

© 2024 Shaily Jain, Chander Prabha, Ayman Noor, Prakash Srivastava, Mohammad Zubair Khan and Priyadarshini

Pattanaik. This open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Effect of Load and Routing Protocols on Networks on Chip

(NoC): An Analysis

1Shaily Jain, 1Chander Prabha, 2Ayman Noor, 3Prakash Srivastava,
4Mohammad Zubair Khan and 5Priyadarshini Pattanaik

1Department of Computer Science and Engineering, Chitkara University Institute of Engineering and Technology,
Chitkara University, Punjab, India
2Department of Computer Science, College of Computer Science and Engineering, Taibah University, Madinah, Saudi Arabia
3Department of Computer Science and Engineering, Graphic Era (Deemed to be University), Dehradun, India
4Department of Computer Science and Information, Taibah University, Madinah, Saudi Arabia
5Faculty of Computer Science and Informatics, Berlin School of Business and Innovation, Germany, France

Article history
Received: 03-06-2024
Revised: 28-06-2024
Accepted: 15-07-2024

Corresponding Author:
Chander Prabha
Department of Computer

Science and Engineering,
Chitkara University Institute of
Engineering and Technology,
Chitkara University, Punjab,
India
Email: prabhanice@gmail.com

Abstract: Communication infrastructure for multi-core Systems-on-Chip
(SoCs) is provided by Network-on-Chip (NoC). Point-to-Point (P2P) and
bus-based communication systems are NoCs and are two communication
channels of NoC that can probably overcome the scalability and performance
restrictions of NoC. Latency and throughput are two of the essential
characteristic metrics measured for a routing algorithm that affect the
performance of a given NoC. This study evaluated and compared static and
dynamic routing algorithms Dijkstra and distance vector on the scale of
increasing flit length and network traffic. In a network, considering the effects
of topology, traffic, buffer, and packet size, the dynamic algorithm performs
better than a static algorithm on the network's performance. Moreover, the
effect of increased network traffic on throughput and average packet delay with

the increase in network size in a fixed MS topology and distance vector routing
protocol has been evaluated. The results show that while using the Dijkstra
algorithm, the average packet delay reached 50-60 packets/cycle in comparison
to the Distance Vector where it reached a maximum of 40 packets/cycle in 4
different topologies. Throughput is achieved up to 100% in both algorithms
using various topologies. In only MS topology, throughput reached 100% but
packet delay increased to 400 pkts/cycle with an increase in network size.

Keywords: Multiprocessor System on a Chip, Networks on a Chip, MS

Topology, TS Topology, BFT Topology, Extended BFT Topology, Flit,

Routing Algorithm, Dijkstra, Distance Vector

Introduction

Continuous technological advancements enable the

reduction of chip size. Having microscopic transistors

squeezed onto silicon chips, designing and integrating a

complete system consisting of a massive number of IP

blocks on a single chip is becoming technically feasible.

Single processors may be adequate for some general and

less energy-requiring (slow processing) applications that

are typical of early microcontrollers. However, many

applications need multiprocessors to achieve fast and high-

performance goals.
Multiprocessor Systems-on-Chip (MPSoCs) consists

of numerous Processing Elements (PEs) on a Systems-on-

Chip (SoC). An on-chip interconnect like AMBA or NoC

is used to connect PEs on a chip. In the future, the
Network-on-Chip interconnection method will be used

because of the non-scalable schemes like shared buses and

P2P dedicated links (Henkel et al., 2004). A

multiprocessor is a set of processors arranged parallelly

sharing a single address. A microprocessor is now the

most preferred processor and its cost is low.

Multiprocessors have the highest absolute performance

than any uniprocessor. The application of MPSoC is

mainly used in complex embedded applications. Its

systems can fulfill present performance requirements that

cannot be achieved by systems based on a single general-
purpose processor.

Similar PEs are combined to build a homogeneous

MPSoC. However, a homogeneous MPSoC supports only

Shaily Jain et al. / Journal of Computer Science 2024, 20 (11): 1376.1387

DOI: 10.3844/jcssp.2024.1376.1387

1377

a handful of applications, while a heterogeneous MPSoC

can be used for various applications. A heterogeneous

MPSoC is composed of particular types of PEs such as
Intel (Vangal et al., 2007) and the proposed homogeneous

MPSoCs with 80 PEs and Tilera (NVIDIA, 2009) with

100 processing elements connected through a NoC.

Recently, Toshiba, IBM, and Sony proposed a

heterogeneous MPSoC containing one manager processor

and eight floating-point units (Kistler et al., 2006). By the

end of 2021, MPSoC architectures would contain lakhs of

PEs assembled on a single chip (Borkar, 2007). Runtime

management of tasks is required for dynamic workload

applications like multimedia and networking, as these

tasks enter into the system at their runtime. At the same

time, dynamic mapping techniques are required for
mapping tasks at runtime.

The mapping problem to a regular MS-based NoC

architecture has been addressed by several existing solutions

(Jamali and Khademzadeh, 2009; Ezhumalai et al., 2009).

There are two popular dynamic routing algorithms

distance vector routing and link-state routing. A basic

form of link-state routing (NoC-LS) showed the best

results in a NoC. The reduction in data rate leads to a zero

packet drop ratio (Ali et al., 2005). Cho and Choi (2012)

presented a Multi-Path, Hybrid Shortest Path Tree

(MPHSPT) algorithm, which uses multipath information

to reduce the total execution time, which in turn results in

a reduction in the packet loss rate. The proposed MP-

HSPT algorithm computes the shortest path faster than the

HPST and Dijkstra, Dynamic Dijkstra. Ebrahimi and

others (Ebrahimi et al., 2009) proposed a hybrid path-

based multicast algorithm used in MS networks for NoCs.

According to their results, the DP, MP, and CP underwent

higher average communication delay and high power

dissipation rate than the proposed algorithm when using

multicasting and high message injection rates. An analysis

of the architectural design of the NOC system computation

of regular topologies was proposed (Marrakchi et al.,

2009). Zhang et al. (2007), proposed an on-chip

interconnected analysis and evaluation of three different

metrics power, and bandwidth delay, and presented a

system-level floor planning-based Noc synthesis algorithm.

Their solution's limitation is that it is based on a slicing

floor plan in which core bends and links around cores

constrain the router locations. Glass and Ni proposed

deadlock and livelock-free wormhole routing algorithms

for MS-connected networks (Mohapatra, 1998).

Architecture

MPSoC: Fig. (1) shows an MPSoC architecture and the

interconnection network connecting various processors in

it. Each processor is termed a "node processor" or PE and

comprises one CPU and one or two cache hierarchy levels.

When the L1 cache is missed, the CPU goes to access the

L2 cache and if there is a miss again in the L2 cache, it will

then lead to access to the main memory (Jantsch and

Tenhunen, 2003). Updation in both L1 and L2 cache is

done with write-through techniques. The MPSoC uses
both shared memories as well as memories connected

with each node. Memory directory can globally address

and access these memories directly. When there is a

cache miss in the L2 cache, information about the miss

is transmitted by a request packet generated by the L2

cache in the network requesting permission to access the

main memory. The main memory then fulfills the

request and returns a reply packet with the required data

to the node (Pande et al., 2005).

Network on Chip (NoC): NoC is a system designed for
communication between IP cores installed on an integrated
circuit referred to as a chip in a system on a chip. NoCs are
broadly categorized into synchronous and asynchronous
clock domains. There is a substantial advantage of NoC
technology over conventional bus and crossbar
interconnections when networking methods are applied to
on-chip communication (Hu and Marculescu, 2004).

MPSoCs have shared memories to exchange data

between processors and the interconnected network is used
to transport data from one processor to the other. Data flows
are first divided into packets and then transmitted to their
destinations. Network traffic on a chip comes from the
following sources (Benini and De Micheli, 2002):

 Memory transactions: The network traffic increases

due to a cache miss, necessitating the data to be
fetched from the shared memories

 Cache coherence operations: In MPSoC, data is
replicated in the cache of every node. If there is any
updation in any cache or main memory, its cache
copies also need to be updated with the new values

or reset their valid bits. This synchronization
operation creates overhead in traffic on the network

 Packet overheads: Data are transmitted in the form of
packets thus creating an additional overhead of
traffic, which in turn depends upon the packet size

 Contentions between packets: Routes of the packets
need to be changed due to contention between
packets, leading to regular network traffic diversion

Fig. 1: MPSoC architecture

Shaily Jain et al. / Journal of Computer Science 2024, 20 (11): 1376.1387

DOI: 10.3844/jcssp.2024.1376.1387

1378

Multiprocessors on a chip can communicate with each

other in two ways (Benini and Bertozzi, 2005).

Way 1; Signal address: In this scheme, all processors
share a single memory address space in the system

without any restriction on accessibility. Communication

between different processors is done through these shared

variables in memory. It is divided into:

 Uniform memory access multiprocessors (or

symmetric multiprocessors) take the same time to

access main memory. It means the access time is

independent of the location of the word and processor

 Non-uniform memory access multiprocessors allow

some memory accesses faster than others as the

access depends on the processor and the word's

location. Non-uniform memory access machines

show high performance, as they are scalable

Way 2; message passing: In this scheme,

communication between multiple processors occurs by
explicitly sending and receiving messages. There are

two basic constructed organizations possible in a
network (Dally and Towles, 2001). Figure (2) shows

processors connected by a single bus. The number of
processors can vary from 2-32. Figure (3) shows

processors connected by a network without a direct link
between memory and processor.

Fig. 2: Single bus architecture

Fig. 3: Network architecture

Topologies in NOC

There are various topologies in networks-on-chip.

Four different topologies taken into consideration are

namely MS, TS, BT, and EBT (Kumar et al., 2002;

Ezhumalai et al., 2011). In the MS network, shown in Fig. (4),

switches are connected to the resources and the number of

switches directly depends on the number of resources in

the network. Each switch is linked to its four neighboring

switches except the corner switches present on the layout's

edge. This architecture has several benefits viz. smaller

switch size, higher capacity physical channels, ease of

scalability, and better routing.

Torus: The following topology, shown in Fig. (5) is the
TS layout. The TS and MS topology are almost similar,

except that TS has a double bandwidth than the MS, as the

wires are also wrapped around from the top node to the

bottom node and from the right-most node to the left-most

node. This architectural layout given for a particular

communication packet is used for a distant transmission.

Due to the presence of the extra wiring, this architecture has

low contention and high bandwidth. On the contrary, due

to the deployment of virtual channel switching techniques,

it has a buffer of relatively large size.

Fig. 4: A 44 MS topology

Fig. 5: A 44 TS topology

Shaily Jain et al. / Journal of Computer Science 2024, 20 (11): 1376.1387

DOI: 10.3844/jcssp.2024.1376.1387

1379

Butterfly Fat Tree: A BFT topology looks like a tree

structure, as shown in Fig. (6). Each node has two

coordinates (position, level) where the position is the
node's location in the order from right to left and the level

is the same as the level defined in a tree. Leaf nodes are

numbered, starting with zero in the vertical order

numbering. Each switch in the tree is associated with two

parent ports and 34 child ports. In general, if n is the

number of IP blocks in the architecture, then the levels in

the tree would be log4 n. Moreover, there will be N/2i+1

switches at the ith level of the tree.

Extended butterfly fat tree: The EBT architecture

(EBFT) shown in Fig. (7) is derived from the BT topology

shown in Fig. (6). The switch size of the architecture is

constant. In this network, the leaves have IPs, and switches
are situated at the internal nodes. Each switch is connected

to further two-parent ports and four child ports. If x is the

number of IPs, then the number of levels will be log4.

Research Gaps and Problem Formulation

Table 1 presents the research gaps in previous work

done by researchers. Network throughput is the average

rate of messages delivered successfully using a

communication channel in a network. This data may be

transmitted over a physical link or a logical link or pass
through a particular network node. The unit of

measurement used to measure throughput is bits per

second (bit/s or bps). Average packet delay is a concept in

packet-switching technology. The Delay in the packet

delivery is due to a store-and-forward delay in each router,

which further causes the queuing Delay of that packet

across the network. Throughput and average packet delay

are two crucial factors, which influence network
performance. The choice of a good routing algorithm is

another influential factor.

Fig. 6: A 44 BFT topology

Fig. 7: A 44 EBFT topology

Table 1: Research gaps in previous work

Reference Main findings Methodology used

Saliu et al. The XY routing algorithm performed better when the Varying load at different Packet Injection

(2021) packet injection rate (PIR) was low. The DyAD routing Rates (PIR) under random traffic patterns using a

 and Age-aware algorithms performed better when the 44 mesh topology was in the Noxim simulator. They used

 PIR was a high FIFO input buffer channel with a depth of 5 flits,

 a flit size of 32 bits and a packet size of 3 flits

Singh et al. The XY and OE routing algorithms were compared in The study using a 33 2D mesh topology and

(2013) terms of average latency, average throughput, and total routing algorithms evaluated were XY and OE.

 network power under varying traffic loads on a 33 2D Simulations were performed using the NIRGAM

 mesh topology. The performance of the two routing NoC simulator version 2.1. Simulations where

 algorithms were compared conducted under constant bit rate (CBR) traffic

 conditions. The performance metrics evaluated

 were average latency, average throughput, and

 total network power

Bhaskar (2022) The analysis of the effects of network parameters on Systematically varied network size, routing, and traffic

 power consumption of Network-on-Chip will help patterns, flit size, and buffer size using Mesh

 in designing new routing and allocation algorithms topology measured the power consumption,

 for efficient NoC operation. The study discusses the throughput, and delay

 trade-offs between power, throughput, and delay

 metrics for an efficient NoC. The key parameters

 analyzed include network size, routing, traffic patterns,

 flit size, and buffer size

Haghi et al. The study evaluated the effects of the routing algorithm, The methodology used in the study involves:

(2016) buffer size, virtual channel, and subnet on the time latency Evaluating the effects of four parameters (routing

 and throughput of on-chip interconnect architectures. Algorithm. Delay under fully A, XY, and West F;

Shaily Jain et al. / Journal of Computer Science 2024, 20 (11): 1376.1387

DOI: 10.3844/jcssp.2024.1376.1387

1380

Table 1: Count.

 The goal was to determine the critical points and buffer size, virtual channel, and subnet) on time
 trade-offs in how these parameters affect latency and throughput in both wire and wireless
 overall system performance Network-on-Chip (NoC) approaches. Dividing the

 study into two parts: 1) Evaluating the effects of
 routing algorithm and buffer size 2) Evaluating the
 effects of virtual channels and subnets when
 switching from wire to wireless NoC using a hybrid
 topologies. They have used the Booksim and
 Noxim simulators which are based on System C,
 to perform the evaluations
Nagalaxmi et al. The proposed deadlock-free shortest routing The key aspects of the methodology are: It

(2023) algorithm has high throughput, low area and abandons the traditional dimensional order routing
 power utilization, and lower latency compared to (e.g. XY routing) where packets always go in the
 existing algorithms like XY. The proposed X direction first, which can cause blocking.
 the algorithm also has a simpler implementation Instead, it uses a distributed deterministic routing
 with lower hardware overhead compared to mechanism that treats odd and even columns
 other algorithms differently, to reduce network congestion and delay

Network load, flit length, and network size also

contribute to network performance. Hence, the proposed

methodology determines the effect of all these parameters

on throughput and packet delay on networks on a chip.

Figure (8) describes the methodology used.

Routing algorithm: Routing is the process of path

selection to send data packets in a given network.

Routing is performed for various types of networks like

the telephone network, an example of circuit switching.

A logical address is assigned to the packet forwarded
from its source node to its destination node with the

required address traveling through several intermediate

nodes like routers in packet switching networks. The

routing process usually directs packets to various

network destinations based on the route present in

routing tables. Thus, creating and maintaining routing

tables in the router's memory is crucial for efficient

routing. Most routing algorithms use a single dedicated

network path at a time, i.e., all packets follow the same

path. In TCP/IP, routing can be divided into two types:

Static routing and dynamic routing. In static routing, the

routing table is prepared and maintained manually using
the route command. Since the passage of time, the

network expands and the number of gateways increases,

it would become challenging to maintain routing tables

manually. Hence, this limitation restricts the static

routing for a single network communicating only to one

or two other networks. While in dynamic routing,

daemons automatically update the routing table. Routing

daemons continuously receive information through

broadcasting from other routing daemons present in the

network and continuously updating the routing table.

Dijkstra’s static routing algorithm: Static routing is a

means to path selection configuration of routers in

computer networks. Routers do not communicate about

the existing topology of the network in this routing

technique. Routes are added to the routing table manually

and systems in this network route data through a data

network depicted by static or fixed paths. The system

administrator updates these static routes into the router.

One disadvantage of this type of routing is that when there

is an amendment in the network or any network failure

occurs between two statically defined nodes, then the

packets will not be rerouted. Dijkstra algorithm is an

example of static routing (Dijkstra, 1959). This algorithm

finds the shortest path with the lowest cost from one vertex

to every other vertex in the graph for a defined source node.

Fig. 8: Flowchart of proposed methodology

Shaily Jain et al. / Journal of Computer Science 2024, 20 (11): 1376.1387

DOI: 10.3844/jcssp.2024.1376.1387

1381

The shortest paths from a single vertex to a single

destination vertex can also be found by stopping the

algorithm when the shortest path to the destination

vertex has been determined. For example, cities are the

vertices of the graph, and distance is represented through

the labeled edges between pairs of cities connected by a

direct road. Dijkstra's algorithm (Cho and Ryeu, 2006;

Newton et al., 2009) can be used to find the shortest route

from one city to all other cities. Dijkstra's original

algorithm does not use a min-priority queue and runs in

O (|V|2) time where |V| is the number of vertices.

As Algorithm 1 has only one for loop and if statement

nested in while loop, its complexity is calculated as O

(m + n log n), where n is the length of the array d i.e., the

number of nodes, and m is the size of vector S.

Distance vector dynamic routing protocol: Dynamic

routing protocols carry out path determination like static

routing and also update the routing table dynamically. It

also determines the next-best path if the current path to

a destination becomes unavailable. The capability of

compensating for any dynamic updation in topology is

the most crucial advantage of dynamic routing over

static routing. Distance vector protocol is a dynamic

routing protocol. Distance-vector routing protocols use

both the Bellman-Ford algorithm and the Ford-

Fulkerson algorithm for calculating the path. The basic

requirement of any dynamic protocol is the timely

update of topology changes, so in the distance-vector

routing protocol, a router must timely notify its

neighbors about changes. Link-state protocols require

communicating changes in topology to every router in a

network, increasing overhead and complexity. In

contrast, distance-vector routing protocols have reduced

computational complexity and message overhead.

Materials and Methods

Windows-based modeling and simulation framework

for NoC, Gpnocsim simulator (Hossain et al., 2007) is

used for experimental evaluation of the problem.

Gpnocsim is developed on the Java framework using

object-oriented modular design concepts, especially for

component-based network environments. It is open-

source software and easy to use. Network configurations

like topology, size, traffic flow, packet size, Routing

Algorithm, etc. can easily be varied for conducting

various simulations to find out their impact on various

parameters like throughput and Delay. Tables 2-3

describe the simulation environment for each analysis.

Based on research gaps discussed in Table 1, the

experimental setup is divided into two parts: (1)

Varying 4 different topologies (BT, MS, TS, and

EBFT) which are not used in any of the cited papers,

varying flit length, varying flits per buffer and two

different routing algorithms (Dijkstra and distance

vector) which are also not used in any of the cited

papers. (2) Only MS topology as many cited papers

have used with IP nodes, arrival time, flit length, flits

per buffer, and only DV algorithm due to its dynamic

nature and better performance in setup 1.

Algorithm 1: Dijkstra Algorithm in MPSoC

Step 1: Create vector S which contains all nodes.

Step 2: A new vector I is created, which implements a

dynamic array.

Step 3: Create temporary nodes. Distance from x using

nodes in I is found. The previous node in the shortest path

is set.

Step 4: Initialises set I and arrays d and s.

Step 5: Add a new element in vector S.

Step 6: Integer(i) calls the constructor of Integer class Size

() returns the number of elements currently in vector S.

Step 7: Returns the element at the location specified by

index i of vector S and the value of the element that was

converted in Integer class object will now be converted to

int by using the function intValue().

Step 8: Contains () returns true if the vector contains the

element; otherwise, it returns false.

i. Re-computes d for non-I nodes and adjusts if necessary

for all nodes z, not in I.

Step 9: Finally, return the shortest path.

Table 2: Simulation Environment 1 configuration

Parameter Value

Current network 0 (BT), 1 (MS), 2 (TS) and 3(EBT)

No. of IP nodes 64 (88)

Avg. inter-arrival time 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Avg. message length 200 bytes

Flit length (bits) 10, 32

Current VC count 4

No. of flits per buffer 10, 32

Traffic type 0 (Uniform traffic)

Routing algorithms Dijkstra, Distance vec.

Table 3: Simulation environment 2 configuration

Parameter Value

Current network 1(MS)

No. of IP nodes 44, 88, 1212, 1616

Avg. inter-arrival time 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Avg. message length 200 bytes

Flit length (bits) 10, 32

Current VC count 4

No. of flits per buffer 10, 32

Traffic type 0 (Uniform traffic)

Routing algorithms Distance vector

Shaily Jain et al. / Journal of Computer Science 2024, 20 (11): 1376.1387

DOI: 10.3844/jcssp.2024.1376.1387

1382

Algorithm 2: Distance Vector Dynamic Routing

Algorithm in MPSoC

Step 1: Create temporary nodes. d is taken as the distant

array. s is taken as the shortest path array.

Step 2: Creates a temporary distant array at each iteration

named t.

Step 3: Vector S containing all nodes is initialized. Array

d is initialized. Array s is initialized. This establishes the

shortest path l of length l for all nodes where z is not equal

to x.

Step 4: Find the shortest path of length 2, 3, etc.

I. Copies current array d into array t.

II. d is the name of an array 0 is copied.

III. 0 is the index from which the copying will start from

array d.

IV. t is the name of the array that will receive the copy of

array d.

V. 0 is the index at which the copy will begin within

arrays t and d.

VI. Length specifies the number of elements to be copied.

Here the whole array d is copied to array t.

Step 5: Create an object of the format class by using the

new Format. This creation instantiates the Format class's

constructor and calls the form method by using this object,

followed by a dot operator. Find the shortest path with one

or more links. Finally, the path is printed. Return to the

shortest path.

Step 6: The distance vector algorithm's complexity is

calculated as O (mn), where m is the number of nodes and

n is the number of edges in the network.

Experimental Setup and Testbed

Reconfigurable topologies allow comparison between

different architectures: MS, TS, and BT, which are

already implemented in the simulator. To implement

routing algorithms, modification is done in the gpnocsim

by creating new classes, Dijkstra and Distance_vector that

implement the router interface's getDestination method.

Two routing protocols: One static Dijkstra's routing

algorithm and another, a dynamic, i.e. distance vector

routing protocol are implemented. The experimental setup

used a network of 64 nodes having four different

topologies MS, TS, BFT, and EBFT. The message length

was taken as 200 bytes with the current virtual channel

count as 4. A uniform traffic in the network is applied

rather than random traffic to decrease complexity. The

effect of increased network load on different topologies

with two different routing algorithms has been analyzed.

To achieve this, the message inter-arrival time has been

gradually increased from 1-10, which means on average a

node produced 1 packet /cycle to 10 packets/cycle.

Results and Discussion

After the experimental setup, the evaluations have

been performed with an average iteration of 10

evaluations per setup. The further section discusses the

results obtained after setting simulation environments 1

and 2. Discussion about the results and research gaps are

mentioned at the end of this section.

Simulation Environment 1

Analysis of the Effect of Network Load and Routing

For simulation, the gpnocsim simulator has been used

with routing algorithms implemented in the Java

programming language. It works on a Windows-based

machine. When the network load starts with 1 packet/cycle,

throughput is 100% taking Dijkstra's routing protocol and

flit length of 10 bits, as shown in Fig. (9). However, as the

network load increases, throughput decreases and reaches

up to 40%. MS topology shows the best performance with

a 100% throughput of 5 packets/cycle, but later on, it

decreases drastically due to increased network traffic.

Extended BFT shows the worst performance with the

lowest throughput values.

Moreover, TS delivers better throughput as compared

to BFT. It shows that the impact of network traffic is

significant in network performance. It will decrease

further if network traffic increases and might sometimes

lead to 0 also. The throughput and average Delay values

indicate that with the increase in the flit length from 10-32,

the throughput decreases and the average delay increases.

Figure (10) illustrates an 88 network simulation with

four different topologies and a flit length of 32 bits using

static Dijkstra's algorithm. With the increase in packet

size, throughput decreases as compared to flit length 10.

Again, MS topology outperforms the other three

topologies. Moreover, with the increase in traffic,

throughput decreases as in the earlier case.

Fig. 9: Throughput vs network load for flit length=10 in

Dijkstra’s algorithm

Shaily Jain et al. / Journal of Computer Science 2024, 20 (11): 1376.1387

DOI: 10.3844/jcssp.2024.1376.1387

1383

Fig. 10: Throughput vs network load for flit length = 32 in

Dijkstra’s algorithm

Fig. 11: Latency vs. network load for flit length = 10 in

Dijkstra’s algorithm

The graph in Fig. (11) represents the average packet
delay in Dijkstra's algorithm with a flit length of 10 bits.
Latency is measured in clock cycles. Its value goes from
15-50 clock cycles. Maximum Delay is observed in BFT
and minimum Delay in EBFT, while MS and TS
topologies show average behavior. As the network traffic
increases from 1 packet/cycle to 10 packets /cycle, the
average delay value also increases.

Figure (12) shows the performance evaluation using
the average packet delay for flit length as 32 bits. The
EBFT outperforms the other three topologies. BFT
shows the worst performance with a maximum packet
delay of 57 clock cycles. MS and TS topologies show
almost similar behavior.

Figure (13) shows the throughput simulation results
using four well-known topologies in NOC with a dynamic
routing protocol distance vector. The runtime updation in
routing table values shows better throughput than
Dijkstra's algorithm under the same environment. The
throughput decreases with the increase in network traffic.

Firstly it starts with 100% throughput but later decreases
to 83%. It may be due to the packet losses occurring
because of network congestion.

Figures (14-16) illustrate the simulation results of
throughput and average packet delay for the NoC
environment as described in Table 2. With the increase in
network load, throughput decreases, and average packet
delay increases in both graphs. MS and TS topologies
delivered the best performance for throughput while EBFT
outperforms in the case of average packet delay calculation.

Fig. 12: Latency vs. network load for flit length = 32 in

Dijkstra’s algorithm

Fig. 13: Throughput vs. network load for flit length = 10 in

distance vector algorithm

Fig. 14: Throughput vs. network load for flit length = 32 in

distance vector algorithm

Shaily Jain et al. / Journal of Computer Science 2024, 20 (11): 1376.1387

DOI: 10.3844/jcssp.2024.1376.1387

1384

Fig. 15: Average packet delay vs. network load for flit length =

10 in distance vector algorithm

Fig. 16: Average packet delay vs. network load for flit length =

32 in distance vector algorithm

Results: Simulation Environment 2

Analysis of the Effect of Network Size

This section depicts the effect of network size on the

average delay and throughput.

The simulation environment took the MS topology and

distance vector routing protocol for evaluating the effect of

network load and size on throughput. While keeping the

packet size the same and increasing the network size from

16-256 nodes, the throughput diminished. Figures (17-18),

show the effect of network size on throughput with a flit

length of 32 bits and a flit length of 10 fits, respectively.

Due to the attainment of the saturation point, the

throughput decreased after a particular point.

Figure 19 depicts that the average packet delay
increased with the increase in network size because of two

reasons. The main reason is the increase in the number of

contending packets with expanding network size. The

supplementary reason is the increase in the average hop

count of the packet.

Fig. 17: Throughput with an increase in network size (packet

size = 32 flits)

Fig. 18: Throughput with an increase in network size (packet

size = 10 flits)

Fig. 19: Average packet delay with an increase in network size

(packet size = 10 flits)

Shaily Jain et al. / Journal of Computer Science 2024, 20 (11): 1376.1387

DOI: 10.3844/jcssp.2024.1376.1387

1385

Fig. 20: Average packet delay with an increase in network size

(packet size = 32 flits)

Figure 20 depicts the average packet delay initially

increased with the increase in network load but became

almost constant after a limit. With the expansion in

network size, it grows exponentially. It shows that

network performance is affected by varying network and

packet sizes.

The results discussed for simulation environments 1

and 2, clearly indicate that there is an effect of routing

protocol, flit length, network topology, and flit buffer on

the performance of the network. This study evaluates

network performance in terms of average packet delay

and throughout, which are major factors of the same.

Wireless networks suffer from interference, noise, and

bandwidth variation (Khan, 2017). Dynamic routing

algorithm performance is better than static routing

algorithms due to regular updation in routing tables

based on changing topologies (Misra and Sharma,

2013). Throughput decreases and packet delay

increases with the increase in traffic load. Due to the

increase in traffic in the network, packet loss increases,

and hence throughput decreases, resulting in network

congestion, finally leading to increased packet delay.

MS topology shows the best results with the highest

throughput and EBFT with the lowest throughput

among the four network topologies as in MS alternative

roots in case of high traffic and congestion could be

easily found. EBFT shows the best results with the

lowest latency and BFT with the highest latency. Due

to the highly dynamic nature of the network (Taneja et al.,

2022), static protocols give poor throughput and utilize

more time, and the delay rate is high (Kaur, 2017;

Gupta et al., 2023). Research papers cited in Table 1

have used only MS topology and not used these

algorithms to evaluate the performance of a NoC.

Hence, this study filled the research gap till now while

using different simulation environments.

Conclusion

This study performs evaluations in two different setups:

One with 4 topologies and 2 algorithms and another with

only MS with DV algorithm. Network traffic was varying

in each setup. The results proved that MS topology

outperforms. When comparing the two routing algorithms,

throughput decreases with an increase in network traffic

from 100-50% in Dijkstra while it drops to only 85% when

using the DV algorithm. Similarly, the average packet

delay reached a maximum of 55 packets/cycle in the

Dijkstra algorithm in comparison to the distance vector

(40 packets/cycle) with an increase in network traffic.

Hence, MS topology with Distance Vector algorithm

comes out best. So, in the second experimental setup, MS

with DV has been chosen. Then the effect of an increase in

network size has been evaluated with these scenarios. The

throughput of the maximum network size 1616 dropped

to 10% and the average packet delay reached 400 cycles.

This proves that with the increase in load and network size

performance of the system starts diminishing.

Future Work

The results also prove that the average packet delay

and throughput have a remarkable impact due to the

varying packet length and network size. This current work

finds out the two bases of selecting the routing algorithm.

Furthermore, metrics like network power (Singh et al.,

2013), and area covered (Nagalaxmi et al., 2023), can be

evaluated with modifications in the network to achieve

better results.

In Saliu et al. (2021) the main finding of the paper is

with different algorithms like XY, Dy AD, and Age aware

with varying packet injection rates, and in Bhaskar (2022)

delay with full A and West F. So, in the future MS

topology, can be implemented with mentioned algorithms

with varying PIR, varying load and network size. Different

simulators like; Booksim and Noxim (Haghi et al., 2016)

can help in different setups and evaluations.

Acknowledgment

Thank you to the publisher for their support in the

publication of this research article. We are grateful for the

resources and platform provided by the publisher, which

have enabled us to share our findings with a wider

audience. We appreciate the efforts of the editorial team

in reviewing and editing our work, and we are thankful for

the opportunity to contribute to the field of research

through this publication.

Shaily Jain et al. / Journal of Computer Science 2024, 20 (11): 1376.1387

DOI: 10.3844/jcssp.2024.1376.1387

1386

Funding Information

The authors should acknowledge the funders of this

manuscript and provide all necessary funding information.

Author’s Contributions

All authors equally contributed to this study.

Ethics

This manuscript is an original work. The

corresponding author certifies that all co-authors have

reviewed and approved the final version of the

manuscript. No ethical concerns are associated with

this submission.

References

Ali, M., Welzl, M., & Hellebrand, S. (2005). A dynamic

routing mechanism for network on chip. 2005

NORCHIP, 70–73.

 https://doi.org/10.1109/norchp.2005.1596991

Benini, L., & Bertozzi, D. (2005). Network-on-chip

architectures and design methods. IEE Proceedings-

Computers and Digital Techniques, 152(2), 261–272.

https://doi.org/10.1049/ip-cdt:20045100

Benini, L., & De Micheli, G. (2002). Networks on chips:

a new SoC paradigm. Computer, 35(1), 70–78.

https://doi.org/10.1109/2.976921

Bhaskar, A. V. (2022). A Detailed Power Analysis of

Network-on-Chip. 2022 IEEE Delhi Section

Conference (DELCON), 1–7.

 https://doi.org/10.1109/delcon54057.2022.9752850

Borkar, S. (2007). Thousand core chips: a technology

perspective. Proceedings of the 44th Annual Design

Automation Conference, 746–749.

https://doi.org/10.1145/1278480.1278667

Cho, G., & Ryeu, J. (2006). An Efficient Method to Find

a Shortest Path for a Car-Like Robot. In D.-S. Huang,

L. Kang, Irwin, & G. William (Eds.), Intelligent

Control and Automation: International Conference

on Intelligent Computing, ICIC 2006 Kunming,

China, August 16-19, 2006 (pp. 1000–1011).

Springer Berlin Heidelberg.

https://doi.org/10.1007/11816492_131

Cho, T., & Choi, S. (2012). A Multi-path Hybrid

Routing Algorithm in Network Routing.

International Journal of Hybrid Information

Technology, 5(3), 41–46.

Dally, W. J., & Towles, B. (2001). Route packets, not

wires: on-chip interconnection networks.

Proceedings of the 38th Design Automation

Conference (IEEE Cat. No.01CH37232), 684–689.

https://doi.org/10.1109/dac.2001.935594

Dijkstra, E. W. (1959). A note on two problems in
connexion with graphs. Numerische Mathematik,

1(1), 269–271.
https://doi.org/10.1007/BF01386390

Ebrahimi, M., Daneshtalab, M., Neishaburi, M. H.,
Mohammadi, S., Afzali-Kusha, A., Plosila, J., &

Tenhunen, H. (2009). An efficent dynamic multicast
routing protocol for distributing traffic in NOCs.

2009 Design, Automation & Test in Europe
Conference & Exhibition, 1064–1069.

https://doi.org/10.1109/date.2009.5090822
Ezhumalai, P., Aravind, S., & Sridharan, D. (2009). A

survey of architectural design and analysis of
network on chip systems. Proceedings of the

International Conference on Signals, Systems and
Communication, 21–23.

Ezhumalai, P., Chilambuchelvan, A., & Arun, C. (2011).
Novel NoC Topology Construction for High-

Performance Communications. Journal of Computer
Networks and Communications, 2011(1), 405697.

https://doi.org/10.1155/2011/405697
Gupta, D., Rani, S., Tiwari, B., & Gadekallu, T. R. (2023).

An edge communication based probabilistic caching
for transient content distribution in vehicular

networks. Scientific Reports, 13(1), 3614.
https://doi.org/10.1038/s41598-023-30315-6

Haghi, M., Thurow, K., Stoll, N., & Moradi, S. (2016). A
New Methodology in Study of Effective Parameters

in Network-on-Chip Interconnection’s
(Wire/Wireless) Performance. International Journal

of Advanced Computer Science and Applications,
7(10), 75–85.

 https://doi.org/10.14569/ijacsa.2016.071010
Henkel, J., Wolf, W., & Chakradhar, S. (2004). On-chip

networks: a scalable, communication-centric
embedded system design paradigm. Proceedings 17th

International Conference on VLSI Design, 841–851.
https://doi.org/10.1109/icvd.2004.1261037

Hossain, H., Ahmed, M., Al-Nayeem, A., Islam, T. Z., &
Akbar, Md. M. (2007). Gpnocsim-A General Purpose

Simulator for Network-On-Chip. 2007 International
Conference on Information and Communication

Technology, 254–257.
https://doi.org/10.1109/icict.2007.375388

Hu, J., & Marculescu, R. (2004). Application-specific buffer
space allocation for networks-on-chip router design.

IEEE/ACM International Conference on Computer
Aided Design, 2004. ICCAD-2004, 354–361.

https://doi.org/10.1109/iccad.2004.1382601

Jamali, M. A. J., & Khademzadeh, A. (2009). MinRoot

and CMesh: Interconnection Architectures for

Network-on-Chip Systems. World Academy of

Science, Engineering and Technology, International

Journal of Electrical, Computer, Energetic,

Electronic and Communication Engineering, 3(6),

1303–1308.

https://doi.org/10.1109/norchp.2005.1596991
https://doi.org/10.1049/ip-cdt:20045100
https://doi.org/10.1109/2.976921
https://doi.org/10.1109/delcon54057.2022.9752850
https://doi.org/10.1145/1278480.1278667
https://doi.org/10.1007/11816492_131
https://doi.org/10.1109/dac.2001.935594
https://doi.org/10.1007/BF01386390
https://doi.org/10.1109/date.2009.5090822
https://doi.org/10.1155/2011/405697
https://doi.org/10.1038/s41598-023-30315-6
https://doi.org/10.1109/icvd.2004.1261037
https://doi.org/10.1109/icict.2007.375388
https://doi.org/10.1109/iccad.2004.1382601

Shaily Jain et al. / Journal of Computer Science 2024, 20 (11): 1376.1387

DOI: 10.3844/jcssp.2024.1376.1387

1387

Jantsch, A., & Tenhunen, H. (2003). Networks on Chip

(1st Ed.). Springer. https://doi.org/10.1007/b105353

Kaur, A. (2017). Vehicular Ad-hoc Network: A Survey.

International Journal of Computer Science Research

(IJCSR), 5(2), 35–37.

Khan, M. A. (2017). Video Transmission over Wireless

Networks-A Survey. International Journal of

Electronics Engineering Research, 9(2), 207–216.

Kistler, M., Perrone, M., & Petrini, F. (2006). Cell

Multiprocessor Communication Network: Built for

Speed. IEEE Micro, 26(3), 10–23.

 https://doi.org/10.1109/mm.2006.49

Kumar, S., Jantsch, A., Soininen, J.-P., Forsell, M.,

Millberg, M., Oberg, J., Tiensyrja, K., & Hemani, A.

(2002). A network on chip architecture and design

methodology. Proceedings IEEE Computer Society

Annual Symposium on VLSI. New Paradigms for

VLSI Systems Design. ISVLSI 2002, 117–124.

https://doi.org/10.1109/isvlsi.2002.1016885

Marrakchi, Z., Mrabet, H., Farooq, U., & Mehrez, H.

(2009). FPGA Interconnect Topologies Exploration.

International Journal of Reconfigurable Computing,

2009(1), 259837.

https://doi.org/10.1155/2009/259837

Misra, R., & Sharma, P. (2013). Challenges in Mobile Ad

Hoc Network for Secure Data Transmission.

International Journal of Electrical and Electronics

Research, 1(1), 8–12.

https://doi.org/10.37391/ijeer.010103

Mohapatra, P. (1998). Wormhole routing techniques for

directly connected multicomputer systems. ACM

Computing Surveys, 30(3), 374–410.

https://doi.org/10.1145/292469.292472

Nagalaxmi, T., Sreenivasa Rao, Dr. E., & Chandrasekhar,

Dr. P. (2023). Design and Performance Analysis of

Low Latency Routing Algorithm based NoC for

MPSoC. International Journal of Communication

Networks and Information Security (IJCNIS), 14(1s),

37–53. https://doi.org/10.17762/ijcnis.v14i1s.5590

Newton, P. C., Arockiam, L., & Kim, T.-H. (2009). An

Efficient Hybrid Path Selection Algorithm for an

Integrated Network Environment. International

Journal of Database Theory and Application, 2(1),

31–38.

NVIDIA. (2009). First 100-core processor with the new

tile-gx family. Events/Press Release.

https://www.nvidia.com/en-us/networking/

Pande, P. P., Grecu, C., Jones, M., Ivanov, A., & Saleh,

R. (2005). Performance Evaluation and Design

Trade-Offs for Network-on-Chip Interconnect
Architectures. IEEE Transactions on Computers,

54(8), 1025–1040.

 https://doi.org/10.1109/tc.2005.134

Saliu, M. S., Omuya Momoh, M., Uchenna Chinedu, P.,

Nwankwo, W., & Daniel, A. (2021). Comparative

Performance Analysis of Selected Routing

Algorithms by Load Variation of 2-Dimensional

Mesh Topology Based Network-On-Chip.

ELEKTRIKA- Journal of Electrical Engineering,

20(3), 1–6.

https://doi.org/10.11113/elektrika.v20n3.249

Singh, J. K., Swain, A. K., Kamal Reddy, T. N., &
Mahapatra, K. K. (2013). Performance evalulation of

different routing algorithms in Network on Chip.

2013 IEEE Asia Pacific Conference on Postgraduate

Research in Microelectronics and Electronics

(PrimeAsia), 180–185.

https://doi.org/10.1109/primeasia.2013.6731201

Taneja, A., Saluja, N., Taneja, N., Alqahtani, A.,

Elmagzoub, M. A., Shaikh, A., & Koundal, D.

(2022). Power Optimization Model for Energy

Sustainability in 6G Wireless Networks.

Sustainability, 14(12), 7310.
 https://doi.org/10.3390/su14127310

Vangal, S., Howard, J., Ruhl, G., Dighe, S., Wilson, H.,

Tschanz, J., Finan, D., Iyer, P., Singh, A., Jacob, T.,

Jain, S., Venkataraman, S., Hoskote, Y., & Borkar,

N. (2007). An 80-Tile 1.28TFLOPS Network-on-

Chip in 65nm CMOS. 2007 IEEE International

Solid-State Circuits Conference. Digest of Technical

Papers, 98–589.

https://doi.org/10.1109/isscc.2007.373606

Zhang, L., Chen, H., Yao, B., Hamilton, K., & Cheng, C.-

K. (2007). Repeated On-Chip Interconnect Analysis

and Evaluation of Delay, Power, and Bandwidth
Metrics under Different Design Goals. 8th

International Symposium on Quality Electronic

Design (ISQED’07), 251–256.

 https://doi.org/10.1109/isqed.2007.139

Appendix

Mesh MS

Torus TS

Butterfly Fat Tree BT

Extended Butterfly Fat Tree EBT

https://doi.org/10.1007/b105353
https://doi.org/10.1109/mm.2006.49
https://doi.org/10.1109/isvlsi.2002.1016885
https://doi.org/10.1155/2009/259837
https://doi.org/10.37391/ijeer.010103
https://doi.org/10.1145/292469.292472
https://doi.org/10.17762/ijcnis.v14i1s.5590
https://www.nvidia.com/en-us/networking/
https://doi.org/10.1109/tc.2005.134
https://doi.org/10.11113/elektrika.v20n3.249
https://doi.org/10.1109/primeasia.2013.6731201
https://doi.org/10.3390/su14127310
https://doi.org/10.1109/isscc.2007.373606
https://doi.org/10.1109/isqed.2007.139

