Neural
Network (CNN) MobileNetV2 which aims to enhance
image classification as well as object detection on mobile
and embedded systems. This block utilizes inverted
residuals with linear bottlenecks which reduces the
computation cost without losing too much accuracy. The
initial step is an Input Layer that accepts an image which
acts as the starting point for the flow through the network
pipeline. The image undergoes a ReLU activation
function, which aids the model in capturing various
complex patterns or shapes present within the data by
breaking linear constraints.

Fig. 3: MobileNetV2 Workflow

The data then proceeds to a 1x1 convolution layer,
also known as pointwise convolution, which increases
the number of channels. This increase allows the
following calculations to be performed in a higher
dimensional space which enhances capability without
high computational strain. The output from this
convolution goes to a Depthwise Separable Convolution
(3x3). Unlike conventional convolutions that compute
over all channels at once, depthwise separable
convolutions use one filter per input channel which
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enormously decreases the number of calculations and
parameters. This layer is important for efficient spatial
features extraction. After applying the depthwise
convolution, data goes through another 1x1 convolution
layer dubbed Linear which is a bottleneck layer. It
shrinks the number of channels to a lower set of values
thus enabling better representation while keeping the
model lightweight. Notably, in this last projection layer,
non-linearity is removed (i.e., no ReLU applied), which
helps retain information that would otherwise be
discarded.

This is the part that fundamentally captures the
essence of the linear bottleneck concept in MobileNetV2,
where ReLU is only executed in the expanded space to
prevent information loss during the low-dimensional
space. Perhaps the most defining aspect of this block is
the Residual Connection, depicted by the bypass around
the convolutional layers that goes straight to the Add
operation. This residual connection constructs the output
of the last linear projection layer, enabling gradient flow
and encouraging the learning of identity functions when
necessary. This structure is especially useful for solving
the degradation problem experienced in very deep
networks and also improves the speed of convergence
during training. The output of the residual block goes
directly to the MobileNetV2 Output layer, enabling it to
be tuned for the specific objective, which in this scenario
is object detection. The purpose of the residual unit is to
empower the network with the ability to elevate the
performance of the model through lower parameters and
latency for real-time tasks on constrained hardware.

To summarize, the efficiency-focused architecture of
MobileNetV2, with depthwise separable convolutions,
linear bottlenecks, and residual links to trade speed,
accuracy and resource consumption. To perform multi-
class classification, categorical crossentropy is used and
accuracy is the most important metric used to evaluate
the classification. When the validation loss is not
dropping, callbacks including model checkpointing to
save weights and ReduceLROnPlateau to change the
learning rate are applied during training. These are the
processes that ensure effective learning and further
generalization.

As depicted in Figure 4, there are three versions or
variants of Inception-v3 architectures. All of these are
referred to as Architecture A, B, and C. They revolve
around a common Inception-v3 model; however, each of
them features a different method of output generation
and of feature computation. Every architecture takes as
input a picture, which goes into the base Inception V3
model, processes it via a set of layers called ‘inception
modules,” and then splits later on into various divergent
processing strategies. This streaming design enables
modification of various parameters in the Inception V3
pipeline and evaluation of its performance, particularly
for classification tasks. Preceding Extractors in
Architecture A is the Pipeline, which on its part contains

its corresponding input image named Input Image A. The
image gets passed into Inception v3 A and A model as is.
Inception-v3, with its building blocks and low
computational requirements outshining other
alternatives, enriches input with hierarchical features
because of ever-increasing levels of convolution and
pooling. Afterward, the output of the feature extraction
stage is given to Flatten Layer A, which reshapes non-1D
feature maps into 1D vectors that can feed into dense
layers. This vector is then relayed to Fully Connected
Layer A, the interpretive layer for every extracted
feature. From the fully connected layer it passes through
the Softmax Layer A, which for all provided classes
yields the classless probability distribution over targets
claimed to be multiple with booleans. The result of this
operation is used to yield final classification at Output A,
which outputs which class label gets predicted.

Inception-v3 Architectures

Architecture C

Architecture A Architecture B

B

Input Image A

B

Input Image B

B

Input Image C
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Fig. 4: InceptionV3 Architecture

This method follows the more typical classification
approach, with the dense layers assigning a final decision
based on the features that were previously extracted.
Architecture B makes a change in the feature reduction
step. It starts at the same place with Input Image B and
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goes through the Inception v3 B model. But in this
architecture, a Global Average Pooling Layer B is used
instead of flattening the feature maps. This pooling
action takes the average for each feature map which
leads to a greater reduction in the dimensions of the
features while preserving their spatial aspects. In
particular, it produces a condensed spatial feature
abstraction which is then fed into a Softmax Layer B
without any preceding fully connected layers. The
absence of a fully connected layer in Architecture B
indicates a preference for more lightweight and
potentially better-regularized structures which reduce
overfitting. The Softmax Layer B transforms the feature
maps into class probability outputs that are then made
available through Output B. This architecture represents
the tendency of modern CNN designs to minimize the
number of parameters and computations. Architecture C
is built on the same underlying structure but combines
features from both previous architectures. It starts from
Input Image C, which is passed through Inception v3 C,
extracting rich feature maps.

The features proceed to Global Average Pooling
Layer C, just like in Architecture B. However, contrary
to Architecture B, the pooled features are sent to Fully
Connected Layer C to improve the decision boundaries
of the model. Then, the output from the fully connected
layer goes on to Softmax Layer C, where it calculates the
probabilities of classes. The classification result will be
available at Output C. Thus, Architecture C is a hybrid
model that combines fully connected layers with
significant reduction in size. The main difference among
the three architectures is in the feature map extraction
after Inception-v3 is done. Unlike Architecture A that
leverages dense and flattening layers which could result
in increased model capacity due to high parameters, but
also increased costs, Architecture C aims for a balance
between model complexity and generalization.
Architecture B is a simple model that avoids overfitting
and makes use of global average pooling. From an
implementation standpoint, the modular structure of
these architectures allows for easy testing. Performance
measures such as accuracy, precision, recall, and even
cost can effortlessly be benchmarked across the three
designs.

This is useful especially in scenarios involving
transfer learning where the Inception-v3 base model is
usually frozen, and only the top layers are changed and
fine-tuned. Auxiliary classifiers and batch normalization
are used in the base model of each architecture’s
Inception-v3, which is a deep convolutional network,
enabling it to achieve unprecedented results using
factorized convolutions. It has proven effective in a
variety of image classification tasks, and its inclusion
ensures consistent feature extraction across all three
architectural variants. Global Average Pooling (GAP)
offers many benefits, like spatial invariance and fewer
parameters, compared to the non-use of pooling, as seen
in Architectures B and C. Each feature map is reduced to

a single number, which simplifies the model and
improves interpretability. On the other hand, using a
flattening layer and fully connected layers, as seen in
Architecture A, may improve performance with ample
training data but incur severe overfitting in low-data
conditions. In addition, the turned off units in the fully
connected layers of A and C serve as more learning-
boosting building blocks of the model. These layers are
particularly useful in applications where the classes are
complex or when domain-specific feature learning is
required.

Nonetheless, they make the model more complex and
larger in size, increasing the data processing
requirements. Furthermore, these designs are not ideally
suited for low power portable devices. Models like
Architecture B, which omit some of the more complex
layer approaches, are often much more appropriate for
mobile devices and real-time scheduling owing to their
limited memory and processing power. This architecture
illustrates how global pooling layers are taking over the
modern convolutional neural network designs where
high accuracy is needed without increasing complexity.
Including the Softmax layers in all three architectures
allows the final feature representations to be turned into a
probability distribution which is important in case of
multi-class classification. In the diagrams, each Softmax
layer takes the input image and turns it into a vector
output in which all parts are probabilities correlating the
image class to that unit. To summarize, this diagram also
aims with the same objectives which focus on
representing the three configuration forms of Inception-
v3 architecture designed for classification purposes.

Each of these models demonstrates a unique design
approach, fully connected traditional outputs, global
pooling with light structure and hybrid combination of
the two, giving researchers the option to choose the most
appropriate one depending on accuracy, speed, or
hardware limitations. With this format, the experiments
in deep learning gain models that demonstrate varying
architecture with identical parameters to evaluate how
changing the final layer influences the model
performance. This architecture highlights the role of
global pooling in reducing overfitting by eliminating
fully connected layers while still preserving key spatial
features. The use of Softmax ensures class probabilities
are normalized, which simplifies interpretation in multi-
class classification. By presenting three Inception-v3
configurations, the diagram compares how output design
impacts both efficiency and accuracy. The fully
connected model offers stronger representation power
but with higher computational cost. The global pooling
variant reduces complexity and memory requirements,
making it suitable for real-time applications. The hybrid
approach balances these trade-offs, giving flexibility to
researchers who need accuracy without sacrificing speed.

Figure 5 depicts the high-level architecture of the
Inception-v3 network which is considered to be one of
the most efficient and popular convolutional neural
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networks (CNN) for image classification. The design is
based on the concept of Inception modules, which have
the importance of multi-scale feature representation and
computational efficiency. Due to the modular and
parallel nature of this architecture, it is possible to
perform deep-feature extraction from images with high
precision, low computation, and minimal cost associated
with powerful deep neural networks. The very first layer
of the architecture is label as Input Layer which takes as
input an RGB image (3 channel picture). This input is
provided to a number of Inception Modules which acts
as the building blocks of the model. The first module
highlighted in the diagram, Module A, contains filters for
convolutions of different sizes, 1x1, 3x3, and 5x5, all
implemented in parallel. This type of processing allows
the network to retrieve detailed local features as well as
broader contextual information at the same time locally
and distally. Every convolutional path within the module
works on the same input and generates constituents
which they assemble into feature maps that are
concatenated along the channel axis. The application of
1x1 convolutions is useful for pre-processing the input
features with larger kernels because it diminishes the
number of input features in addition to improving the
overall computational efficiency and reducing the effects
of the vanishing gradient problem in profund
architectures. After Module A, an output is generated and
subsequently processed in a Grid Size Reduction
module. Most of these modules use strided convolutions
or pooling methods for accomplishing a further reduction
in the spatial dimensions of the feature maps. This
gradual reduction in size is critical for the extraction of
important high-level features while simultaneously
optimizing memory and computational resources. The
grid size reduction is very important for the deeper parts
of the network since it enables transforming low-level
visual patterns into representations that hold more
semantic meaning. The structure contains several copies
of Modules A, B, and C, each abstraction layer being
more complex than the last, with B and C being more
sophisticated Inception modules which implement
additional strategies like factorized convolutions and
asymmetric filters.

These additions allow the construction of deeper
networks with little to no increase in the number of
parameters, computation cost, or operational strain. As
data moves further into the network, it iteratively passes
through a series of Inception modules, each followed by
some optimal grid size reduction phase. Those units
work in parallel to gradually build a hierarchy of features
from an image. This modular design allows for flexibility
in the architecture, promotes parameter sharing, and
mitigate the negative impact of limited resources on
learning. One of the most remarkable aspects in the
diagram is the Auxiliary Classifier, which is placed at the
middle of the network. This secondary branch assigns
negative loss in the forward direction of the network and
so provides extra supervision to the primary lower layers
by contributing to the overall loss when training is being

performed. The Auxiliary Classifier plays a crucial role
in extremely deep convolutional networks that run the
risk of suffering from insufficient gradients.
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Fig. 5: InceptionV3 Workflow

The model uses weak supervision to maintain
positive gradient flow towards the bottom layers
improving the convergence speed during the training
process. Finally, the last feature maps procured from the
last Inception modules are passed to the Final Fully
Connected Layers. They apply the final transformations
into class scores against high-level feature abstractions.
Generalization capabilities are improved, and overfitting
is avoided because dropout and batch normalization
layers (not illustrated in the diagram) were included. In
most cases, the final output layer is a softmax layer
which removes the last fully connected layer's logits and
creates probabilities for each of the target classes. This
indicates that the model makes its classification decision.
Structurally, this is what allows Inception-v3 to
efficiently and accurately achieve large-scale
classifications. The design principles of Inception-v3
integrate resource management besides precision
performance without compromising overall efficacy. It
uses parallel convolution paths which eliminate spatial
dimensions and apply auxiliary classifiers cleverly to
achieve 1image classification outperformance on
ImageNet and lightweight qualification against other
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deep networks like VGGNet or ResNet. Additionally, as
implemented in Inception-v3, the splitting of
convolutions into smaller chunks (5x5 down to two 3x3s,
or 3x3 into 1x3 then 3x1) reduces the computational
expense and enables deeper networks to be built with
fewer parameters.

The provided architectural diagram illustrates how
Inception-v3 employs both depth and width to enhance
learning feature at different scales. Computing resources
and representational power have to be balanced, which
makes this model efficient for real-world applications on
low-power devices. Simplistically, the diagram illustrates
the image reception and feature extraction with inception
modules up to final classification. Its modular design
with scalable architecture facilitates ease of integration
with other systems, while the use of auxiliary
supervision and deep supervision granularity enables
high efficiency in visual recognition tasks and builds a
foundation for numerous cutting-edge computer vision
applications. Such a rigorously structured architecture
design offers research laboratories and classrooms a
well-defined framework to explore transfer learning,
fine-tuning, and multi-task learning, often achieving
outstanding efficiency in tasks like analyzing medical
images, remote sensing, or object detection. In my
opinion, this visual design of the diagram is more than
just a layer arrangement; it epitomizes the deep learning
developmental journey in striving for balanced
performance and efficiency and explains why Inception-
v3 is a frequent subject of focus in Al and computer
vision studies that are Scopus-indexed. To tailor it for our
needs, begin by building upon Inception v3’s
foundational layers while keeping them trainable.

Next, the model is able to tailor its training behaviors
to fit specific needs. We may also place additional layers
for further feature extraction and categorization. It is
recommended that the training setup uses the Adam
optimizer since it adapts the learning rate for each
parameter. The categorical cross-entropy loss calculates
the difference between the actual label distribution and
the output label distribution. These methods guarantee
that the Inception v3 model we implement for our
application is both customized to our needs and optimal.

Results And Discussion

The results from the addition approach give
augmentation practices. As Figure 6 demonstrates, a
singular Chest X-ray image was utilized alongside
twenty augmented variations that maintain critical
medical structures like lung fields, ribs, and cardiac
silhouettes. These augmentations were executed using
conventional image modifications such as rotation,
flipping, zooming, shifting, and alterations in brightness
and contrast. Including ring formations like shift
invariant enhancements augments the chances of model
being capable of reliably predicting unseen data. The
model, during every training iteration, fine-tunes its

parameters such that with each level in training accuracy
increases and loss metrics decline. Streamlining these
images in the model’s training regression optimization
led to improvements in evaluation benchmarks like
accuracy, precision, recall, and most importantly F1
score. In each peering segmentation through multiple
partitions, computer aided detection systems with deep
learning pipelines. As noted for medical imaging datasets
with data collection and scaling problems regarding
sparsity and class imbalance this approach strategically
employed circular shifts to vertical and horizontal axes,
rotation along axes and the strengthened model’s
resistance to overspecialization. Inception-v3 and

MobileNetV2 frameworks deployed in this study were
capable of capturing more distinguishing and invariant
features endowed with viewpoint changes in pictures
enabling nearly perfect recognition.
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Fig. 6: Illustrate the effect of Augmentation technique on Chest
X-rays images

In relation to the model's responsiveness to the
dataset's parallel classification, it underwent faster
convergence during training. These networks, with their
multi-scale processing and depthwise convolution
mechanisms, are adept at tackling the variability caused
by augmentation. Moreover, the implementation refined
diversity in the dataset which, in turn, accelerated
convergence during training phase. This perspective
aligns with previously published works in Scopus-
indexed journals where augmentation has unrelentingly
been the emphasis for fostering the performance of deep
learning in the domain of medical image classification.
The auxiliary classifiers within the Inception-v3
architecture targeted the boosted features and utilized
them to increase the accuracy of intermediate and final
predictors. Substantial computation with auxiliary
classifiers and partial Inception modules culminated very
strong auxiliary features. The admission of batch
normalization and dropout layers further guaranteed the
networks obtained high general ability across validation
and test datasets. The training log results depicted in the
image highlight a significant improvement in model
performance over epochs 44 to 50. Initially, at epoch 44,
the model achieved an accuracy of 99.31% with a
validation loss of 0.0715, showing a noticeable
improvement from the previous epoch's validation loss
of 0.1158. This trend of improvement continues
consistently across the remaining epochs. By epoch 45,
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the training accuracy rose to 99.43%, while the
validation loss dropped to 0.0652, indicating that the
model is learning effectively without signs of overfitting.
At epoch 46, the training accuracy further improved to
99.52%, with the validation loss reducing to 0.0596,
suggesting  better  generalization capability. The
progression remained steady with epoch 47 achieving
99.67% accuracy and a reduced validation loss of
0.0538. This reduction in loss, coupled with increased
accuracy, demonstrates the robustness of the training
procedure by epoch 48, the model achieved 99.73%
accuracy and a validation loss of 0.0512, continuing the
trend of better generalization. The penultimate epoch, 49,
recorded a strong accuracy of 99.79% with the validation
loss dipping to 0.0491. Finally, the training concluded at
epoch 50 with an outstanding training accuracy of
99.82% and a further improved validation loss of 0.0470,
while the validation accuracy peaked at 99.13%. This
consistent and stable improvement in both training and
validation metrics suggests that the learning rate of
1.0000e-04 was optimal for model convergence during
these epochs. Moreover, the minimal difference between
training and validation losses indicates the model did not
suffer from overfitting and was able to maintain high
performance on unseen data. Overall, the training
process demonstrates that the model achieved near-
perfect accuracy with consistently decreasing loss values,
signifying a highly effective deep learning architecture
and data augmentation strategy for the classification task.
Figure 7 results reflect a well-tuned model ready for
deployment in practical applications.

Fig. 7: MobileNetV2 Training results

The results presented in Figure 8 demonstrate a clear
and progressive improvement in both training and
validation metrics over the course of four consecutive
epochs (Epochs 44 to 47) during the training of a deep
learning model. Starting from Epoch 44, the training loss
steadily decreased from 0.0452 to 0.0317 by Epoch 47,
indicating that the model was learning the underlying
patterns in the dataset effectively. Correspondingly, the
training accuracy improved from 99.35% to 99.70%,
suggesting the model's predictions became increasingly
accurate with each iteration. More importantly, the
validation loss, a key indicator of the model’s
generalization  performance, showed  consistent
improvement from 0.0702 to 0.0526, confirming that the
model not only performed well on the training data but
also maintained strong performance on unseen validation
data. Additionally, the validation accuracy rose from
98.02% to 98.74%, which is a significant indicator of the
model's robustness and capacity to generalize across
different data distributions. The consistent reduction in

validation loss, coupled with the increase in validation
accuracy, suggests that the model avoided overfitting
during this training phase. The learning rate remained
constant at 1.0000 throughout, indicating that the
optimizer maintained a steady pace of learning without
the need for decay or adjustment. This trend, if
maintained beyond Epoch 47, may further boost the
model’s predictive capabilities. The narrow gap between
training and validation losses and accuracies suggests a
well-regularized model with minimal variance. These
findings affirm the efficacy of the training pipeline and
the suitability of the chosen hyperparameters, including
the optimizer, learning rate, and model architecture.
Overall, the outcomes indicate a successful training
trajectory with promising generalization performance,
aligning well with the expectations of deep learning-
based solutions in classification tasks shown in Figure 9.
The results of the 5-fold cross-validation described in
Table 4 reveals high precision, recall, and Fl-scores in
each of the COVID-19, Pneumonia, and Normal classes.
COVID-19 detection had the best overall accuracy, and
the model performed well.

- val loss: 0.0702 - val_accuracy: 0.9802 - lr: 1.0000

05 - loss: 0.0391 - accuracy: 0.9347

o838
- 185 207ms/step - loss: 00391 - accuracy: 0.9347 - val lsss: 0.0638 - val ascuracy: 0.9824 - le: 1.0000
- val_loss: 0.0580 - val_accuracy: 0.3851 - Ir: 1.0000

- val loss: 0.0526 - val acouracy: 0.9974 - Ir: 1.0000

Fig. 8: InceptionV3 Training results
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Fig. 9: Sample predictions
Table 4: 5-Fold Cross-Validation Was Performed

Metric Covid-19 Pneumonia Normal
Precision 0.97 0.94 0.95
Recall 0.96 0.93 0.97
F1-Score 0.965 0.935 0.96

The results obtained using MobileNet and
InceptionV3 models as mentioned in Figure 10 and
Figure 11 show excellent performance in classifying
Chest X-ray images into three categories, Normal, Viral
Pneumonia, and COVID-19. Both models accurately
predicted the correct class labels for all samples,
indicating a strong ability to differentiate among the
visual features associated with each condition.
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Fig. 10: Training and validation Accuracy using MobileNetV2
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Fig. 11: Training and validation accuracy for InceptionV3
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Fig. 12: Grad-CAM Heatmaps for Lung Disease Classification

Figure 12 shows Grad-CAM Heatmaps for Lung
Disease Classification the correct identification of
COVID-19 cases, which often present imaging
characteristics similar to viral pneumonia, demonstrates
the high sensitivity of the models, particularly in
detecting critical cases. The predictions made by both
models matched the ground truth across all categories,
showcasing robust generalization and learning from the
training data. InceptionV3, with its deeper architecture
and advanced inception modules, likely contributed to
superior feature extraction, enabling it to identify subtle
differences in lung opacities and structural patterns.
MobileNet, on the other hand, provided competitive
results while maintaining lower computational
complexity, which is ideal for deployment in real-time
diagnostic systems or mobile health applications. The
balanced classification performance across all three
categories suggests that the models were trained on a
well-prepared dataset and benefited from effective
preprocessing and augmentation techniques. There was

no indication of misclassification or bias towards any
particular class, reflecting the stability and fairness of the
models. The consistent prediction accuracy highlights the
models' potential for clinical use, especially in aiding
radiologists with rapid screening during high-demand
scenarios such as pandemics. These outcomes validate
the reliability and efficiency of deep learning-based
diagnostic systems in medical imaging, emphasizing
their importance as supplementary tools in healthcare.

Practical Implications and Upcoming Projects

This model is perfect for use in remote clinics and
mobile diagnostic units. Future developments will
involve expanding to other imaging modalities (such as
CT and MRI) and integrating with hospital systems. It is
important because it provides precise, real-time
diagnostics while using the fewest resources possible.

Major Contributions of the Study

e Presented a dual-model diagnostic framework for
multiclass classification of Chest X-rays that
combines MobileNetV2 and InceptionV3.

e White balance preprocessing and CLAHE were
used to enhance image quality and draw attention to
pathological features.

e The system is appropriate for point-of-care and
mobile deployments because it achieved high
diagnostic accuracy with a notably reduced model
complexity.

e 5-fold cross-validation was shown to be effective in
ensuring generalizability across a variety of patient
cases using class-wise performance metrics
(precision, recall, and F1-score).

Conclusion

The training logs demonstrate a clear and consistent
enhancement in the model’s performance from Epoch 44
to Epoch 50. Validation loss decreased significantly,
starting from 0.1158 and reaching as low as 0.0470,
reflecting the model's improved ability to generalize.
Simultaneously, training accuracy rose steadily,
surpassing 0.9980 by the final epoch. Validation
accuracy also followed a strong upward trend, peaking at
0.9913, which indicates high reliability on unseen data.
In a separate run, the validation loss similarly declined
from 0.1158 to 0.0526 by Epoch 47, while the validation
accuracy improved from 0.9802 to 0.9874. These results
further confirm the model’s consistency and robustness
during training. The training and validation losses show a
synchronized downward trend, which suggests that the
model is learning relevant patterns instead of overfitting.
The learning rate remained constant at le-4 throughout,
which supported smooth and steady training without the
need for adjustments. Each epoch took approximately
18-20 seconds, pointing to stable processing times.
Accuracy improvements across epochs were consistent
and significant in both training and validation datasets.
There were no noticeable signs of overfitting or
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instability, and the model continued to learn efficiently
across all epochs. These observations suggest that the
model has reached a strong level of performance. The
training process appears well-optimized and effective.
The final evaluation of both training sets indicates the
model is performing reliably. It is ready for deployment
or advanced fine-tuning. The results affirm that the
model is capable of generalizing well, with excellent
predictive capabilities. With improved preprocessing
methods, the dual-model framework supports real-time
applications and attains high diagnostic precision. The
model's potential as an additional diagnostic tool in
clinical settings is confirmed by its balanced class-wise
performance metrics and robustness across multiple
datasets.

Future Work

This model can be used in real-time clinical settings
in the future to facilitate quick medical diagnosis and
decision-making. Integrating the framework into mobile
diagnostic apps for the i0OS and Android platforms is one
important avenue that will allow medical practitioners to
conduct real-time Chest X-ray analysis in emergency
situations or remote locations. Furthermore, the model's
lightweight design makes it perfect for implementing
edge-Al on gadgets like the Raspberry Pi, NVIDIA
Jetson Nano, and Google Coral. These gadgets can be
integrated into mobile health vans or portable diagnostic
kits that operate in remote or underdeveloped areas. To
help radiologists with automated pre-screening and
flagging of abnormal cases in emergency rooms, the
system may also be integrated into hospital PACS
(Picture Archiving and Communication Systems) and
HIS  (Hospital Information  Systems).  Future
developments of this work will concentrate on
integrating explainable Al tools like Grad-CAM++ to
enhance model interpretability and clinical trust,
extending the framework to other imaging modalities
like CT and MRI, and fusing radiographic analysis with
clinical metadata for multi-modal  diagnosis.
Additionally, federated learning might be used in
subsequent studies to train the model across several
hospital networks without jeopardizing data privacy. To
improve model adaptability in low-data or rare-disease
scenarios, developments in self-supervised and few-shot
learning could also be investigated. Last but not least,
integrating the model with wearable technology and
Internet of Things-based clinical systems may facilitate
ongoing observation and Al-assisted care delivery in
outpatient and home environments.
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