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Abstract: Object detection is one of the most important and challenging
problems in the computer vision domain. Using the power of deep models,
researchers have carefully explored and made significant contributions to
increasing the effectiveness of object detection and related tasks, such as
object identification, localization, and segmentation. This progress is due to
the rapid progress of deep learning in the past decade. However, object
detection in thermal imaging has certain challenges and has potential uses in
areas like autonomous driving, security, and surveillance. When applying
several popular object detection algorithms to ground-based thermal
imaging, the main obstacles include the small size of the targeted object,
low-quality images, obstruction, and varying illuminating conditions. In this
study, to address this problem enhanced version of YOLOv8 termed as
YOLOv8-EPB algorithm has been proposed to target small-size objects in
ground-based thermal images. Initially replacing the CSPDarknet53
backbone with EfficientNet-B4 reduces model parameter's computational
complexity and increases inference speed. In addition, a new compact
target-detecting layer and head have been created to reduce noise in thermal
imaging. Lastly, adding a Bidirectional Feature Pyramid Network (BiFPN)
to the neck section improves model generalization by lowering detection
errors caused by scale deviations and complex situations. The study
evaluates a proposed algorithm through ablation experiments and
comparisons with other algorithms, focusing on detection performance. The
algorithm obtained a mean Average Precision of 92.3% in a self-made
thermal imaging dataset, with an accuracy increase of 4.7% compared to
regular YOLOv8 models and outperforming other leading-edge detection
algorithms.

Keywords: Small Object Detection, Thermal Imaging, YOLOv8-EPB,
BiFPN, Accuracy

Introduction
Object detection techniques are quintessential in

computer vision, which makes it possible to identify,
interpret and analyze objects within images or even
video streams. These techniques examine an input image
or video frame to determine the presence of distinct
objects and then precisely outline their location and other
required details. Object recognition has been extensively
carried out on visual images as well as aerial, ground and
space-borne remote sensing images. These methods may
be used in a variety of computer vision applications,
including object tracking, finding, video surveillance,
captioning of images, image segmentation, clinical
imaging and numerous other domains (Budzier &

Gerlach, 2019). Due to the strong, low-noise
characteristics of visible spectrum images, such as edges,
colour and texture, most object-detection systems
perform well with this type of imaging. However,
existing algorithms are ineffective in detecting objects
under challenging weather conditions such as fog, rain,
night, noise, limited visibility, low contrast and instances
where the foreground colour matches the background.
This is because images captured by visible cameras often
have weak contrast in low or highlight conditions, which
reduces the effectiveness of traditional object detection
algorithms.

These problems can effectively be addressed through
Thermal Imaging. To obtain information about objects,
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thermal imaging uses infrared radiation and thermal
energy, which fall between 0.7 and 300 µm wavelengths
on the electromagnetic spectrum range. This technology
proved to be highly valuable for obtaining image data in
environments with limited visibility. Thermal imaging is
an appropriate night-vision approach that uses infrared
radiation instead of visible light, making it suitable for
operating in total darkness. Additionally, it can operate in
difficult weather conditions such as haze, smog and
smoke. It is a quick, accurate and radiation-free detecting
method that creates images by assessing an object's
surface temperature without requiring contact or
intrusion (Gupta et al., 2023; Pathmanaban et al., 2019;
Usamentiaga et al., 2014). Thermal imaging has greater
recognition due to its improved performance in various
fields, such as public health, security, transportation
monitoring and body temperature detection. The
availability of high-processing resources has led to an
increase in the range of applications of object detection
techniques based on thermal imaging. These techniques
are now being used in COVID-19 prevention
surveillance, search and rescue operations and
autonomous driving (Yaqoob et al., 2021).

Deep learning has powerful features in learning
capabilities, which has led to its wide application in
object detection and image processing. The most used
deep learning framework is the Convolutional Neural
Network (CNN). It is known for its popularity and
effectiveness across different domains (Zhong et al.,
2020). For classical object detection, numerous deep
learning-based frameworks have been developed over
the years. Two-stage detectors, such as Regions with
CNN features (RCNN) (Girshick et al., 2014), Spatial
Pyramid Pooling Networks (SPPNet) (He et al., 2015),
Fast RCNN (Girshick, 2015), Faster RCNN (Ren et al.,
2017) and Feature Pyramid Networks (FPN) (Ren et al.,
2017) and one-stage detectors, such as You Only Look
Once (YOLO) (Redmon et al., 2016), Single Shot
MultiBox Detector (SSD) (Liu et al., 2016) and
RetinaNet (Lin et al., 2017), are examples of CNN-based
object detection techniques. The development of these
effective detectors allowed for the tracking and detection
of objects in optical images (Li et al., 2020). Among
them, one-stage detector YOLO models are particularly
advantageous for real-time optical image detection (Liu
et al., 2020). The new YOLOv8 algorithm, which was
launched in 2023 and achieved extremely high accuracy,
is part of the fastest-growing YOLO series of algorithms.
YOLO is effective in detecting full-sized targets, but it
may not perform as well as some small-sized objects are
to be detected across different scenes.

Despite the advancement in current methods,
detecting small targets and objects across multiple scales
remains a challenge. In thermal imaging, objects within
the same category often exhibit significant size
variations. To provide a solution to these challenges, this

study proposes a novel algorithm for the detection and
classification of objects in thermal imaging. This
algorithm is based on a modified version of the yolov8
model. The algorithm significantly improves the
recognition of small targets within complicated scenes
and has consistent enhancement in detecting normal-
scale targets. It aims to improve accuracy in detecting
small objects while maintaining modest improvement for
normal-scale objects. The model has been trained and
validated over six classes of small objects with
customized thermal imaging datasets. The main
contributions of this algorithm are as follows:

1. Efficient net-B4 is utilized as a feature extraction
network that balances computational efficiency and
the ability to capture detailed features

2. BiFPN is used to fuse multi-scale features, which
improves the precision of small target recognition.
This improves the integration of features from
different levels, resulting in better detection
performance

3. A new solution has been created to overcome the
issue of complex recognition in thermal images due
to noise. This involves the development of a small
target detection layer and detection head

Related Work

This part covers the background study of
object detection techniques in thermal imaging.

Deep learning-based object recognition techniques
have demonstrated impressive results in thermal
imaging. However, detecting objects at multiple scales
and identifying small objects continue to pose significant
challenges. Researchers are actively contributing to
addressing these challenges and improving object
detection. Ghenescu et al. (2019) developed a technique
to address the challenging task of detecting distant
objects in thermal imaging. The inadequate resolution
that comes with thermal imaging is the cause of this
problem. They addressed this issue by creating, training
and testing a vast number (2640) of modifications to
YOLO Darknet, a leading algorithm for object detection
in visible camera images, to improve its performance in
thermal imaging. Han et al. (2020) developed the Ghost
module to create efficient designs of neural networks.
They used this module to construct GhostNet, which
achieved an acceptable balance between effectiveness
and precision. Ma et al. (2020) found that the HRNet
feature extraction network outperformed Faster R-CNN
in improving the identification of moderate and small-
sized animals in large-scale images. This network
improved the ability to recognize small objects. To
retrieve information from ground-based thermal images
and videos, Jiang et al. (2020) designed a Neural
Network-based You Only Look Once (YOLO) model
architecture. An evaluation metrics approach was used to
establish the most effective algorithms and then the
proposed algorithm was applied to detect objects on
thermal video streams by UAVs. The maximum detection
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speed reached 50 frames in one second and the
YOLOv5-s was observed to be the most compact model
of all tested models. Lai et al. (2023) developed a feature
acquisition module that integrates convolutional neural
networks (CNNs) with multi-head attention, facilitating
the STC-YOLO approach and expanding the receptive
field. The Normalized Gaussian Wasserstein Distance
(NWD) metric was also employed to improve sensitivity
to positional variations in small objects. To make it more
effective a lightweight YOLO network (GCL_YOLO)
with a GhostConv-based backbone has been proposed by
Cao et al. (2023). Initially, the network creates a narrow
backbone network using ghost convolutions and an
insignificant number of parameters. The large-object
prediction head that is now in use for objects in natural
scenes is thereafter to be replaced with an entirely novel
small-object prediction head. The network's localization
loss is finally the focus-effective intersection over union
(Focus-EIOU) loss. To find small targets and locate
objects at a variety of scales, Wu and Dong (2023)
proposed YOLO-SE, a cutting-edge YOLOv8-based
network. The network's parameter count is decreased by
employing a lightweight convolution SEConv in place of

regular convolutions, which expedites the detection
process. The study proposes the SEF module, an
improvement based on SEConv to focus on multi-scale
object detection. Lou et al. (2023) introduced a module
that predicts quality-aware factor maps for each
modality. This illustrates the reliable nature of every
modality and demonstrates locations where the
appearance of small objects is most likely. Lyu et al.
(2024) have developed a small object detection algorithm
called DC-YOLOv8. A novel network module is
developed to achieve effective performance and
accuracy. The accuracy achieved on the PASCAL
VOC2007 dataset is 0.5% higher than that of the original
YOLOv8. To recognize tiny humans from UAV images,
Lin et al. (2017) improved YOLOv3 by combining it
with two ResNet. It builds multi-scale feature maps and
extracts features using a residual network-based Feature
Pyramid Network (FPN). In addition, multiple
dimensions feature map selection criteria and small-scale
anchor boxes are included in the method for increased
object detection accuracy. Table (1) illustrates a thorough
summary of various methods for identifying objects in
thermal imaging.

Table 1: Survey of Object-Detection Methods in Thermal Images

Article Approach Utilized Dataset Accuracy Conclusion
Ghenescu et
al. (2019)

YOLO Darknet Self-created thermal
dataset

68.75% Detect extremely small objects up to 50 pixels

Han et al.
(2020)

GhostNet CIFAR-10 dataset 75.7% reached a state of equilibrium between accuracy and efficiency

Ma et al.
(2022)

HRNet feature extraction
network

UAV images 92.2% A model was developed to identify medium and small-sized
animals in large images and it outperformed Faster CNN.

Jiang et al.
(2022).

YOLOv5 UAV TIR Images 86.75% Archived the fastest detection speed using a small model size

Lai et al.
(2023)

STC-YOLO TT100K 90% The Normalized Gaussian Wasserstein Distance (NWD) metric
was introduced to improve the ability to detect minor variations in
the location of objects.

Cao et al.
(2023).

YOLO network
(GCL_YOLO)

VisDrone-DET2021
& UAVDT dataset 

- Reduced parameters in the proposed network and improved
accuracy

Wu. et al.
(2023)

YOLO-SE SIMD dataset 0.91% Conclude that YOLO-SE is a compelling solution for multi-scale
object detection.

Lou et al.
(2023)

Quality-aware RGBT
Fusion Detector (QFDet)

VTUAV tracking
dataset

57.43% The proposed network can predict the accuracy of localization
and classification for each modality.

Lu et al.
(2023).

DC-YOLOv8 PASCAL VOC2007 83.5 Achieved 0.5% higher accuracy than the original YOLOv8

Lyu et al.
(2024)

Improved Yolov3 UAV-viewed Human
dataset

80.59% The proposed method performs well on small object detection

The Network Structure of Yolov8

YOLOv8 employs a backbone similar to YOLOv5
but introduces modifications in the CSPlayer, which has
been updated to the C2f module. This new C2f module
integrates contextual information with high-level features
through a two-stage partial bottleneck that utilizes
convolution. YOLOv8 incorporates a decoupled head
model for handling object detection, classification and
regression tasks. This architecture enhances overall
accuracy by allowing each branch to specialize in its
specific function. The model uses the sigmoid function to

activate object scores, which indicate the likelihood of an
object being present within the bounding box. Class
probabilities, which denote the likelihood of an object
belonging to each potential class, are determined using
the SoftMax function.

YOLOv8 employs binary cross-entropy for
classification loss and uses the Complete Intersection
over Union Loss (CIoU) (Zheng et al., 2020) and
Distribution Focal Loss (DFL) (Li et al., 2020) for
bounding box loss. These loss functions improve the
model’s object detection capabilities, especially for small
objects. The architecture of YOLOv8 includes three
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primary components: the backbone network, the neck
network and the prediction output head. The backbone
network is essential for extracting features from thermal
images. The neck network, located between the
backbone and the prediction output head, is responsible
for processing and integrating these features. YOLOv8
typically utilizes a Feature Pyramid Network (FPN) in
the neck network to effectively merge features from
different scales, providing a more detailed
representation.

The YOLOv8 model’s prediction output head is
designed to identify and locate various objects within
images. It achieves this by using multiple detectors to
determine both the positions and classifications of
objects. To address objects of different sizes, the model
incorporates three sets of detectors, each tailored to
distinct scales. Figure (1) illustrates the network
architecture of YOLOv8.

Fig. 1: Network architecture of YOLOv8

Enhanced Version of Yolov8

The YOLOv8 model has three components -
backbone, neck and head. The backbone extracts the
original image features using convolution layers, the
neck enhances and combines them using multi-scale
feature aggregation techniques and the head produces the
final detection output. All these components work
together to enable accurate and efficient object detection.
YOLOv8 has been very effective in all aspects but faces
several limitations when it comes to detecting small
objects in thermal imaging. The main reasons for small
target detection errors are a) During the neural network
feature extraction process, Small targets can be confused

with larger ones and deep-level features lack important
small target details. As a result, small targets are
neglected throughout the learning process, leading to
poor detection performance. b) Compared to normal-
sized objects, small objects are more likely to coincide
with others and can be easily partially blocked by larger
objects. This overlap and occlusion make distinguishing
and accurately locating small objects within the image
difficult. A new detection technique has been proposed to
address this issue in thermal imaging, without affecting
the ability to identify normal-sized targets.

Backbone Network

EfficientNet B4 is a network model that efficiently
detects objects in thermal imaging. It requires less
computing, fewer parameters and shorter inference times
compared to traditional networks, making it suitable for
embedded devices with limited power and storage. It has
balanced and efficient architecture that works well in
low-contrast and high-interference environments. It uses
the Squeeze-and-Excitation technique to improve its
ability to identify small items from the background,
making it suitable for thermal imaging, where identifying
small things is crucial. The features mentioned are
crucial in achieving exceptional performance in object
detection, image classification and semantic
segmentation tasks.

As shown in Figure (2), the MBConv block takes
input dimensions of H x W x 4C, where H and W are the
height and breadth of the feature map and 4C represents
the Number of channels. This expands the channel count
allowing the network to capture more complex features
in the expanded space. The feature maps are processed
independently through depthwise convolution with a
kernel size of k x k. Batch normalization and Swish
activation are then applied. The Squeeze-and-Excitation
(SE) layer recalibrates the feature maps by reducing each
channel to a single value through global average pooling
and then scaling each channel's relevance through a
small neural network. After the SE layer, there is another
1x1 convolution to get the channels back to 4C. To
prevent overfitting, dropouts are applied to feature maps.
A residual connection is used to append the original
input to the processed feature maps, improving gradient
flow and making it easier to train deeper networks. The
input dimensions of HxWx4C are retained in the final
output of the MBConv block.

Fig. 2: The block structure of EfficientNet B4

http://192.168.1.15/data/13033/fig1.png
http://192.168.1.15/data/13033/fig1.png
http://192.168.1.15/data/13033/fig2.png
http://192.168.1.15/data/13033/fig2.png
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Neck Structure

Bi-direction feature pyramid network: The Feature
Pyramid Network (FPN) shown in Figure 3(a) integrates
multi-scale attributes from levels 1 to 3(P1 to P3) to
enhance target identification at various stages.
Nevertheless, it has computational challenges and needs
a lot of time for training and inference. Its unidirectional
information flow restricts its adaptability. To overcome
this, the feature fusion technique is being improved.
Rather than relying solely on the FPN, the Path
Aggregation Network (PAN) adds another top-down path
aggregation network (Liu et al., 2018). This
enhancement helps retain detailed information in low-
resolution feature maps, thereby improving detection
accuracy. However, this enhancement also increases the
computational burden, as Figure 3(b) illustrates.
YOLOv8 then takes an instruction from PAN in Figure
3(c), simplifying the network to increase the speed of
detection. YOLOv8 removes nodes with insufficient
feature fusion, optimizing the feature pyramid network.
Nevertheless, all feature fusion techniques have
limitations in localizing and identifying small targets.
This is because the network tends to overlook subtle
information during feature extraction, making small
targets more susceptible to interference from larger ones.
Consequently, the information available about small
targets decreases, leading to suboptimal target detection.
The BiFPN approach evaluates the significance of
various input properties using learnable weights during
feature fusion and extraction. This approach addresses
redundancy and information deterioration by allowing
feature information to flow both ways. The method
enhances feature fusion and exploitation at various sizes
by integrating horizontal and vertical characteristics
during the iterative top-down and bottom-up multi-scale
feature fusion process. As seen in Figure 3(d), the
progressive integration of horizontal and vertical links
together with top- and bottom-sampled feature maps
enhances feature fusion and exploitation at different
scales. BiFPN is effective in handling complicated
scenarios with scale fluctuations and occlusions.

Fig. 3: Feature Fusion networks design. (a) FPN; (b) PAN; (c)
YOLOv8; (d) BiFPN

Detection Module (Head)

This study introduces a detection head and small
target detection layer to address the challenges in
recognizing complicated targets due to large variations in
the thermal imaging scale. The YOLOv8 network layout

includes down samples at 8x, 16x and 32x, producing
output maps of 80x80, 40x40 and 20x20, respectively.
Smaller feature maps detect large targets, while larger
feature maps detect small targets more accurately and
effectively due to their bigger receptive fields and more
semantic information (Zhang et al., 2023). To enhance
the network's capacity to identify small targets, the
proposal proposes to add 4x down-sampling with 160 ×
160 output maps to the current structure. Moreover, a
larger-scale feature map is integrated into the FPN +
PAN structure neck, as illustrated in Figure (4), to
optimize the network structure.

Fig. 4: Implement a dedicated module for detecting

After implementing the improvements mentioned
above, the learning ability of the new network has been
significantly enhanced. The optimized version of the
YOLOv8 network structure is illustrated in Figure (5).

Fig. 5: Network structure diagram of YOLOv8-EPB

Materials and Experiments

Thermal Imaging Dataset

The real-time thermal imaging dataset of small
objects has been collected using the “Shot Thermal

http://192.168.1.15/data/13033/fig3.png
http://192.168.1.15/data/13033/fig3.png
http://192.168.1.15/data/13033/fig4.png
http://192.168.1.15/data/13033/fig4.png
http://192.168.1.15/data/13033/fig5.png
http://192.168.1.15/data/13033/fig5.png
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Imaging” camera. The camera, along with “seek Fusion”
technology, produces a 36 ◦  angle of view. The thermal
imaging camera has a fixed focus lens with a refresh rate
of about 9Hz frame. The parameters of the acquired
thermal imaging dataset are as follows: Maximum
resolution of the captured thermal image is 648 x 480,
wherein the approximate camera distance from the
captured object is approximately 120 to 250 cm, which
can be maximized or minimized depending on the size of
the target object. The total number of objects in the
dataset is 10706, belonging to four different classes: key,
coin, cap, piece, bolt and matchbox. There are roughly
two objects on average per image and the median class
of object size determined by pixel count is almost 241.
The percentage of the image where objects overlap is, on
average, 0.26%. Table 2 provides the specifics of the
parameters.
Table 2: Parameters Details of Custom Thermal Dataset

Parameter Custom thermal
dataset

Resolution for color thermal images 648 x 480
Number of images 5347
Camera distance 120-250 cm
Total number of objects 10706
Object count per image 2
Median object area (in sq. pixels) 346
Median overlap area of object and image
regions

0.26%

Fig. 6: Target Distribution in the Thermal Dataset: (a) Class
Count Distribution; (b) Target Size Distribution

The thermal imaging dataset contains 5347 thermal
images categorized into six different classes. The images
are segregated as per their classes, as demonstrated in
Figure (6). As Figure (6a) illustrates, the "key" class has
more than 1300 thermal images, while some other
classes, like "matchbox", have just 500 images. The
thermal dataset was randomly divided into training,
validation and testing subsets with a split ratio of
0.7:0.2:0.1. This equates to 70% of the data for training,
20% for validation and 10% for testing purposes
(Usamentiaga et al., 2014). Figure 6(b) shows the range
of target widths and heights, with a color gradient from
light to dark blue indicating areas of higher frequency.
This helps to emphasize the variety and frequency of
target sizes in the dataset.

The training dataset comprises 3,743 images, while
the validation dataset contains 1,069 thermal images
taken under various weather and lighting conditions,
both during the day and at night. In addition to the 5,347
images, an extra 535 thermal images have been utilized
to determine the robustness of the suggested models. The
'keep aspect ratio resizer' method is used to resize images
to 224x224 pixel dimensions. To maintain the original
aspect ratio, this mechanism scales the image so that the
longer side is 224 pixels and adjusts the shorter side to
224 pixels if the longer side is greater than 224 pixels.
Sample thermal images of small objects are shown in
Figure (7).

Fig. 7: Sample thermal images of small objects from the
dataset

Data Annotation

Data annotation is a process of labelling or marking
data to provide accurate information for machine
learning model training. Annotation is a type of data
annotation where objects and regions in images are
marked by creating bounding boxes around objects,
polygon segmentation, or labelling key points to help
algorithms learn from the labelled data. The Number of
labels applied to an image depends on the project
requirements. An image may have a single label or
multiple labels for specific items, areas, or landmarks
within the image. There are various annotation tools
available for labeling the data for image annotation tools
such as LabeImg, VGG Image Annotator (VIA),
LabelBox and COCO annotator are commonly used. In
this proposed study, the RoboFlow annotation tool has
been used to label small objects in the thermal imaging
dataset. For labelling the objects, the thermal imaging

http://192.168.1.15/data/13033/fig6.PNG
http://192.168.1.15/data/13033/fig6.PNG
http://192.168.1.15/data/13033/fig7.png
http://192.168.1.15/data/13033/fig7.png
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dataset was first uploaded to the Roboflow annotator tool
and all the uploaded images were sent to the annotator
for annotation. Roboflow has the ability to assign image
annotation tasks to all the members involved in the
respective project by just adding their credentials like
mail ID or allowing the entire annotation to be sent to a
single person. After the assignment of the annotation task
annotator chooses the annotation method and performs
manual or one-by-one annotation of each image. One of
the annotation methods is a bounding box.

Fig. 8: Bounding box sample images

Bounding Box

The Roboflow annotator tool supports different
annotation types such as bounding-box annotation,
polygon annotation and keypoint annotation, etc.
Bounding box annotation is a method used in computer
vision to identify and represent regions of interest in an
image. A bounding box has four sides (top, bottom, left
and right) that enclose the target object in an image. This
helps the model to determine the position and size of the
object. It involves drawing rectangles around specific
objects or characteristics to precisely locate them. This
technique is frequently used in image segmentation,
object localization and identification. To format
bounding box coordinates for the YOLOv8 dataset,
convert absolute pixel values to relative values based on
the image’s width and height. YOLOv8 requires
bounding boxes in the [class x_center y_center width
height] format, where:

1. Class refers to the integer representing the object
class. x_center and y_center are the coordinates of
the bounding box centre, normalized relative to the
image's width and height

2. Width and height represent the dimensions of the
bounding box and they are normalized relative to
the image's width and height. Figure (8) shows the
sample thermal images along with bounding boxes

Fig. 9: The different objects were labeled. Top left: coin, top
right: cap, bottom left: matchbox, bottom right: piece

Labelling

Proper labeling of each image is essential for using
the extracted foreground object in supervised learning.
Based on the visual field of an object, one of six labels
was assigned to it: key, cap, coin, piece, bolt and
matchbox. Manual labeling is applied to each image
individually, checked for accuracy and adjusted if found
to be incorrect. The labels are referred to as classes and
for ease of identification, each class is represented by a
unique colored bounding box. As a result, a manual
categorization was performed by examining the shape of
each object visible in the sequence of images,
considering that the coin was identified as precisely

http://192.168.1.15/data/13033/fig8.png
http://192.168.1.15/data/13033/fig8.png
http://192.168.1.15/data/13033/fig9.png
http://192.168.1.15/data/13033/fig9.png
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(1)

(2)

(3)

(4)

(5)round, while the shape of the cap was described as more
elliptical and inconsistent. Similarly, matchboxes are
rectangular and pieces are similar in shape but different
in shape. See Figure (9). For example, the images
include a coin, a cap, a matchbox and an ipiece.

Experimental Platform

The paper used a Windows 11 computer with high-
end hardware, including an Intel i5-1035G1 CPU,
NVIDIA MX130 GPU and 16GB RAM, to conduct
experiments. The tests were carried out using torch
1.12.1 software controlled by the Anaconda framework
and supported by CUDA version 11.3. The system had
sufficient computing capacity and resources for accurate
and productive experimental procedures.

Evaluation Matrix

Mean average precision (mAP) is a standard
evaluation metric used in computer vision research to
assess the effectiveness of object detection methods.
Object detection encompasses both localization and
classification tasks: localization involves determining the
bounding box coordinates, while classification involves
identifying the object labels. mAP is a commonly used
evaluation metric for popular object detectors such as
Faster R-CNN, SSD and YOLO. To determine the mean
average precision (mAP) for object detection, it is
essential to calculate recall, precision and intersection
over union (IoU). Recall measures the proportion of
actual positives that were detected, while precision
indicates the Number of true positive predictions among
all positive predictions. IoU assesses the overlap between
two bounding boxes and is derived from the Jaccard
Index. Equations (1-3) demonstrate the equations of
precision, recall and IoU, respectively:

To assess object detection, precision and recall are
calculated using the Intersection Over Union (IoU)
between the predicted Bounding box (Bp) and the
ground-truth Bounding box (Bgt). True Positives (TP),
False Negatives (FN) and False Positives (FP) are
utilized in these metrics. The average precision is
obtained by measuring the area under the precision-recall
curve, as outlined in Eq. (4).

Average Precision (AP) is a metric used to measure
the accuracy of a model, while mean Average Precision
(mAP) is the average of all AP values. The calculation of
mAP involves determining the average precision for each
class and across all IoU thresholds and the formula for
mAP calculation is shown in Eq. (5).

The main precision evaluation metric in this work is
mAP@0.5. For convenience, mAP@0.5 will be referred
to as AP0.5 in the remaining parts of this study.

Methods
The YOLOv8-EPB model was trained on the custom

thermal dataset. The Training utilized the Adam
optimizer with a learning rate of 0.001 and weight decay
of 0.0005. The model was trained for 100 epochs with a
batch size of 32 and early stopping was employed based
on validation performance to avoid overfitting. The loss
functions used included Complete Intersection over
Union (CIoU) loss for bounding box regression, binary
cross-entropy for objectless prediction and cross-entropy
loss for classification. Hyperparameters, including
learning rate and batch size, were tuned through a
combination of grid search and manual adjustment to
ensure optimal convergence and training stability.

Results Analysis

Experimental Results

The thermal imaging dataset was evaluated for small
object detection and achieved an impressive Average
Precision of 91.5% at a detection threshold of mAP0.5.
The YOLOv8-EPB algorithm was used to obtain
detection outcomes for different categories and the
results are presented in Table (3).
Table 3: Detection results on thermal imaging dataset

Categories Precision % Recall % mAP0.5
Key 85.7 91.3 97.1
Coin 92.0 93.9 87.8
Cap 91.3 99.2 90.2
Matchbox 87.1 97.2 91.6
Bolt 93.3 96.6 95.4
iPiece 82.0 70.4 94.1
All 91.5 93.4 92.7

Fig. 10: Detection Results on the Thermal Imaging Dataset

Figure 10 shows how the proposed methodology was
applied to a thermal imaging dataset to detect small

Precision =  

TP+FP
TP

Recall =
 

TP+FN
TP

IoU =  

area Bp∪Bgt( )
area Bp∩Bgt( )

AP =  

p r dr∫0
1 ( )

mAP =
  ×∑i=1

c

c
APi 100%
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objects. The figures demonstrate that the algorithm is
proficient in handling the challenges that come with
detecting objects of different sizes and dealing with
environmental noise. The algorithm performed well in
accurately detecting small objects, which shows that it is
robust and can work effectively in various real-world
scenarios.

The graph in Figure (11) shows how well the
YOLOv8-EPB algorithm performs on various classes in
the thermal imaging dataset. Some categories like 'key,'
'bolt,' and 'coin' have high precision with average
precisions above 90.5%, while the 'other' category has
low precision with an average of 84.5%. The 'other'
category includes diverse objects that lack consistent
features for the network to learn from.

Fig. 11: Precision-Recall curve of YOLOv8-EPB

The dynamic changes in several metrics throughout
the validation and training stages have been
demonstrated in Figure (12). These measures include
post-epoch evaluations like accuracy and recall, as well
as box loss, object loss and class loss. The figure
provides a comprehensive overview of how these metrics
have changed during training and validation, revealing
information about the model's performance at various
phases.

Fig. 12: Training and Validation losses matrices for YOLOv8-
EPB

Experiment Comparison

A series of ablation experiments have been conducted
using thermal imaging datasets to verify the effective
detection of the advanced method on small-sized targets
at each stage. The performance of the improved network

was compared with the original YOLOv8m to evaluate
the effectiveness of their modifications. In the ablation
experiments, all parameters remained consistent except
for those associated with the added modules. This
encompasses pertinent hyperparameters, the training
methodology and the experimental setting. YOLOv8-E
in this study refers to the YOLOv8 module with the
CSPDarknet-53 backbone network (Wang et al., 2020),
which EfficientNet-B4 now replaces. The P2 detecting
head is added to the YOLOv8 module, which is now
known as YOLOv8-P. Furthermore, the YOLOv8
module that integrates the BiFPN feature fusion network
is called YOLOv8-B. The experiment's authenticity is
demonstrated using mAP0.5 and mAP0.5:0.95 as
evaluation indexes, with the results displayed in Table
(4).
Table 4: Algorithm comparison at every stage

Methodologies

Module Results

YOLO v8-
E

YOLO v8-
P

YOLO v8-
B

mAP0.5 mAP0.5:0.95 P R

YOLOv8m 86.6 63 78.3 79

YOLOv8-EPB 86.2 64.2 79.2 81.6

YOLOv8-EPB 89.4 63.4 82.3 84.8

YOLOv8-EPB 92.7 67.5 83 86.5

The YOLOv8m reference baseline achieved a
mAP0.5 of 86.6% on the thermal imaging dataset for
small objects, according to an analysis of the ablation
experiment findings displayed in Table (4) (a) Replacing
the YOLOv8 backbone with EfficientNet-B4 increased
the recall rate by 2%. The design of EfficientNet-B4
requires fewer parameters and computation, making it
more lightweight and practical for real-time performance
(b). The modification of the detector head led to a 3.2%
improvement in mAP0.5 and a 3% improvement in the
recall rate. Adjusting the P2 anchor frame reduces
detection errors associated with oversized anchors when
identifying small objects. Combining multi-level
information, especially shallow shape and size features,
enhances the detection and localization of small targets.
However, these improvements also result in increased
computational complexity for the model. (c) Enhancing
the feature fusion method effectively prevented small
targets from being missed during the learning process
because of inadequate information on their location. The
use of this technique led to a 3.3% rise in mAP0.5,
indicating that bidirectional feature information flow
improves multi-level interaction as well as the fusion and
enhanced usage of features across multiple scales.
Experimental results indicated that improvements at each
stage of the algorithm could boost the model's learning
ability. Specifically, the EfficientNet-B4 network
decreases the overall model size and parameter count,
making deployment on embedded devices simpler. The
use of BiFPN and P2 detecting head helped achieve a
high mAP0.5 of 92.7%.

http://192.168.1.15/data/13033/fig11.png
http://192.168.1.15/data/13033/fig11.png
http://192.168.1.15/data/13033/fig12.jpeg
http://192.168.1.15/data/13033/fig12.jpeg
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Figure (13) compares the experimental results of
benchmark models across different categories with
various improvement modules. The EfficientNet-B4
lightweight network module showed an increase in
average accuracy for most categories except "Coin" and
"Matchbox." The "Key" accuracy increased by 4.3%,
"Cap" by 3.1% and "Ipiece" by 0.2%, while "Coin" and
"Matchbox" accuracy decreased by 4.2% and 3.7%,
respectively. The "Bolt" accuracy decreased slightly by
0.9%. By adding the P2 detector head module, the
accuracy of certain objects improved: "Coin" by 2.3%,
"Matchbox" by 4.1%, "Bolt" by 3.4% and "Ipiece" by
5.5%. "Cap" accuracy increased by 3.2% and "Key"
increased by 1.5%. The BiFPN module further improved
accuracies: "Key" enhanced by 4.3%, "Coin" by 4.5%,
"Cap" by 4.8%, "Matchbox" by 1.4% and "Bolt" by
2.7%, with "Ipiece" remaining unchanged.

Fig. 13: Comparison of each proposed module with all the
categories of thermal imaging small object dataset

Table 5: Comparative Performance Analysis of the Proposed
Algorithm and Other Target Detection Methods

Detection Algorithm Backbone
Network

mAP0.5 mP0.5:0.95

NanoDet EfficientNet-
Lite0

81.2 59.4

Faster R-CNN ResNet 81.9 62.3
Cascade R-CNN HRNet 82 58.4
YOLOv3 Darknet53 83.3 51.1
YOLOv5 CSPDarknet53 83.7 56.4
YOLOv7 DenseNet 86.8 57.2
YOLOv8 CSPDarknet53 87.6 63
YOLOv8-EPB (Proposed
Algorithm)

EfficienNet-B4 92.3 67.5

To demonstrate the enhanced model effectiveness,
pertinent comparisons have been carried out with the
same small object thermal imaging dataset. The
comparison experiment includes both one-stage and two-
stage target detection algorithms, including NanoDet,
YOLOv3, YOLOv5, Faster-RCNN, Cascade RCNN,
YOLOv7 and YOLOv8. Table (5) records the
comparison between each algorithm that has been tested
on the validation set of thermal imaging datasets. We can
infer from the comparison analysis that the enhanced

YOLOv8-EPB algorithm performs better than other
traditional target detection techniques.

The primary reasons why the proposed algorithm
excels over other mainstream algorithms are analyzed as
follows:

1. The majority of conventional target detection
algorithms use FAN+PAN for feature fusion, but
this method might lead to information loss during
the extraction of features by confusing small and
normal-sized objects. In contrast, the feature fusion
method in YOLOv8-EPB facilitates multi-level
information interaction and improves the fusion and
integration of features at different scales

2. When extracting features, small-sized target pixels
will be ignored, causing reduced accuracy and
irrelevant information will be automatically
eliminated. On the other hand, YOLOv8-EPB uses
the concept of EfficientNet-B4, which uses a
compound scaling method to learn more detailed
information and improve accuracy

(a)

(b)

Fig. 14: Test result comparison of YOLOv8m and YOLOv8-
EPB. 14(a) Test results of YOLOv8m 14(b) Text results
of YOLOv8-EPB

http://192.168.1.15/data/13033/fig13.png
http://192.168.1.15/data/13033/fig13.png
http://192.168.1.15/data/13033/fig14.png
http://192.168.1.15/data/13033/fig14.png
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An image from the thermal imaging data was chosen
for testing to determine the impact of YOLOv8-EPB. To
compare test results, the weight files for YOLOv8 and
YOLOv8-EPB have been saved. Figure (14)
demonstrates the comparative performance of the two
models in small object detection. In the experiment
comparison, Figure 14(a-b) showed that YOLOv8 failed
to detect coins and pieces. However, the algorithm
proposed in this study solved the problem related to
missed detection and accurately recognized all objects in
the thermal images. As illustrated in Figure 14(a-b),
YOLOv8-EPB outperformed YOLOv8 in terms of
accuracy and Number of detected targets, indicating that
YOLOv8-EPB has better abilities in detecting small
objects in thermal imagery.

In summary, the YOLOv8-EPB algorithm improves
the ability of the original YOLOv8 model to detect small
objects in ground-based thermal imaging by optimizing
feature extraction and precise target localization.
YOLOv8-EPB addresses the limitations of YOLOv8,
effectively reducing missed detections and increasing the
accuracy of identified objects.

Discussion and Future Scope
The YOLOv8-EPB algorithm incorporates several

innovative architectural advancements that distinguish it
from existing object detection methods, particularly for
thermal imaging. Using EfficientNet-B4 instead of
CSPDarknet-53 as the backbone enables compound
scaling, allowing for the extraction of finer-grained
features and enhancing the detection of small objects.
Additionally, integrating the BiFPN feature fusion
mechanism overcomes the limitations of conventional
methods, such as FAN+PAN, which may lead to
information loss and confusion between features of small
and normal-sized objects. Beyond these architectural
improvements, YOLOv8-EPB effectively manages key
challenges inherent to thermal imaging, such as thermal
noise and variations in object size. EfficientNet-B4
enhances feature extraction through compound scaling,
which helps mitigate thermal noise by preserving high-
resolution details, ensuring clearer object representation,
while BiFPN strengthens feature integration across
different scales, ensuring robust detection of small
objects even in cluttered or low-lighting thermal
environments. These enhancements make YOLO-EPB
not only more accurate but also more adaptable to real-
world applications like industrial surveillance, foreign
object Debris detection at airport runways and aerial
monitoring, where thermal imaging plays a vital role.

Despite its strengths, the proposed YOLOv8-EPB
algorithm has certain limitations that require attention.
Firstly, the use of EfficientNet-B4 as the backbone, while
effective in improving feature extraction, increases
computational costs, making it unsuitable for
deployment in real-time applications on resource-
constrained devices. Additionally, the BiFPN feature

fusion mechanism may struggle with very fine-grained
feature differentiation in highly cluttered scenes with
high noise levels. These limitations highlight the need for
further research into lightweight yet robust backbone
architectures and advanced noise-reduction mechanisms.

Furthermore, the use of a custom thermal imaging
dataset tailored to the study's objectives may limit the
algorithm's generalizability across diverse thermal
imaging scenarios. The lack of diverse and large-scale
annotated datasets for thermal imaging is a broader
challenge in the field, which could affect the model's
adaptability to different environmental conditions or
object types. To overcome these limitations, future
research should explore the integration of neural
architecture search (NAS) to identify more
computationally efficient configurations and investigate
advanced denoising techniques for thermal images.
Expanding the dataset to include a wider variety of
thermal imaging contexts, such as aerial, underwater, or
industrial environments, would also enhance the model's
robustness and applicability. Additionally, hybrid
approaches, such as combining attention mechanisms
with BiFPN, could improve the model's ability to capture
subtle variations in small objects. Addressing these
technical and dataset-related challenges would extend the
applicability of the YOLOv8-EPB algorithm and
establish it as a robust and efficient solution for real-
world object detection in thermal imaging.

Conclusion
It employs EfficientNet-B4 as the backbone network

and integrates a specialized small target detection layer
along with a P2 detection head to improve the ability of
the network to identify small objects. Additionally, a
bidirectional feature pyramid network (BiFPN) is
incorporated into the neck section to enhance the
generalization capabilities of the model and detection
accuracy for small targets. The experiments conducted
on a customized small object dataset of ground-based
thermal imaging show that an enhanced algorithm has a
4.7% increase in average accuracy for object detection
compared to YOLOv8m. The enhanced algorithm is
suitable for practical applications that require both real-
time processing and accuracy. The performance of the
proposed algorithm was evaluated through ablation
studies and comparisons with other existing algorithms.
The investigation and testing of each optimization
component proved its viability and efficacy. The
YOLOv8-EPB algorithm outperformed other detectors in
capturing small targets in challenging conditions, making
it more accurate.

Future research will prioritize the enhancement of the
computational efficiency of thermal image
configurations through the implementation of Neural
Architecture Search (NAS) and advanced denoising
techniques. Furthermore, the integration of attention
mechanisms with BiFPN could potentially improve the
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model's ability to detect small objects. To ensure the
model's applicability across various scenarios, the dataset
will be expanded to include diverse thermal imaging
contexts such as aerial, underwater and industrial
environments.
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