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Abstract: Communication infrastructure for multi-core Systems-on-Chip 
(SoCs) is provided by Network-on-Chip (NoC). Point-to-Point (P2P) and 
bus-based communication systems are NoCs and are two communication 
channels of NoC that can probably overcome the scalability and performance 
restrictions of NoC. Latency and throughput are two of the essential 
characteristic metrics measured for a routing algorithm that affect the 
performance of a given NoC. This study evaluated and compared static and 
dynamic routing algorithms Dijkstra and distance vector on the scale of 
increasing flit length and network traffic. In a network, considering the effects 
of topology, traffic, buffer, and packet size, the dynamic algorithm performs 
better than a static algorithm on the network's performance. Moreover, the 
effect of increased network traffic on throughput and average packet delay with 

the increase in network size in a fixed MS topology and distance vector routing 
protocol has been evaluated. The results show that while using the Dijkstra 
algorithm, the average packet delay reached 50-60 packets/cycle in comparison 
to the Distance Vector where it reached a maximum of 40 packets/cycle in 4 
different topologies. Throughput is achieved up to 100% in both algorithms 
using various topologies. In only MS topology, throughput reached 100% but 
packet delay increased to 400 pkts/cycle with an increase in network size. 
 

Keywords: Multiprocessor System on a Chip, Networks on a Chip, MS 

Topology, TS Topology, BFT Topology, Extended BFT Topology, Flit, 

Routing Algorithm, Dijkstra, Distance Vector 

 

 

Introduction 

Continuous technological advancements enable the 

reduction of chip size. Having microscopic transistors 

squeezed onto silicon chips, designing and integrating a 

complete system consisting of a massive number of IP 

blocks on a single chip is becoming technically feasible. 

Single processors may be adequate for some general and 

less energy-requiring (slow processing) applications that 

are typical of early microcontrollers. However, many 

applications need multiprocessors to achieve fast and high-

performance goals. 
Multiprocessor Systems-on-Chip (MPSoCs) consists 

of numerous Processing Elements (PEs) on a Systems-on-

Chip (SoC). An on-chip interconnect like AMBA or NoC 

is used to connect PEs on a chip. In the future, the 
Network-on-Chip interconnection method will be used 

because of the non-scalable schemes like shared buses and 

P2P dedicated links (Henkel et al., 2004). A 

multiprocessor is a set of processors arranged parallelly 

sharing a single address. A microprocessor is now the 

most preferred processor and its cost is low. 

Multiprocessors have the highest absolute performance 

than any uniprocessor. The application of MPSoC is 

mainly used in complex embedded applications. Its 

systems can fulfill present performance requirements that 

cannot be achieved by systems based on a single general-
purpose processor. 

Similar PEs are combined to build a homogeneous 

MPSoC. However, a homogeneous MPSoC supports only 
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a handful of applications, while a heterogeneous MPSoC 

can be used for various applications. A heterogeneous 

MPSoC is composed of particular types of PEs such as 
Intel (Vangal et al., 2007) and the proposed homogeneous 

MPSoCs with 80 PEs and Tilera (NVIDIA, 2009) with 

100 processing elements connected through a NoC. 

Recently, Toshiba, IBM, and Sony proposed a 

heterogeneous MPSoC containing one manager processor 

and eight floating-point units (Kistler et al., 2006). By the 

end of 2021, MPSoC architectures would contain lakhs of 

PEs assembled on a single chip (Borkar, 2007). Runtime 

management of tasks is required for dynamic workload 

applications like multimedia and networking, as these 

tasks enter into the system at their runtime. At the same 

time, dynamic mapping techniques are required for 
mapping tasks at runtime. 

The mapping problem to a regular MS-based NoC 

architecture has been addressed by several existing solutions 

(Jamali and Khademzadeh, 2009; Ezhumalai et al., 2009). 

There are two popular dynamic routing algorithms 

distance vector routing and link-state routing. A basic 

form of link-state routing (NoC-LS) showed the best 

results in a NoC. The reduction in data rate leads to a zero 

packet drop ratio (Ali et al., 2005). Cho and Choi (2012) 

presented a Multi-Path, Hybrid Shortest Path Tree 

(MPHSPT) algorithm, which uses multipath information 

to reduce the total execution time, which in turn results in 

a reduction in the packet loss rate. The proposed MP-

HSPT algorithm computes the shortest path faster than the 

HPST and Dijkstra, Dynamic Dijkstra. Ebrahimi and 

others (Ebrahimi et al., 2009) proposed a hybrid path-

based multicast algorithm used in MS networks for NoCs. 

According to their results, the DP, MP, and CP underwent 

higher average communication delay and high power 

dissipation rate than the proposed algorithm when using 

multicasting and high message injection rates. An analysis 

of the architectural design of the NOC system computation 

of regular topologies was proposed (Marrakchi et al., 

2009). Zhang et al. (2007), proposed an on-chip 

interconnected analysis and evaluation of three different 

metrics power, and bandwidth delay, and presented a 

system-level floor planning-based Noc synthesis algorithm. 

Their solution's limitation is that it is based on a slicing 

floor plan in which core bends and links around cores 

constrain the router locations. Glass and Ni proposed 

deadlock and livelock-free wormhole routing algorithms 

for MS-connected networks (Mohapatra, 1998). 

Architecture 

MPSoC: Fig. (1) shows an MPSoC architecture and the 

interconnection network connecting various processors in 

it. Each processor is termed a "node processor" or PE and 

comprises one CPU and one or two cache hierarchy levels. 

When the L1 cache is missed, the CPU goes to access the 

L2 cache and if there is a miss again in the L2 cache, it will 

then lead to access to the main memory (Jantsch and 

Tenhunen, 2003). Updation in both L1 and L2 cache is 

done with write-through techniques. The MPSoC uses 
both shared memories as well as memories connected 

with each node. Memory directory can globally address 

and access these memories directly. When there is a 

cache miss in the L2 cache, information about the miss 

is transmitted by a request packet generated by the L2 

cache in the network requesting permission to access the 

main memory. The main memory then fulfills the 

request and returns a reply packet with the required data 

to the node (Pande et al., 2005). 

Network on Chip (NoC): NoC is a system designed for 
communication between IP cores installed on an integrated 
circuit referred to as a chip in a system on a chip. NoCs are 
broadly categorized into synchronous and asynchronous 
clock domains. There is a substantial advantage of NoC 
technology over conventional bus and crossbar 
interconnections when networking methods are applied to 
on-chip communication (Hu and Marculescu, 2004). 

MPSoCs have shared memories to exchange data 

between processors and the interconnected network is used 
to transport data from one processor to the other. Data flows 
are first divided into packets and then transmitted to their 
destinations. Network traffic on a chip comes from the 
following sources (Benini and De Micheli, 2002): 
 
 Memory transactions: The network traffic increases 

due to a cache miss, necessitating the data to be 
fetched from the shared memories 

 Cache coherence operations: In MPSoC, data is 
replicated in the cache of every node. If there is any 
updation in any cache or main memory, its cache 
copies also need to be updated with the new values 

or reset their valid bits. This synchronization 
operation creates overhead in traffic on the network 

 Packet overheads: Data are transmitted in the form of 
packets thus creating an additional overhead of 
traffic, which in turn depends upon the packet size 

 Contentions between packets: Routes of the packets 
need to be changed due to contention between 
packets, leading to regular network traffic diversion 

 

  
Fig. 1: MPSoC architecture 
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Multiprocessors on a chip can communicate with each 

other in two ways (Benini and Bertozzi, 2005). 

Way 1; Signal address: In this scheme, all processors 
share a single memory address space in the system 

without any restriction on accessibility. Communication 

between different processors is done through these shared 

variables in memory. It is divided into: 

 

 Uniform memory access multiprocessors (or 

symmetric multiprocessors) take the same time to 

access main memory. It means the access time is 

independent of the location of the word and processor 

 Non-uniform memory access multiprocessors allow 

some memory accesses faster than others as the 

access depends on the processor and the word's 

location. Non-uniform memory access machines 

show high performance, as they are scalable 

 

Way 2; message passing: In this scheme, 

communication between multiple processors occurs by 
explicitly sending and receiving messages. There are 

two basic constructed organizations possible in a 
network (Dally and Towles, 2001). Figure (2) shows 

processors connected by a single bus. The number of 
processors can vary from 2-32. Figure (3) shows 

processors connected by a network without a direct link 
between memory and processor. 
 

 
 
Fig. 2: Single bus architecture 
 

 
 
Fig. 3: Network architecture 

Topologies in NOC 

There are various topologies in networks-on-chip. 

Four different topologies taken into consideration are 

namely MS, TS, BT, and EBT (Kumar et al., 2002; 

Ezhumalai et al., 2011). In the MS network, shown in Fig. (4), 

switches are connected to the resources and the number of 

switches directly depends on the number of resources in 

the network. Each switch is linked to its four neighboring 

switches except the corner switches present on the layout's 

edge. This architecture has several benefits viz. smaller 

switch size, higher capacity physical channels, ease of 

scalability, and better routing. 

Torus: The following topology, shown in Fig. (5) is the 
TS layout. The TS and MS topology are almost similar, 

except that TS has a double bandwidth than the MS, as the 

wires are also wrapped around from the top node to the 

bottom node and from the right-most node to the left-most 

node. This architectural layout given for a particular 

communication packet is used for a distant transmission. 

Due to the presence of the extra wiring, this architecture has 

low contention and high bandwidth. On the contrary, due 

to the deployment of virtual channel switching techniques, 

it has a buffer of relatively large size. 

 

 
 

Fig. 4: A 44 MS topology 

 

 
 

Fig. 5: A 44 TS topology 
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Butterfly Fat Tree: A BFT topology looks like a tree 

structure, as shown in Fig. (6). Each node has two 

coordinates (position, level) where the position is the 
node's location in the order from right to left and the level 

is the same as the level defined in a tree. Leaf nodes are 

numbered, starting with zero in the vertical order 

numbering. Each switch in the tree is associated with two 

parent ports and 34 child ports. In general, if n is the 

number of IP blocks in the architecture, then the levels in 

the tree would be log4 n. Moreover, there will be N/2i+1 

switches at the ith level of the tree. 

Extended butterfly fat tree: The EBT architecture 

(EBFT) shown in Fig. (7) is derived from the BT topology 

shown in Fig. (6). The switch size of the architecture is 

constant. In this network, the leaves have IPs, and switches 
are situated at the internal nodes. Each switch is connected 

to further two-parent ports and four child ports. If x is the 

number of IPs, then the number of levels will be log4. 

Research Gaps and Problem Formulation 

Table 1 presents the research gaps in previous work 

done by researchers. Network throughput is the average 

rate of messages delivered successfully using a 

communication channel in a network. This data may be 

transmitted over a physical link or a logical link or pass 
through a particular network node. The unit of 

measurement used to measure throughput is bits per 

second (bit/s or bps). Average packet delay is a concept in 

packet-switching technology. The Delay in the packet 

delivery is due to a store-and-forward delay in each router, 

which further causes the queuing Delay of that packet 

across the network. Throughput and average packet delay 

are two crucial factors, which influence network 
performance. The choice of a good routing algorithm is 

another influential factor. 

 

 
 

Fig. 6: A 44 BFT topology 

 

 
 

Fig. 7: A 44 EBFT topology 

 

Table 1: Research gaps in previous work 

Reference  Main findings Methodology used 

Saliu et al. The XY routing algorithm performed better when the  Varying load at different Packet Injection 

(2021) packet injection rate (PIR) was low. The DyAD routing  Rates (PIR) under random traffic patterns using a 

 and Age-aware algorithms performed better when the  44 mesh topology was in the Noxim simulator. They used 

 PIR was a high FIFO input buffer channel with a depth of 5 flits, 

  a flit size of 32 bits and a packet size of 3 flits  

Singh et al. The XY and OE routing algorithms were compared in  The study using a 33 2D mesh topology and 

(2013) terms of average latency, average throughput, and total routing algorithms evaluated were XY and OE.   

 network power under varying traffic loads on a 33 2D  Simulations were performed using the NIRGAM 

 mesh topology. The performance of the two routing  NoC simulator version 2.1. Simulations where 

 algorithms were compared conducted under constant bit rate (CBR) traffic  

  conditions. The performance metrics evaluated  

  were average latency, average throughput, and 

  total network power 

Bhaskar (2022) The analysis of the effects of network parameters on  Systematically varied network size, routing, and traffic 

 power consumption of Network-on-Chip will help  patterns, flit size, and buffer size using Mesh 

 in designing new routing and allocation algorithms  topology measured the power consumption, 

 for efficient NoC operation. The study discusses the  throughput, and delay 

 trade-offs between power, throughput, and delay  

 metrics for an efficient NoC. The key parameters  

 analyzed include network size, routing, traffic patterns, 

 flit size, and buffer size 

Haghi et al. The study evaluated the effects of the routing algorithm, The methodology used in the study involves:   

(2016) buffer size, virtual channel, and subnet on the time latency  Evaluating the effects of four parameters (routing 

 and throughput of on-chip interconnect architectures. Algorithm. Delay under fully A, XY, and West F;  
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Table 1: Count. 

 The goal was to determine the critical points and  buffer size, virtual channel, and subnet) on time 
 trade-offs in how these parameters affect  latency and throughput in both wire and wireless 
 overall system performance  Network-on-Chip (NoC) approaches. Dividing the  

  study into two parts: 1) Evaluating the effects of  
  routing algorithm and buffer size 2) Evaluating the 
  effects of virtual channels and subnets when 
  switching from wire to wireless NoC using a hybrid 
  topologies. They have used the Booksim and 
  Noxim simulators which are based on System C, 
  to perform the evaluations 
Nagalaxmi et al. The proposed deadlock-free shortest routing  The key aspects of the methodology are: It 

(2023) algorithm has high throughput, low area and  abandons the traditional dimensional order routing 
 power utilization, and lower latency compared to (e.g. XY routing) where packets always go in the 
 existing algorithms like XY. The proposed  X direction first, which can cause blocking. 
 the algorithm also has a simpler implementation  Instead, it uses a distributed deterministic routing 
 with lower hardware overhead compared to mechanism that treats odd and even columns  
 other algorithms differently, to reduce network congestion and delay 

 

Network load, flit length, and network size also 

contribute to network performance. Hence, the proposed 

methodology determines the effect of all these parameters 

on throughput and packet delay on networks on a chip. 

Figure (8) describes the methodology used. 

Routing algorithm: Routing is the process of path 

selection to send data packets in a given network. 

Routing is performed for various types of networks like 

the telephone network, an example of circuit switching. 

A logical address is assigned to the packet forwarded 
from its source node to its destination node with the 

required address traveling through several intermediate 

nodes like routers in packet switching networks. The 

routing process usually directs packets to various 

network destinations based on the route present in 

routing tables. Thus, creating and maintaining routing 

tables in the router's memory is crucial for efficient 

routing. Most routing algorithms use a single dedicated 

network path at a time, i.e., all packets follow the same 

path. In TCP/IP, routing can be divided into two types: 

Static routing and dynamic routing. In static routing, the 

routing table is prepared and maintained manually using 
the route command. Since the passage of time, the 

network expands and the number of gateways increases, 

it would become challenging to maintain routing tables 

manually. Hence, this limitation restricts the static 

routing for a single network communicating only to one 

or two other networks. While in dynamic routing, 

daemons automatically update the routing table. Routing 

daemons continuously receive information through 

broadcasting from other routing daemons present in the 

network and continuously updating the routing table. 

Dijkstra’s static routing algorithm: Static routing is a 

means to path selection configuration of routers in 

computer networks. Routers do not communicate about 

the existing topology of the network in this routing 

technique. Routes are added to the routing table manually 

and systems in this network route data through a data 

network depicted by static or fixed paths. The system 

administrator updates these static routes into the router. 

One disadvantage of this type of routing is that when there 

is an amendment in the network or any network failure 

occurs between two statically defined nodes, then the 

packets will not be rerouted. Dijkstra algorithm is an 

example of static routing (Dijkstra, 1959). This algorithm 

finds the shortest path with the lowest cost from one vertex 

to every other vertex in the graph for a defined source node. 

 

 
 

Fig. 8: Flowchart of proposed methodology 
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The shortest paths from a single vertex to a single 

destination vertex can also be found by stopping the 

algorithm when the shortest path to the destination 

vertex has been determined. For example, cities are the 

vertices of the graph, and distance is represented through 

the labeled edges between pairs of cities connected by a 

direct road. Dijkstra's algorithm (Cho and Ryeu, 2006; 

Newton et al., 2009) can be used to find the shortest route 

from one city to all other cities. Dijkstra's original 

algorithm does not use a min-priority queue and runs in 

O (|V|2) time where |V| is the number of vertices. 

As Algorithm 1 has only one for loop and if statement 

nested in while loop, its complexity is calculated as O 

(m + n log n), where n is the length of the array d i.e., the 

number of nodes, and m is the size of vector S. 

Distance vector dynamic routing protocol: Dynamic 

routing protocols carry out path determination like static 

routing and also update the routing table dynamically. It 

also determines the next-best path if the current path to 

a destination becomes unavailable. The capability of 

compensating for any dynamic updation in topology is 

the most crucial advantage of dynamic routing over 

static routing. Distance vector protocol is a dynamic 

routing protocol. Distance-vector routing protocols use 

both the Bellman-Ford algorithm and the Ford-

Fulkerson algorithm for calculating the path. The basic 

requirement of any dynamic protocol is the timely 

update of topology changes, so in the distance-vector 

routing protocol, a router must timely notify its 

neighbors about changes. Link-state protocols require 

communicating changes in topology to every router in a 

network, increasing overhead and complexity. In 

contrast, distance-vector routing protocols have reduced 

computational complexity and message overhead. 

Materials and Methods 

Windows-based modeling and simulation framework 

for NoC, Gpnocsim simulator (Hossain et al., 2007) is 

used for experimental evaluation of the problem. 

Gpnocsim is developed on the Java framework using 

object-oriented modular design concepts, especially for 

component-based network environments. It is open-

source software and easy to use. Network configurations 

like topology, size, traffic flow, packet size, Routing 

Algorithm, etc. can easily be varied for conducting 

various simulations to find out their impact on various 

parameters like throughput and Delay. Tables 2-3 

describe the simulation environment for each analysis. 

Based on research gaps discussed in Table 1, the 

experimental setup is divided into two parts: (1) 

Varying 4 different topologies (BT, MS, TS, and 

EBFT) which are not used in any of the cited papers, 

varying flit length, varying flits per buffer and two 

different routing algorithms (Dijkstra and distance 

vector) which are also not used in any of the cited 

papers. (2) Only MS topology as many cited papers 

have used with IP nodes, arrival time, flit length, flits 

per buffer, and only DV algorithm due to its dynamic 

nature and better performance in setup 1. 

 

Algorithm 1: Dijkstra Algorithm in MPSoC 

Step 1: Create vector S which contains all nodes. 

Step 2: A new vector I is created, which implements a 

dynamic array. 

Step 3: Create temporary nodes. Distance from x using 

nodes in I is found. The previous node in the shortest path 

is set. 

Step 4: Initialises set I and arrays d and s. 

Step 5: Add a new element in vector S. 

Step 6: Integer(i) calls the constructor of Integer class Size 

() returns the number of elements currently in vector S.  

Step 7: Returns the element at the location specified by 

index i of vector S and the value of the element that was 

converted in Integer class object will now be converted to 

int by using the function intValue().  

Step 8: Contains () returns true if the vector contains the 

element; otherwise, it returns false. 

i. Re-computes d for non-I nodes and adjusts if necessary 

for all nodes z, not in I. 

Step 9: Finally, return the shortest path. 

 
Table 2: Simulation Environment 1 configuration 

Parameter Value 

Current network  0 (BT), 1 (MS), 2 (TS) and 3(EBT) 

No. of IP nodes 64 (88) 

Avg. inter-arrival time 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

Avg. message length 200 bytes 

Flit length (bits) 10, 32 

Current VC count  4 

No. of flits per buffer 10, 32 

Traffic type 0 (Uniform traffic) 

Routing algorithms Dijkstra, Distance vec. 

 

Table 3: Simulation environment 2 configuration 

Parameter Value  

Current network  1(MS) 

No. of IP nodes 44, 88, 1212, 1616 

Avg. inter-arrival time 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

Avg. message length 200 bytes 

Flit length (bits) 10, 32 

Current VC count  4 

No. of flits per buffer 10, 32 

Traffic type 0 (Uniform traffic) 

Routing algorithms Distance vector 
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Algorithm 2: Distance Vector Dynamic Routing 

Algorithm in MPSoC 

Step 1: Create temporary nodes. d is taken as the distant 

array. s is taken as the shortest path array.  

Step 2: Creates a temporary distant array at each iteration 

named t.  

Step 3: Vector S containing all nodes is initialized. Array 

d is initialized. Array s is initialized. This establishes the 

shortest path l of length l for all nodes where z is not equal 

to x.  

Step 4: Find the shortest path of length 2, 3, etc.  

I. Copies current array d into array t. 

II. d is the name of an array 0 is copied. 

III. 0 is the index from which the copying will start from 

array d. 

IV. t is the name of the array that will receive the copy of 

array d. 

V. 0 is the index at which the copy will begin within 

arrays t and d. 

VI. Length specifies the number of elements to be copied. 

Here the whole array d is copied to array t.  

Step 5: Create an object of the format class by using the 

new Format. This creation instantiates the Format class's 

constructor and calls the form method by using this object, 

followed by a dot operator. Find the shortest path with one 

or more links. Finally, the path is printed. Return to the 

shortest path. 

Step 6: The distance vector algorithm's complexity is 

calculated as O (mn), where m is the number of nodes and 

n is the number of edges in the network. 

 

Experimental Setup and Testbed 

Reconfigurable topologies allow comparison between 

different architectures: MS, TS, and BT, which are 

already implemented in the simulator. To implement 

routing algorithms, modification is done in the gpnocsim 

by creating new classes, Dijkstra and Distance_vector that 

implement the router interface's getDestination method. 

Two routing protocols: One static Dijkstra's routing 

algorithm and another, a dynamic, i.e. distance vector 

routing protocol are implemented. The experimental setup 

used a network of 64 nodes having four different 

topologies MS, TS, BFT, and EBFT. The message length 

was taken as 200 bytes with the current virtual channel 

count as 4. A uniform traffic in the network is applied 

rather than random traffic to decrease complexity. The 

effect of increased network load on different topologies 

with two different routing algorithms has been analyzed. 

To achieve this, the message inter-arrival time has been 

gradually increased from 1-10, which means on average a 

node produced 1 packet /cycle to 10 packets/cycle. 

Results and Discussion 

After the experimental setup, the evaluations have 

been performed with an average iteration of 10 

evaluations per setup. The further section discusses the 

results obtained after setting simulation environments 1 

and 2. Discussion about the results and research gaps are 

mentioned at the end of this section. 

Simulation Environment 1 

Analysis of the Effect of Network Load and Routing 

For simulation, the gpnocsim simulator has been used 

with routing algorithms implemented in the Java 

programming language. It works on a Windows-based 

machine. When the network load starts with 1 packet/cycle, 

throughput is 100% taking Dijkstra's routing protocol and 

flit length of 10 bits, as shown in Fig. (9). However, as the 

network load increases, throughput decreases and reaches 

up to 40%. MS topology shows the best performance with 

a 100% throughput of 5 packets/cycle, but later on, it 

decreases drastically due to increased network traffic. 

Extended BFT shows the worst performance with the 

lowest throughput values. 

Moreover, TS delivers better throughput as compared 

to BFT. It shows that the impact of network traffic is 

significant in network performance. It will decrease 

further if network traffic increases and might sometimes 

lead to 0 also. The throughput and average Delay values 

indicate that with the increase in the flit length from 10-32, 

the throughput decreases and the average delay increases. 

Figure (10) illustrates an 88 network simulation with 

four different topologies and a flit length of 32 bits using 

static Dijkstra's algorithm. With the increase in packet 

size, throughput decreases as compared to flit length 10. 

Again, MS topology outperforms the other three 

topologies. Moreover, with the increase in traffic, 

throughput decreases as in the earlier case. 

 

 
 
Fig. 9: Throughput vs network load for flit length=10 in 

Dijkstra’s algorithm 
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Fig. 10: Throughput vs network load for flit length = 32 in 

Dijkstra’s algorithm 
 

 
 
Fig. 11: Latency vs. network load for flit length = 10 in 

Dijkstra’s algorithm 
 

The graph in Fig. (11) represents the average packet 
delay in Dijkstra's algorithm with a flit length of 10 bits. 
Latency is measured in clock cycles. Its value goes from 
15-50 clock cycles. Maximum Delay is observed in BFT 
and minimum Delay in EBFT, while MS and TS 
topologies show average behavior. As the network traffic 
increases from 1 packet/cycle to 10 packets /cycle, the 
average delay value also increases. 

Figure (12) shows the performance evaluation using 
the average packet delay for flit length as 32 bits. The 
EBFT outperforms the other three topologies. BFT 
shows the worst performance with a maximum packet 
delay of 57 clock cycles. MS and TS topologies show 
almost similar behavior. 

Figure (13) shows the throughput simulation results 
using four well-known topologies in NOC with a dynamic 
routing protocol distance vector. The runtime updation in 
routing table values shows better throughput than 
Dijkstra's algorithm under the same environment. The 
throughput decreases with the increase in network traffic. 

Firstly it starts with 100% throughput but later decreases 
to 83%. It may be due to the packet losses occurring 
because of network congestion. 

Figures (14-16) illustrate the simulation results of 
throughput and average packet delay for the NoC 
environment as described in Table 2. With the increase in 
network load, throughput decreases, and average packet 
delay increases in both graphs. MS and TS topologies 
delivered the best performance for throughput while EBFT 
outperforms in the case of average packet delay calculation. 
 

 
 
Fig. 12: Latency vs. network load for flit length = 32 in 

Dijkstra’s algorithm 
 

 
 
Fig. 13: Throughput vs. network load for flit length = 10 in 

distance vector algorithm 
 

 
 
Fig. 14: Throughput vs. network load for flit length = 32 in 

distance vector algorithm 
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Fig. 15: Average packet delay vs. network load for flit length = 

10 in distance vector algorithm 
 

 
 
Fig. 16: Average packet delay vs. network load for flit length = 

32 in distance vector algorithm 
 

Results: Simulation Environment 2 

Analysis of the Effect of Network Size 

This section depicts the effect of network size on the 

average delay and throughput. 

The simulation environment took the MS topology and 

distance vector routing protocol for evaluating the effect of 

network load and size on throughput. While keeping the 

packet size the same and increasing the network size from 

16-256 nodes, the throughput diminished. Figures (17-18), 

show the effect of network size on throughput with a flit 

length of 32 bits and a flit length of 10 fits, respectively. 

Due to the attainment of the saturation point, the 

throughput decreased after a particular point. 

Figure 19 depicts that the average packet delay 
increased with the increase in network size because of two 

reasons. The main reason is the increase in the number of 

contending packets with expanding network size. The 

supplementary reason is the increase in the average hop 

count of the packet. 

 
 
Fig. 17: Throughput with an increase in network size (packet 

size = 32 flits) 
 

 
 
Fig. 18: Throughput with an increase in network size (packet 

size = 10 flits) 
 

 
 
Fig. 19: Average packet delay with an increase in network size 

(packet size = 10 flits) 
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Fig. 20: Average packet delay with an increase in network size 

(packet size = 32 flits) 

 

Figure 20 depicts the average packet delay initially 

increased with the increase in network load but became 

almost constant after a limit. With the expansion in 

network size, it grows exponentially. It shows that 

network performance is affected by varying network and 

packet sizes. 

The results discussed for simulation environments 1 

and 2, clearly indicate that there is an effect of routing 

protocol, flit length, network topology, and flit buffer on 

the performance of the network. This study evaluates 

network performance in terms of average packet delay 

and throughout, which are major factors of the same. 

Wireless networks suffer from interference, noise, and 

bandwidth variation (Khan, 2017). Dynamic routing 

algorithm performance is better than static routing 

algorithms due to regular updation in routing tables 

based on changing topologies (Misra and Sharma, 

2013). Throughput decreases and packet delay 

increases with the increase in traffic load. Due to the 

increase in traffic in the network, packet loss increases, 

and hence throughput decreases, resulting in network 

congestion, finally leading to increased packet delay. 

MS topology shows the best results with the highest 

throughput and EBFT with the lowest throughput 

among the four network topologies as in MS alternative 

roots in case of high traffic and congestion could be 

easily found. EBFT shows the best results with the 

lowest latency and BFT with the highest latency. Due 

to the highly dynamic nature of the network (Taneja et al., 

2022), static protocols give poor throughput and utilize 

more time, and the delay rate is high (Kaur, 2017; 

Gupta et al., 2023). Research papers cited in Table 1 

have used only MS topology and not used these 

algorithms to evaluate the performance of a NoC. 

Hence, this study filled the research gap till now while 

using different simulation environments. 

Conclusion 

This study performs evaluations in two different setups: 

One with 4 topologies and 2 algorithms and another with 

only MS with DV algorithm. Network traffic was varying 

in each setup. The results proved that MS topology 

outperforms. When comparing the two routing algorithms, 

throughput decreases with an increase in network traffic 

from 100-50% in Dijkstra while it drops to only 85% when 

using the DV algorithm. Similarly, the average packet 

delay reached a maximum of 55 packets/cycle in the 

Dijkstra algorithm in comparison to the distance vector 

(40 packets/cycle) with an increase in network traffic. 

Hence, MS topology with Distance Vector algorithm 

comes out best. So, in the second experimental setup, MS 

with DV has been chosen. Then the effect of an increase in 

network size has been evaluated with these scenarios. The 

throughput of the maximum network size 1616 dropped 

to 10% and the average packet delay reached 400 cycles. 

This proves that with the increase in load and network size 

performance of the system starts diminishing. 

Future Work 

The results also prove that the average packet delay 

and throughput have a remarkable impact due to the 

varying packet length and network size. This current work 

finds out the two bases of selecting the routing algorithm. 

Furthermore, metrics like network power (Singh et al., 

2013), and area covered (Nagalaxmi et al., 2023), can be 

evaluated with modifications in the network to achieve 

better results. 

In Saliu et al. (2021) the main finding of the paper is 

with different algorithms like XY, Dy AD, and Age aware 

with varying packet injection rates, and in Bhaskar (2022) 

delay with full A and West F. So, in the future MS 

topology, can be implemented with mentioned algorithms 

with varying PIR, varying load and network size. Different 

simulators like; Booksim and Noxim (Haghi et al., 2016) 

can help in different setups and evaluations. 
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