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Abstract: The growing complexity of network traffic patterns and
congestion within data centers necessitate innovation in traditional network
infrastructure. While advancements in storage, computing, and applications
have progressed rapidly, networking has remained relatively stagnant,
limiting the overall performance of data centers. Software-Defined
Networking (SDN) emerges as a powerful solution by decoupling the
control plane from the data plane, offering enhanced flexibility and
efficiency in network management. This decoupling allows for centralized
control and dynamic configuration, making SDN well-suited for modern,
high-demand environments. As network architectures evolve, SDN is
expected to enable more adaptive and context-sensitive routing protocols
that can adjust to real-time conditions. However, challenges in optimizing
resource utilization across data centers persist. This paper proposes a novel
approach utilizing a multilevel-feedback queue mechanism to enable real-
time traffic processing and dynamic scheduling, improving bandwidth
utilization. Simulation results demonstrate the effectiveness of this method
in optimizing traffic scheduling, highlighting its potential for addressing
congestion issues and enhancing network performance in data centers.
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Introduction
Research data is growing at a very high rate due to

the development in big data analysis, the amount of data
from various sources such as social media, blogs, and
sensors from the Internet of Things, and cloud computing
data (Laizhong Cui & Yan, 2016). Low utilization ratio,
congestion problems, service latency, and even DDOS
attacks may be due to the heavy data transmission impact
(Lan et al., 2016). All data centers are always linked to
each other through wide-area networks (Ghaffarinejad &
Syrotiuk, 2014). When data center networks employ
traditional routing protocols, flows are compelled to
forego the shortest way in order to be routed and
forwarded. This may be the shortest path connection
when all links are under low load and some fresh flows
are still vying for it. The best but most expensive
solution is to reshape and update the network. However,
traditional methods of configuring network systems,
monitoring, and optimizing network performance,
identifying and resolving network problems, and
planning network expansion will become nearly

impossible and ineffective due to the complexity,
scalability, and heterogeneity of current networks (Xia et
al., 2015). One of the most popular types of computer
networking is Software Defined Networking (SDN).
SDN's central concept is to decouple the control plane
from the data plane through software programming to
achieve flexible network management, effective network
activity, and low-cost maintenance (Sezer et al., 2013). It
is receiving considerable attention from academic
researchers, industry researchers, network operators, and
some large and medium-sized networking enterprises
(Nunes et al., 2014). SDN is seen as a promising
approach for architecting our conventional network (Lin
et al., 2015). Traditional SDN's basic concept is to
decouple the control plane from the data plane to
accomplish flexible network management, effective
network activity, and low-cost maintenance through
software programming (Sezer et al., 2013). In particular,
network tools merely perform packet forwarding based
on SDN controller principles (McKeown et al., 2008).
The SDN administrator will oversee the underlying
network architecture in the control plane and give the
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equipment plane a flexible and efficient environment in
which to implement different network services. Under
this modern network model, creative approaches are also
applied rapidly and reliably inside the kind of software to
realize unique and scalable systems and deployed under
real-time traffic networks. Nonetheless, this paradigm
enables the logically centralized control and management
of network devices within the data plane in conjunction
with a global and simultaneous network view and real-
time network data. Compared to traditional networks,
SDN makes it much simpler to develop and implement
applications (Kim & Feamster, 2013).

Related Work

This segment looks at the data center and theoretical
base traffic engineering survey. The problems include
data centers based on conventional and SDN-based
networks. First, we highlight the drawbacks of
conventional network protocols used in existing data
centers and the emergence of distributed data centers.
These limitations drive the demand for our proposed
work.

Data Center Based on Traditional Network

In the conventional model, traffic primarily flows
between the server and the client, while data centers
handle only a small portion of the traffic. The majority of
network activity is directed towards end-user devices and
data centers serve more as storage and processing hubs,
with limited involvement in the overall data exchange.
This results in an inefficient allocation of network
resources, as data centers are not optimized for the
growing demand of modern workloads (Greenberg et al.,
2008). new network technologies and developments such
as the Vehicle Web (Cheng et al., 2015), big data, and
cloud computing have emerged to address the challenges
of managing vast amounts of data and large-scale
distributed data centers. These innovations have led to
the rapid increase in east-west traffic between servers,
which is primarily driven by the need for efficient data
processing and storage. For example, systems like the
Google File System (GFS) (Ghemawat et al., 2003) and
the Hadoop Distributed File System (HDFS) have been
designed to handle this surge in traffic, facilitating
seamless data access and distribution across multiple
servers within a data center. Additionally, the Google
MapReduce framework (Shvachko et al., 2010) has been
developed to process large-scale data sets in a distributed
manner, further optimizing data flow and computation in
these environments (Dean & Ghemawat, 2008).
However, congestion occurs frequently due to the use of
conventional routing protocols within the shortest path
connection. And, due to the delay and low latency, it can
further reduce the consistency of network output. Traffic
routing and congestion management are two key factors
in maintaining network power and increasing network
performance. There are some congenital flaws in

conventional networks. The main drawbacks are as
follows: First, conventional networks lack a coordinative
global optimization approach. Each node applies traffic
control functions independently, limiting the ability to
achieve global optimization. As a result, these systems
can only reach optimal conditions locally within each
node, failing to adapt dynamically to broader network
conditions. Moreover, conventional networks do not
support complex, self-adaptive changes that could
automatically adjust to varying traffic patterns or
network disruptions. In addition, these networks struggle
to gain efficient and accurate control over individual
network units. The configurations of computers in these
networks are often highly complex, making it difficult to
identify and resolve configuration-induced network
errors due to the intricacies of their command structures.
To address these challenges, we leverage Software-
Defined Networking (SDN) to streamline and resolve
these issues within data centers. By centralizing control,
SDN enables more efficient handling of network traffic
and congestion management, providing a dynamic and
scalable solution to optimize network performance
across distributed data center environments.

SDN - Data Center

More visibility and fine-grained control over the
entire network are possible with SDN designs. During a
position, the SDN controller is prepared to configure
data plane infrastructure forwarding devices to track and
fine-tune network packets as they flow through them.
Therefore, we shall require the periodic gathering of
specific statistics using the SDN controller. Additionally,
we may notify up-level apps of a change on a real-time
network and obtain a centralized picture of the network
state for SDN applications through open APIs (Ali et al.,
2015).

Data centers typically have thousands of fast
connections, such as Ethernet Using NOX, the first SDN
controller, to successfully improve the addressing and
routing of the current VL2 and Portland data center
networks, (Tavakoli et al., 2019) initially deployed SDN
to data center networks using traditional packet capture
techniques. HyperFlow, a substitute control scheme
provided to OpenFlow, has been proposed by
Tootoonchian & Ganjali (2010). While maintaining the
benefit of centralized management, several controllers
work together to compensate for the limited scalability of
a single controller. Network growth and straightforward
device management are made possible by the
collaboration of dispersed controllers (Yu et al., 2014;
Zhang et al., 2017). Hindman and associates (Koponen
et al., 2010; Benson et al., 2011; Hindman et al., 2011)
bensons, Mesos presented a platform for fine-grained
resource sharing in data centers. MicroTE is a system
that adapts to traffic variations by leveraging the short-
term and partial predictability of the traffic matrix. They
implement MicroTE within the OpenFlow framework
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with minor modifications to the end host. The system
performs close to the optimal solution and imposes
minimal overhead on the network making it appropriate
for current and future data centers. Mahout was
suggested by Curtis et al. (2011) to manage elephant
flows or huge flows when large flows were observed in
socket buffers. Congestion and equipment failure are
common because of traffic congestion and consequent
equipment failure. There is frequently a combination of
large and small flows in data center networks.
Kanagavelu et al. (2012) proposed a flow-based, edge-
to-edge rerouting system. When congestion developed, it
focused on diverting the heavy flows to other links. This
mechanism is explained by the fact that varying such
brief tiny flows between links would also result in higher
overhead and latency. A layer between the so-called
VeriFlow units and a software-defined network controller
was supplied by Khurshid et al. (2012). It is a network
monitoring tool for identifying unusual network activity
and flawed SDN application rules. In order to lessen the
performance deterioration of intensively used links, (Tso
& Pezaros, 2013) proposed the Baatdaat flow scheduling
technique leveraging the spare data center network
capacity. It will secure the intricate timetable in real time,
preventing congestion brought on by instant flows. In
order to allow the route to be dynamically adjusted in
accordance with the overall network view, Li et al.
(2014) proposed a traffic scheduling system that included
the Fuzzy Synthetic Assessment Process. In conclusion,
the majority of current active techniques for traffic
engineering in SDN-supported data center networks have
a number of possibilities.

Our proposed scheme is an initiative that first applies
the multi-level feedback queue mechanism to traffic
scheduling and SDN-supported congestion management
across data centers and can also provide a new
congestion solution caused by the persistent use of
malicious flows (Shukla et al., 2023) Monitoring traffic
flow ensures that anomalies are accurately identified.
The effectiveness of cyber-attacks in SDN is enhanced
by the suggested method. Remarkable attack detection
performance is achieved by the suggested model in the
case of Distributed Denial-of-Service (DDoS) attacks, as
network forwarding performance degradation is
prevented. Traffic flows are matched by users in ways
that increase granularity while the SDN data plane is
proactively protected from overloading the performance
of cyber-attack detection (Alhilali & Montazerolghaem,
2023).

For effective domain-wide traffic routing and
administration, SDN divides the control and data planes.
Traffic distribution issues with SDN, including load
imbalance, can have a detrimental impact on network
performance. In order to increase SDN efficacy,
developers have created a variety of SDN load-balancing
solutions. Because the science of Artificial Intelligence
(AI) is expanding quickly, some AI techniques are being

incorporated into SDN to enhance network performance
and resource usage. The first step is to examine the SDN
architecture and look into the load balancing issue.
Second, classifying AI-based load balancing techniques
and carefully evaluating these mechanisms from a
variety of angles, including the problem addressed, the
algorithm or methodology used, and their advantages and
disadvantages.

Thirdly, providing an overview of the measures used
to gauge how effective these methods are Huang et al.
(2021). In order to optimize QoS in a hybrid SDN, the
author suggests a nearly ideal traffic control technique.
To enhance the results of optimization, an SDN
migration sequence is first investigated in order to
maximize controllable traffic. The multi-splitable routing
issue in the hybrid SDN is then handled using a Deep
Reinforcement Learning (DRL) method. The OpenFlow
group bucket limits are defined in order to apply the flow
split ratio method. Lastly, we use open-source traffic
datasets to assess the suggested approach.

Materials and Methods

The Design and Implementation of MFQ

Using the flexibility and agility of SDN, the MFQ
architecture addresses traffic routing and congestion
control across numerous data centers. The data centers
are frequently connected by extensive area networks.
The network traffic has an uneven flow distribution and
is not always consistent. During peak hours, network
traffic may more than double compared to a typical load
connection. However, the traditional routing protocols
route and forward flow without pushing off flows to
balance the connection load according to the shortest
path algorithm. We are forced to upgrade to large-scale
routing equipment and buy 2–3× bandwidth in order to
meet the bandwidth requirements during peak hours.
Network service, maintenance, and administration
Charges are consequently sharply raised, which
frequently results in bandwidth waste during regular
business hours. In this study, we propose MFQ, a
dynamic scheduling scheme for traffic and congestion
management with a multilevel feedback queue system
that can to some degree resolve the above-mentioned
problems. The following sectors illustrate in depth the
layout and algorithm of the scheme and its method of
implementation.

Scheme Model

Data center networking served as the foundation for
our deliberate and planned scheme approach. We provide
a quick summary of the Scheme model's elements in
Figure (1). (I) The data center servers. Three distinct data
centers are PC1, PC2, and PC3. Traffic flows from PC1-
3 are prioritized over those from PC2-3. (ii) Two distinct
paths (S1, S4, S5) and the second shortest path (S1, S2,
S3, S4) are used to produce the five OpenFlow switches.
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(iii) SDN-equipped controller. Floodlight, the centralized
system, can be used to track switch actions by updating
the flow table in the switches.

Fig. 1: Scheme model

Dynamic Traffic Scheduling

Several data centers classify traffic flows into
different categories. While other high-quality criteria
data flows had a higher priority flow, we established a
lower priority flow for data replication. Depending on
the condition of the real-time link, the lower priority data
flow might select a path, while the higher priority data
flows follow the shortest way.

The Shortest Paths are Divided into the Following Four
Cases

Case 1: The time frame during which a low-priority
flow arrives over the network. Here, the options are still
expanding. First, it will choose the way directly if the
bandwidth remains on the shortest path in real-time (S1,
S4, S5). A high-priority flow will be forced to use the
second shorter path (S1, S2, S3, S5) if it takes up the
entire shortest path (S1, S4, S5). Last but not least, if
there is no bandwidth available for any of the paths, this
flow of multilevel feedback queues will join the
congestion control.

Case 2: A time when the link saw a high-priority
flow. There are a number of options available to us in
this situation. First, it will choose the way directly if the
bandwidth stays on the shortest path (S1, S4, S5). A
high-priority flow would be forced to use the second,
shorter way (S1, S2, S3, S5) if it took up the entire
shortest path (S1, S4, S5). Since there isn't enough
bandwidth for all paths, the final option is that this flow
will combine multilevel feedback queues with
congestion control.

Case 3: The time frame on the connection when a
high-priority flow transmits. Due to the high-priority
data flow, we are not taking any action.

Case 4: The time frame on the connection when a
high-priority flow transmits. We will discover from
instance 1 that the low-priority flow can choose from
either of the two paths that adjust to data fluctuations. As
a result, the shortest path link will be vacated and set
aside for the second shortest path connection if there is

no bandwidth left on it when a high-priority replacement
flow arrives. Otherwise, the shortest path is given to the
newly arrived flow if the new data flow has an equally
low priority and no further transmission of low priority
flow is necessary. Based on the monitoring of connection
statuses, we might implement dynamic traffic scheduling
to maximize the use of bandwidth resources.

Congestion Control

As part of MFQ, complex traffic management has an
obvious impact on the company and flow diversion. Due
to the long-term occupation of limited connection capital
and the burst of network prompt traffic, congestion may
also occur in the shortest route path. This congestion
control algorithm provides a queuing service for
congested flow and also settles the vicious prolonged
occupation problem. We define two multilevel Feedback
queues to store the flows that await scheduling. One is a
low priority queue for multi-level reviews and the other
is of high priority. Then we describe three sub-queues in
each feedback queue and give top priority to flow
waiting queue 1, second highest priority to flow waiting
queue 2, and lowest priority to flow waiting queue 3. As
shown in Figure (2), after scheduling, the transmission
time of these waiting queues for flows is different. Sub-
queue 1 has time t, sub-queue 2 has time 2 t which is
twice the sub-queue 1 time, and sub-queue 3 has time 3 t
which is triple the sub-queue 1 time.

Algorithm 1: The Algorithm of Multilevel-Feedback
queue
Input: G: Topology of data center network;
Sactive: a set of active flows;
Ssuspend: a set of suspended flows;
Snew: a new flow;
Sfirst: a flow from the first of the Ssuspend.
Output: {<e.state, e.path>}: scheduling state and path
selection of each flow in G. When a new flow arrives
if (e.path = IDLEPATH) then

Sactive ← Sactive + Snew;
end
else Ssuspend ← Ssuspend + Snew;
while (Ssuspend ≠ ∅) do

if (e.path = IDLEPATH) then
if (Ssuspend1 ≠ ∅) then

Select the flow at the first of Ssuspend1;
Ssuspend ← Ssuspend - Sfirst;
Sactive ← Sactive + Sfirst;
Transmission time of the first is t;

end
else if (Ssuspend2 ≠ ∅) then

Select the flow at the first of Ssuspend2;
Ssuspend2 ← Ssuspend2 - Sfirst;
Sactive ← Sactive + Sfirst;
Transmission time of the Sfirst is 2t;

end
else

Select the flow at the first of Ssuspend3;
Ssuspend3 ← Ssuspend3 - Sfirst;
Sactive ← Sactive + Sfirst;
Transmission time of the Sfirst is 3t;

end
return {<e.state, e.path>};

http://192.168.1.15/data/13089/fig1.png
http://192.168.1.15/data/13089/fig1.png
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Fig. 2: Multilevel-feedback queue

Results
It illustrates the integration of the open-source

Floodlight SDN controller, which operates within an
Eclipse environment on the Ubuntu framework, as part
of our simulation setup. In this configuration, the
Floodlight controller serves as the backbone of our
Software Defined Networking (SDN) infrastructure,
providing centralized control over the network. The
MFQ scheme is implemented as an extension on top of
the Floodlight controller, allowing us to manage network
traffic efficiently using the principles of Multi-Flow
Queueing.

In our system, we constructed a virtual switch and set
up an SDN environment that enables dynamic network
management and control. The virtual switch is
responsible for forwarding traffic between the network
nodes and the SDN controller oversees the routing of
traffic based on the decisions made by the MFQ scheme.
This structure ensures that the network is responsive and
adaptable to changes in traffic flow, enabling better
congestion management and traffic scheduling.

Two key modules are integrated into the system to
track and monitor network performance. The first
module records critical connection information,
including details such as bandwidth usage and
congestion levels across various network links. This real-
time data is crucial for assessing network health and
performance. The second module tracks packet-
inandpacket-out messages within the simulation
protocol, capturing data related to incoming and
outgoing traffic at the network nodes. These messages
provide detailed insights into the flow of packets across
the network, allowing for granular visibility into how the
system is operating. The combination of these modules
enables real-time detectionandtraffic control. When new
data arrives or when a flow needs to be scheduled, the
system can instantly detect the need for adjustments and
take action. This process ensures that congestion is
minimized and the available bandwidth is utilized
efficiently. By leveraging the capabilities of the
Floodlight controller, our MFQ-based system can
dynamically adapt to traffic changes, prioritize flows,

and optimize resource allocation in real time, improving
overall network performance.

Figure (3) provides a visual representation of the
simulation setup, where we modeled two servers, h1, and
h2, along with five data centers (c1, c2, c3, c4, and c5) as
a unified data center network. In this setup, each server
and data center was assigned unique virtual IP addresses
and MAC addresses to simulate realistic networking
environments. These identifiers helped us accurately
track and record the data flows among the data centers
during the simulation.

Fig. 3: Experimental topology

Real-Time Bandwidth-Comparison

In the system model, we defined two key paths: (s1,
s4, s5), which was chosen as the shortest path, and (s1,
s2, s3, s4), which was considered the second shortest
path. These paths were crucial for evaluating the
efficiency and performance of the Multi-Flow Queueing
(MFQ) scheme in managing traffic flows within the
network. The use of these specific paths allowed us to
assess how well MFQ optimizes traffic across both
primary and alternative routes. To verify the
effectiveness of the MFQ scheme, we conducted two
distinct tests. These tests were designed to evaluate how
the MFQ mechanism performs in optimizing traffic
scheduling and improving network resource utilization
under different conditions. By simulating traffic flows
along the shortest and second shortest paths, we aimed to
observe how well MFQ manages congestion, minimizes
packet loss, and maintains high throughput and low
latency, even under varying network conditions.

Analysis 1: In this analysis, we configured both the
shortest and second shortest paths with a bandwidth of 4
Mbps each. We used the iperf method to simulate four
separate traffic flows between the following pairs of
nodes: h1 and c1, c2 and h1, as well as h2 and c3 and h4
and c2. Each individual link in the network was set to a
bandwidth of 2 Mbps. In addition to setting up the
simulation, we evaluated the performance of the
conventional network using the Multi-Flow Queueing
(MFQ) technique. The data collected during the
simulation, including performance metrics for both the

http://192.168.1.15/data/13089/fig2.png
http://192.168.1.15/data/13089/fig2.png
http://192.168.1.15/data/13089/fig3.png
http://192.168.1.15/data/13089/fig3.png
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MFQ and conventional network, are displayed in Table
(1).

To further assess network performance, we calculated
the overall usage of the links in both network
configurations, which is shown in Figure (4). In terms of
link usage, the average utilization of the MFQ-based
scheme remained consistently high at 97%,

demonstrating its superior efficiency. In contrast, the
conventional network’s average usage began at a
significantly lower rate of just 73%. This marked
difference in performance highlights the substantial
improvements in link usage when employing the MFQ
approach, illustrating its ability to better manage traffic
and optimize network resources.

Table 1: Real-Time Bandwidth-Comparison

Bps- Traditional Network MFQ
Time h1-c1

Transfer/
Bandwidth

h1-c2
Transfer/
Bandwidth

h2-c3
Transfer/
Bandwidth

h2-c4
Transfer/
Bandwidth

h1-c1
Transfer/
Bandwidth

h1-c2
Transfer/
Bandwidth

h2-c3
Transfer/
Bandwidth

h2-c4
Transfer/
 Bandwidth

0-1 s 106 k 1.87M 1.91M 2.53k 1.94M 1.94M 1.94M 1.95M
1-2 s 11.8 k 1.86M 1.87M 70.4k 1.94M 1.95M 1.95M 1.94M
2-3 s 11. 8k 1.89M 1.87M 36.6k 1.95M 1.94M 1.93M 1.89M
3-4 s 153 k 1.92M 1.87M 10.8k 1.94M 1.95M 1.95M 1.93M
4-5 s 35.3k 1.80M 1.87M 176k 1.94M 1.98M 1.94M 1.94M
5-6s 82.3 k 1.94M 1.87M 80.4k 1.93M 1.94M 1.96M 1.95M
6-7 s 35.3 k 1.95M 1.87M 22.5k 1.95M 1.95M 1.97M 1.94M
7-8 s 23.5 k 1.93M 1.87M 57.5k 1.94M 1.94M 1.98M 1.94M
8-9 s 11.8 k 1.92M 1.87M 22.5k 1.97M 1.96M 1.95M 1.95M
9-10 s 23.5 k 1.91 1.87M 11.9k 1.87M 1.87M 1.95M 1.94M

Fig. 4: Comparison of overall link utilization

Analysis 2: We built upon the findings from Study 1
to investigate algorithmic congestion control. We
focused on a single shortest path, specifically the path
from s1-5, and set the available bandwidth to 5 Mbps for
the duration of 20 sec. During the simulation, Datacenter
c4 sent UDP packets to h1 with a bandwidth of 2 Mbps,
while Datacenters c1, c2, c3, and c4 transmitted UDP
packets to h2, each with a bandwidth of 1 Mbps. We
considered two scenarios in this experiment. The first
scenario involved using the real bandwidth without any
queues to control congestion, meaning that traffic was
sent based solely on the available bandwidth, without
mechanisms to manage or mitigate congestion. In the
second scenario, queues were implemented to actively
manage congestion. This approach aimed to control the
flow of traffic and optimize the use of available
bandwidth, allowing for more efficient data transmission

despite potential congestion. By comparing these two
scenarios, we sought to evaluate the impact of congestion
control mechanisms on network performance,
particularly in terms of bandwidth utilization and the
overall efficiency of the network.

Fig. 5: Real-time bandwidth with no congestion control

In Figure 5, the route (s1, s4, s5) became saturated at
10 sec due to the combined flows from c1, c2 and c5.
This saturation means that the route reached its
maximum capacity and no more traffic could be
accommodated without causing congestion. At 20
seconds, packet requests from c3 and c4 were introduced
into the network. If congestion management queues are
not utilized, the high-priority packets from c5 will be
sent without any control mechanism in place. This can
cause significant issues because the high-priority packets
from c5 would directly compete with other ongoing
flows in the network, leading to packet delays, packet
drops, or increased retransmissions for lower-priority
flows. Essentially, without the use of queues to manage

http://192.168.1.15/data/13089/fig4.png
http://192.168.1.15/data/13089/fig4.png
http://192.168.1.15/data/13089/fig5.png
http://192.168.1.15/data/13089/fig5.png
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congestion, the prioritization of certain traffic (such as
the high-priority packets from c5) would disrupt the
performance of other flows, causing unfair bandwidth
distribution and potentially reducing the overall
throughput of the network. Congestion management
queues are crucial in such situations because they can
help ensure that traffic flows are managed appropriately,
allowing for better prioritization and ensuring that
congestion does not negatively impact the performance
of the entire network.

In Figure 6, when congestion control queues are
implemented, the network can effectively manage the
flow of traffic to prevent congestion from negatively
affecting performance. As the packet requests from c3
and c4 arrive, the system evaluates the bandwidth
available on the path. With congestion control in place,
the flow from c5, which had previously been
contributing to network congestion, can be rescheduled.

Fig. 6: Real-time bandwidth congestion control

The congestion management mechanism works by
dynamically assessing the remaining available
bandwidth on the path. When the congestion from other
flows (such as those from c3 and c4) is detected, the
system prioritizes the efficient use of available resources.
It identifies that the flow from c5 can be shifted to a path
that has higher transmission capacity, thus preventing the
flow from c5 from contributing to further congestion.
This reassignment ensures that the c5 flow continues
without being impacted by the congestion from other
flows.

By rescheduling the c5 flow to a path with greater
capacity, the congestion control queues help maintain
smooth data transmission and ensure that each flow is
transmitted efficiently. This not only minimizes packet
delays but also prevents packet drops or the need for
retransmissions, ensuring the network operates at its
optimal performance. This approach highlights how
congestion control can dynamically adapt to network
conditions, improving overall throughput and fairness in
resource allocation.

Discussion
The flow distribution of network traffic is not

uniform and is not always even. Network traffic might
more than quadruple during peak hours when compared
to a normal load connection. To balance the connection
load using the shortest path algorithm, conventional
routing protocols, on the other hand, route and forward
flows without pushing off flows. However, in order to
balance the connection load using the shortest path
algorithm, classical routing protocols forward and route
flows without pushing off flows. To meet the bandwidth
requirements during peak hours, we must purchase 2–3×
bandwidth and upgrade to large-scale routing equipment.
Network administration, upkeep, and service, As a result,
fees are increased significantly, which usually leads to
bandwidth waste during ordinary business hours. To
measure and monitor network performance, the system
incorporates two essential elements. Important
connection data, such as bandwidth consumption and
congestion levels across different network links, are
recorded by the first module. When evaluating the
performance and scalability of a network, this real-time
data is essential. The second module records information
about incoming and outgoing traffic at the network nodes
by tracking packet-in and packet-out messages within the
simulation protocol. These messages give granular
visibility into the system's operation by offering
comprehensive insights into packet movement
throughout the network. Traffic control and real-time
detection are made possible by the combination of these
components. The system can quickly identify the need
for changes and take appropriate action when new data is
received or when a flow has to be scheduled. This
procedure guarantees that available bandwidth is used
effectively and congestion is kept to a minimum. Our
MFQ-based system can improve network performance
comparatively with the traditional network by
prioritizing flows, optimizing resource allocation in real-
time, and dynamically adapting to traffic fluctuations by
utilizing the Floodlight controller's capabilities.
Traditional Network: h1-c1: Time 0-1s: Bandwidth is
106 kB, which suggests a relatively low transfer rate at
the beginning, possibly due to initial setup or low
demand for this connection. Time 1-2s: Bandwidth drops
significantly to 11.8 kB, indicating a large decrease in
available bandwidth, which might indicate network
congestion or the flow being deprioritized. Time 2-3s: It
remains low at 11.8 kB, showing consistent
underutilization of the bandwidth for h1-c1, which could
be due to congestion or limited demand. Time 3-4s: The
transfer rate jumps to 153 kB, a significant increase,
which could reflect a burst of traffic or improved
network conditions. Time 4-5s: It drops again to 35.3 kB,
showing some fluctuation in bandwidth. This could
indicate temporary congestion or routing issues. Time 5-
6s: The bandwidth increases to 82.3 kB, reflecting a
stable transfer rate. Time 6-7s: It decreases again to 35.3
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kB, showing potential instability or competition with
other traffic. Time 7-8s: Bandwidth further drops to 23.5
kB, indicating continued congestion or lack of demand.
Time 8-9s: Drops again to 11.8 kB, maintaining a low
transfer rate. Time 9-10s: Finally, bandwidth slightly
increases to 23.5 kB, showing a bit of recovery. The
conclusion of traditional network h1-c1 shows
considerable fluctuations in transfer rates, which is
typical when there is congestion, network instability, or
competition for bandwidth. Bandwidth availability can
vary widely depending on network conditions. When its
comparison with the MFQ-based system stable
bandwidth remains mostly around 1.94-1.95M for the
majority of the time (1st-8th sec), indicating a stable and
reliable connection. The bandwidth drops slightly to
1.93M at the 6th sec, but this is still within a narrow
range, suggesting that there are small fluctuations but no
significant issues. At the 9th sec, there’s a small peak to
1.97M, showing a brief increase in throughput. This
could be due to network conditions improving
temporarily, or increased demand for the h1-c1 flow
during that second. At the 10th sec, there is a drop to
1.87M, which is the lowest value in the sequence. This
could reflect a temporary decrease in bandwidth
availability, possibly due to congestion, a sudden change
in the network load, or a competition for resources.
When comparing MFQ data with the Traditional
Network data for h1-c1, you can observe that the MFQ is
much more stable and performs at consistently high
levels (1.94-1.97M), with only a minor decrease at the
end. In contrast, the Traditional Network had much
greater fluctuations (ranging from 11.8-153 kB),
suggesting that the Traditional Network had issues such
as network congestion, routing problems, or competition
for bandwidth, which impacted its consistency. However,
the MFQ model addresses the network congestion and
minimizes the traffic scheduling challenges.

Conclusion
Our proposed MFQ scheme can be easily

implemented to address the issue of low resource
utilization in connection-heavy environments like live
streaming and online video data centers, as well as in
existing data center networks. The scheme effectively
resolves the traffic scheduling challenges, operating
within certain limitations that do not compromise
transmission efficiency. First, because our scheme is
based on Software Defined Networking (SDN), it is not
compatible with traditional network routing protocols or
hybrid network environments. Second, as rescheduling
and retransmission occur within the routing protocol,
packet loss is minimized, ensuring that packets are
successfully delivered to their destinations. This results
in a model that offers high throughput and low latency
while efficiently utilizing available resources. Third,
incorporating more flexible hierarchical control could
further enhance the experimental results. In the future,
we plan to address the energy efficiency issue by

focusing on traffic coordination and congestion
management within the network.
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