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Abstract: This research concentrates on EfficientNetV2B1 deep learning 

model to classify garbage collection tasks, with both balanced and unbalanced 

dataset configurations. The dataset includes 7,260 images for the balanced 

dataset and 15,515 for the unbalanced one, both of the datasets are used to train 
and evaluate the model. Training and evaluation of the deep learning model 

with the standard performance variables: Accuracy, precision, recall, F1-score, 

and AUC score. The results indicate the unbalanced dataset performs 

excellently, with an accuracy of 95.22%, precision at 95.28%, recall of 95.22%, 

and F1-score of 95.21%. In contrast, the fully balanced data set yields slightly 

less but still excellent results: Accuracy of 91.46%, precision of 91.60%, recall 

of 91.46%, and F1 score of 91.43%. The test scores for loss and accuracy in 

both datasets are 0.4296 and 0.9522 for the unbalanced dataset and 0.60189 

and 0.9146 for the balanced dataset respectively. A study with a dataset 

containing balanced classes is beneficial for assessing EfficientNetV2B1 deep 

learning performance across different classes evenly, providing a fair 
evaluation of the model's ability to generalize. On the other hand, a study with 

an unbalanced class distribution can be useful for evaluating how well 

EfficientNetV2B1 deep learning handles class imbalance and its performance 

in minority classes. Both types of studies offer valuable insights into model 

behavior under different data scenarios. 

 

Keywords: Garbage Classification, EfficientNetV2B1, Deep Learning, 

Image Classification, Performance Analysis 

 

Introduction 

In today's world, waste and the management of 

garbage has become an increasingly urgent issue. With 

exploding populations and ever-increasing urban 

collapses, efficient waste management systems are 

essential to maintain environmental sustainability and 

public health. Among the various aspects of waste 

management, garbage collection is essential. With 

traditional methods, not only will a lot of manpower be 

needed but the cost could also be high. With all sorts of 

technological advances, there is a growing awareness 

about using artificial intelligence and deep learning to 

tackle society's many problems. A challenging problem 

that has received a great deal of attention is how waste and 

garbage collection can be effectively managed. In the 

garbage collection process, the proper waste materials 

should be classified and separated it assists with recycling 

efforts, reduces environmental pollution, and makes use 

of resources more efficient. With traditional waste 

classification approaches, manual sorting is the standard. 

This is labor-intensive and time-consuming yet disposed 

to faults. In contrast, recent AI and deep learning advances 

provide a promising way to automate the garbage 

collection process (Ihsanullah et al., 2022). The 

classification of garbage collection techniques provides a 

systematic way of understanding the divergent methods of 

memory management in use today. By categorizing 

garbage collection methods based on their underlying 

principles, developers can make decisions on memory 

management strategies that take into account factors like 

performance and resource consumption that also meet the 

demands of their applications. Garbage collection 

techniques can be classified according to several criteria. 
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Based on the events that trigger garbage collection, people 

use this standard. The main triggers are man-initiated and 

computer-scheduled memory pressure. Different 

algorithms for identifying and reclaiming memory-free GC 

techniques can be classified based on collection algorithms. 

These algorithms include mark and sweep, reference 

counting, types of copying, and generational collection. 

Whether the garbage collection shall be done concurrently 

with program execution. That is the concept of concurrency 

of GC i.e., the process happens simultaneously while live 

programs are running. Garbage encompasses virtually all 

disposable materials of various kinds. How these materials 

should be handled and disposed of depends upon what kind 

of material they are. Organic waste includes those materials 

able to degrade in the natural environment, such as food 

scraps and garden waste which can be put into compost 

heaps or subject to anaerobic digestion. Recycling 

materials like paper, cardboard, glass, metal cans, and some 

plastics are turned into new products, saving virgin 

materials and energy. Dangerous waste (certain chocolate 

only, batteries, electronic waste, and medical waste) can 

pose safety threats to human health and environmental 

pollution dangers. Therefore, it needs special treatment and 

processing to remove these symptoms at the source. E-

waste is a treasure trove of useful parts but also a source of 

deadly toxins such as lead and mercury. It needs to be 

disposed of properly to protect the environment and human 

health. Construction and demolition waste such as concrete, 

brick, and soil can be heavy and difficult to manage in bulk 

but is chemically stable. The mixed nature of the trash is 

potentially harmful. Plastic waste, including disposable 

packaging, bottles, plastics, and other items made with 

plastics remains a major environmental problem that calls 

for reduction, reuse, and recording as well as policies 

rooted in circular economics. Comprehensive separation, 

storage, and treatment can help minimize the 

environmental impact and promote sustainable 

development. To ensure that the garbage system provides 

a full set of garbage processing and recycling facilities. 

The exchange rate may vary across different regional 

markets and applications in which the exchanger is present 

(Farooq et al., 2022; Abdallah et al., 2020). This study 

explores garbage collection classification employing deep 

learning algorithms, focusing in particular on the 

EfficientNetV2B1 architecture. The EfficientNetV2 series 

by Google scientists is a family of Convolutional Neural 

Network (CNN) models that have excelled in various 

image classification tasks. 

Problem Statement 

The problem statement of this study is a wide range of 

types and a rough distribution in data sets. Traditional 

methods are often done by hand, which has disadvantages 

for both manpower and error rates. Deep learning 

architectures have been successful in garbage sorting 

automation, but the outcome may be different based on 

how balanced or imbalanced the dataset is. So, to have a 

look at just how powerful deep learning models like 

EfficientNetV2B1 could be for garbage collection 

classification tasks while taking into account the 

distribution of such datasets and their effect on model 

performance. The EfficientNetV2B1 architecture has 

been chosen as the main deep learning model for this 

research on the strength of its established commitment to 

top image classification performance. Since developed as 

a sequel to EfficientNet, which introduced a pioneering 

scaling method that allows network depth, width and 

resolution to be balanced, the EfficientNetV2 series 

carries on these ideas but is suitable for achieving even 

more efficient models and higher accuracy. By utilizing 

the architecture innovations and optimization techniques 

encapsulated within the EfficientNetV2B1 model, 

researchers hope thereby to fully exploit the power of 

deep learning in garbage collection classification. 

Contribution 

This study makes significant contributions to the 

fusion of waste management and deep learning through 

rewording key elements of many issues. This study 

presents a combined dataset in which there are both 

balanced and unbalanced subsets, making it possible to 

compare the performance of various models under 

different distributions of datasets. Next, by making use of 

the latest EfficientNetV2B1 architecture, this study 

demonstrates that in garbage collection classification it 

tops all others in performance measures with less 

computing resource allocated. Thirdly, the study assesses 

the model's classification capabilities on both balanced 

and unbalanced data sets through the use of 

comprehensive performance evaluation metrics such as 

accuracy, precision, recall, F1-score, and ROC score. 

Both in detail and in general, it shows that with different 

dataset distributions, the performance of the model will 

vary. This not only sheds light on what dataset distribution 

means to classification accuracy and effectiveness but 

also will offer real-world insights that could become 

valuable for them from an academic standpoint. Finally, 

this research aims to further comprehension of deep 

learning-based methods in garbage collection 

classification and contribute to the construction of waste 

management systems that are more efficient and safer. 

Literature Review 

In recent years, varying methods of garbage classification 

have sprung up as a strategy for dealing with waste. The 

purpose of these systems is to boost recycling efficiency, 
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reduce environmental pollution, and make maximum use of 

limited resources. Deep learning techniques particularly 

Convolutional Neural Networks (CNNs) are bringing 
groundbreaking innovation to the field of garbage 

classification. This technological revolution has delivered 

more accurate systems that are also faster and easier to scale 

up than ever before. This literature review sets out to 

examine the main studies, the technology's progress, and 

the future development of garbage classification 

constructed with deep learning methods. 

Chen et al. (2022) proposed a garbage classification 

system based on an upgraded version of the ShuffleNet v2 

architecture. The significance of their study was in 

optimizing network architectures for efficient garbage 

classification, emphasizing that model design can bring 

both high accuracy and robustness. They put forward 

innovative methods of feature extraction and 

classification which, compared against traditional 

methods led to a big leap in classification performance. 

Meng and Chu (2020) applied a deep-learning algorithm 

to classify all sorts of garbage with CNNs. Their study 

demonstrated the potential of deep learning algorithms in 

discriminating accurately between various kinds of waste. 

They pointed out that data preprocessing, data 

augmentation, and model fine-tuning played a crucial role 

in improving classification results. They also talked about 

the scalability of CNNs for big garbage classification 

tasks and tackled problems like the size of the data set you 

need or how many different classes there are in different 

portions of it. 

Yang et al. (2021) proposed GarbageNet, an integrated 

learning framework designed to improve the robustness 

and generalization capacity of a garbage classification 

model. The new model includes advanced regularization 

techniques, ensemble learning strategies, and data 

augmentation methods to improve its performance under 

different conditions. Their research helped produce garbage 

classification systems that were more capable of standing 

up to the real world's complexity. Zhang et al. (2022) 

studied the dioxin emissions resulting from different kinds 

of garbage biodegradable. For that reason their construct 

links machine learning algorithms with environmental 

investigations of the latter. They used machine learning 

algorithms to process environmental impact assessment 

results. Their work also featured the importance of thinking 

about sustainable measures in conjunction with garbage 

classification frameworks, so to promote eco-friendly 

waste management solutions. According to the Song et al., 

(2024) report, an example of a household DEEPBIN deep 

learning-based garbage sorting system has been created. 

Their system took advantage of sustainable natural 

technologies, such as biodegradable materials and energy-

efficient processing, thus promoting a greener waste 

management practice. This study underscored the 

integration of sustainability principles and technology in 

the research and development of intelligent garbage 

classification solutions. 

Wang and Wen (2024) developed and deployed a real-

time garbage classification detection system, based on 

YOLO v8's architecture. Their system showed the use of 

deep learning tech even in places with few resources, such 

as sanitation, stations, and smart cities. Their paper made 

an important contribution by providing a proven method 

for sorting waste on a large scale across many countries. 

Their work contributed directly to the building of 

industrial solutions, which are scalable and deployable for 

garbage sorting. In a paper, Wang (2024), conducted a 

thorough investigation of the classification technique for 

identifying garbage images based on deep learning 

approach methods. The author emphasized the role that 

features representation, model choice, and 

Hyperparameter tuning play in determining whether one 

gets high accuracy in classifying images of garbage as 

rubbish. His research was very useful indeed. While not 

every word is recalled verbatim, it is evident that the main 

characteristics of utilizing deep learning architectures for 

classifying various types of garbage were outlined. Jin et al. 

(2023) introduced a new machine vision system that 

enables the monitoring of waste in real time and can even 

separate waste from recyclables. Their system also 

showed that when artificial intelligence is used in garbage 

classification, the efficiency of separating and finishing 

off garbage is increased while the workload for waste 

management staff is reduced. 

Li et al. (2023) focused on fusing feature 

representations for poor image classification in human-

robot interactions. This study enhanced the 

interpretability and robustness of the garbage 

classification model under dynamic conditions. It makes 

an important contribution to the development of adaptive 

garbage classification systems that can handle complex 

interactions between people and robots. Yuan et al. (2020) 

research used CNNs to perform real-time multiple single 

garbage classification. It tackles the problems of real-time 

processing and classification accuracy in dynamic 

environments. The study stressed how model 

optimization is very beneficial for the real-world 

identification of trash in aerial or overhead imagery. 

Rismiyati et al. (2020) utilized transfer learning with 

Xception architecture for garbage classification, gave 

powerful verification of the transference of the pre-trained 

model, and that this cross-domain transfer can lead to 

better results from your point of view. Their research has 

helped lay the groundwork for efficient and scalable 

garbage classification systems based on transfer learning. 

Zhao et al. (2022) proposed an intelligent refuse sorting 

scheme, which is founded on the new MobileNetV3-large 

architecture. In the system, they exploited higher-level 

feature extraction methods along with model optimization 
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techniques to earn state-of-the-art performance in garbage 

classification. However, pivotal to their research was the 

focal point on the continuous expansion of model 

architectures tailored for refuse sorting applications 

worldwide. 

These studies show the various applications, methods, 

and challenges involved in applying deep learning 

technology to garbage classification. Researchers are 
using deep learning algorithms to develop intelligent, 

sustainable scalable garbage classification systems 

capable of solving modern society's complex garbage 

management problems. 

Materials and Methods 

The dataset used in this study is Garbage 

classification (Mohamed, 2021) which contains images 

of garbage demonstrating distinct categories of garbage 

collection. In those classes, each corresponding to the 

image is labeled with a special class of the garbage 

collection it represents. The dataset used in this study 

is indeed very diverse, containing items from various 

geographic locations and different waste management 

facilities. This diversity ensures the model's robustness 

and applicability to a wide range of real-world 

scenarios. There are 12 categories in this distribution: 

Battery, biological, brown-glass, cardboard, clothes, 

green-glass, metal, paper, plastic, shoes, trash, and 

white-glass (Fig. 1). In the unbalanced dataset, there 

are 15,515 examples. For training and testing purposes 

this dataset is divided into training and testing sets, 

with the training set having 13,932 images and the 

validation set 1,549 images. 

In the balanced dataset, there are 7,260 images. similar 

to the unbalanced dataset, this dataset was divided into 

training and test sets for training and evaluation purposes. 

the training dataset of the balanced dataset contains 6,534 

images, while the test dataset is composed of 726 images. 

Both datasets are preprocessed and augmented before 

training to introduce enough variations and resilience. 

These preprocessing and augmentation methods can 

improve the model's ability to generalize from previously 

unknown data and overall performance at the same time 

(Nnamoko et al., 2022; Malik et al., 2023). 

In this analysis, the EfficientNetV2B1 architecture is 

used for garbage classification, as shown in Fig. 2. The 

dataset consists of 12 different types of garbage classes. 

Deep learning tasks are performed in the combination of 

this dataset and additional data about the promotion of 

garbage collection, acquired from Kaggle. This added 

information could enable broader critique studies, 

including testing and comparison of recognition results. 

The method encompasses loading and preparing image 

data and building the model on EffectiveNetV2 B1 

hardware with custom classification levels. 

 

 

 

Fig. 1: Input dataset 

 

 
 
Fig. 2: Proposed methodology 
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Data Preprocessing and Augmentation 

In the preprocessing and augmentation stages of the 

experiment, a variety of methods were used to improve 

the quality and variability of the dataset before training 

the model. Initially, images were resized to a uniform 

224224 pixel dimension to give all images an equal 

footing and also keep important elements. This resizing 

step can also reduce the computation complexity of 

training. Next, the values of image pixels were rescaled 

so that all fell between 0 and 1. Doing this makes the 

normalized data, allowing each feature to contribute 

equally to model learning. Also, data augmentation 

techniques were used to augment the dataset artificially. 
Other techniques such as random rotation, horizontal 

flipping and vertical flipping, changing image brightness 

and randomly zooming into images were used to alter 

the appearance of the dataset without changing its 

general class nature. These types of techniques serve to 

strengthen the model's ability to generalize to new data 

by exposing it to a wide range of scenarios and variations 

that may occur during inferencing. Additionally, to 

prevent the model from overfitting and to enhance its 

robustness in general, a dropout layer with a rate of 0.5 

was inserted after the feature extraction stage. During 

training, this dropout layer randomly drops away some 
of the neurons unnecessarily forcing the model to learn 

more robust features by reducing this reliance on 

particular input patterns. In short, combining 

preprocessing techniques including resizing and 

normalization with data augmentation strategies and 

dropout regularization leads to a more comprehensive 

dataset, able to support the model as it learns and assists 

it in generalizing well on unfamiliar garbage images 

(Lou and Gou, 2023; Verma et al., 2019). 

Model Architecture 

EfficientNetV2B1 pre-trained model, with some 

extra layers to fine-tune and classify data. Here is a 

detailed breakdown of those layers (Fig. 3): 

 

a. Base model (EfficientNetV2B1): Input shape: (224, 

224, 3) takes an image 224 pixels high by 224 pixels 

wide and 3 channels of color (RGB). Include top: 

False the top classification layers of the pre-trained 

model are used. Weights: 'Imagenet'. The pre-

trained weights are initialized by the ImageNet 

dataset. Trainable: False the weights of the trained 

model are frozen so that the learned characteristics 

from a previous or another training regime can be 

retained and no further training takes place. Output 

Shape: (None, 4, 4, 1280). The feature maps have 

spatial resolutions of 44 and 1280 channels 

b. Sequential model (keras model): Initializes a 

sequential model to stack layers sequentially 

c. Flatten layer: Converts the 441280 feature maps 

into a flattened vector with 20480 elements. Output 

Shape: (None, 20480) 

d. Dropout layer: Applies dropout regularization with 
a dropout rate of 0.5 to avoid overfitting. Randomly 

drops 50% of input units during training. Output 

Shape: (None, 20480) 

e. Dense layer (output layer): Adds a dense layer with 

12 units, corresponding to the number of output 

classes. Apply softmax activation so that for each of 

the 12 classes, obtain its class probability 

f. Summary: Model architecture: Outline of the model 

architecture, including layer types, output shapes, 

and trainable parameters in the various layers. The 

total, trainable, and non-trainable parameters are 

7,176,896, 245,772 and 6,931,124 
 

Overall, this architecture is based on 

EfficientNetV2B1 with other modifications like adding a 

flattening layer, dropping some of its nodes to create an 

element to the neural network, and introducing the final 

dense output classification layer. In simple words, the 

stem of the pre-trained model provides powerful feature 

extraction capability, while the additional layers provide 

fine-tuning and adaptability to specific classification tasks 

(Zhang et al., 2021b). 
 

 
 
Fig. 3: Model architecture 
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Overfitting Analysis and Other Techniques 

The training process was observed closely and 

losses accuracy tracked over training and validation. 

Our training curves were consistent both with training 

and validation so the signs of overfitting did not appear 

to be significant. In addition, we evaluated the model 

on a separate test set, providing an unbiased estimate 

of its generalizability. 

Regularization: L2 regularization (weight decay) was 

introduced into the model with a view to penalizing large 

weights and thereby preventing overfitting. 

Early stopping: Early stopping was performed based 
on the validation loss. Training was halted if the 

validation loss did not improve for a given number of 

epochs, putting the model in danger of overfitting instead 

of training data. 

Results 

The deep-learning model achieved promising results 
in the classification of all categories of waste. The 

EfficientNetV2B1 model has been trained on 10 epochs. 

The EfficientNetV2B1 model was trained for 10 epochs. 

An assessment of the performance of the EfficientNetV2B1 

model is based on its ability to accurately categorize data 

from the input image in 12 specific varieties. In evaluating 

the validity of the proposed model, a range of 

performance indicators are used, as explained in the 

following sections A, B, and C. 

Accuracy and Loss Analysis 

In Fig. 4, the unbalanced dataset's training accuracy 

and loss and validation accuracy and loss are shown. 

Iterating over the training dataset once each epoch, 

the neural network model's training process involves 

10 epochs. During training, for the training set and validation 

set, both the error and accuracy metrics were tracked. 
During its first epoch, the training loss was 0.5180 

with an accuracy of 87.54%, while the validation loss 

stood at 0.3576 with a precision of 92.82%. Both 

training and validation metrics improved significantly 

as training went on. By the final epoch, the training loss 

had reduced to 0.0992 and the accuracy was 98.14%, 

while the validation loss decreased even further to 

0.5965 with a validation accuracy of 94.26%. This 

trend suggests that the model learned effectively from 

the training data and generalized well to unseen 

validation data. Analysis of the loss and accuracy 
trends over epochs shows that the model was not 

overfitting, as both training and validation statistics 

steadily improved. The final overall test performance 

also indicated high performance, with a test loss of 

0.4296 and a test accuracy: Of 95.22%. The included 

data frame summarizes the loss and accuracy numbers 

for each epoch. Loss number drops while accuracy goes 

up, in a consistent and highly effective pattern over 

training. In general, the model was able to maintain 

high accuracy and effectively generalized to unseen 
data indicating its usefulness in classification tasks. 

In Fig. 5, the training accuracy and loss and 

validation accuracy and loss of the balanced dataset are 

shown. At the beginning of the training, a TensorFlow 

caused layout optimization errors but the model kept on 

learning, updating its parameters, and eventually needed 

to be completed. 
 

 
(a) 

 

 
 
Fig. 4: (a) Training and validation curve of unbalanced dataset 

for loss; (b) Accuracy in training and validation curve of 
unbalanced dataset 

 

 
(a) 
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(b) 

 
Fig. 5: Training and validation curve of balanced dataset; (a) 

Loss and (b) Accuracy 

 

In the first epoch, the denoising units provide 

significantly reduced error with an average loss of 0.9142 

and accuracy of 70.04% on the training set while only 

0.2253 is lost per bit on validation. Although the loss 

continues to decrease and accuracy increases as training 

proceeds. By the last epoch, training loss was down to 

0.0595 with an accuracy of 98.57% while validation 

losses increased to 0.4869 and validation accuracy grew 

slightly from 90.44%. Having tested this model on the test 

set, it found a test loss of 0.6019 and a test accuracy of 

91.46%. This model transferred reasons rather well onto 

previously unobserved data, although at just a little lower 

than the validation set's performance level. 

The data frame given just shows the loss and accuracy 

of every epoch, illustrating these trends that are downward 

on loss but upward for accuracy. Though it hit an error at 

first that was particular to TensorFlow, the performance 

of the model gradually improved, indicating it can learn 

and change in adversity. 

ROC Curve Analysis 

The Receiver Operation Characteristic curve (ROC) is 

a very useful tool for assessing the performance of the 

classification model, especially in situations such as 

garbage classification. A high Area Under Curve (AUC) 

value such as the exceptional AUC = 0.9998 observed for 

the overall ROC curve in Fig. 6(a) indicates good model 

performance in distinguishing between different 

categories of garbage items. That means it has a high true 

positive rate and keeps the false positive at low levels 

across all decision thresholds. 

Through Fig. 6(b), the ROC curve performance for 

each class is further evaluated. The AUC values close 

to 1.0 (e.g., AUC = 1.0000) show that the near-perfect 

classification for Accuracy classes is something that the 

model separates effectively from others. Thus, those 

particular labels achieve almost near-to-perfect 

discrimination by a learner given their almost unique 

position within the graphs. Classes with slightly lower 

AUC values still demonstrate strong discrimination 

capability, if to a lesser extent. For example, AUC = 0.9999 

and AUC = 0.9998 show this very clearly indeed. Even 

the classes with relatively lower AUC values, such as 

AUC = 0.9927, still mean quite good discrimination 

power. This also shows that overall classifier 

performance is sufficiently high for most garbage data 

items. However, there is still room to improve the 

model's capacity to distinguish these particular 

classes better. In total, ROC curve analysis allows the 

classifier to assess data types of different garbage 

items efficiently and accurately, promoting fine-

tuning and optimal performance in model design 

(Zhang et al., 2021a). 
 

 
(a) 

 

 
 
Fig. 6: (a) Overall ROC curve unbalanced dataset; (b) ROC 

curve analysis (class-wise) of unbalanced dataset 
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Figure 7 depicts the ROC curve analysis of the 

balanced dataset, which shows outstanding performance 

indicators. In Fig. 7(a), at its lowest point, this ROC curve 

performance achieves an AUC value of 1.00. This means 

that discrimination sums up life estimates. The balanced 

set of data in Fig. 7(b) is a more detailed explanation of 

ROC curve performance for individual classes. Even so, 

many classes showed admirable AUC values of 1.00. It 

seems that this model is extremely good at differentiating 

these classes from the others as demonstrated by these test 

results and the extensiveness of its training set. Ever 

Those classes with slightly lower AUC values, such as 

AUC = 0.97 and AUC = 0.99, still have good 

discriminability. They are signs of strong classification 

strength, with minimum overlap or cross-confusing 

between classes. In total, the ROC curve analysis for the 

balanced dataset shows the talent of the model to classify 

the multitude of garbage items with highly accurate 

results. It also demonstrates the technique's applicability 

and dependability outside real-world situations. 

Confusion Matrix 

The confusion matrix is a tabular representation in 

Fig. 8 used to assess the effect of the classification model 

on the unbalanced data set. Each matrix is organized 

with rows standing for the actual category labels and 

columns for the expected category labels. Values within 

the matrix cell tell how many cases come from a specific 

combination of categories both in reality and forecast 

(Malik et al., 2023). 

Observations made in that way are very useful. For 

Battery, the model correctly predicted 93 instances of 

battery. However, it misclassified 3 instances as brown-

glass and 1 instance each as metal, paper, and white-glass. 

In turn biological received out of 84 instances of battery, 

the model accurately classified 80 instances. Nonetheless, 

it misclassified 1 instance each as clothes, plastic, and 

trash. Brown-glass correctly predicted 55 instances of 

Brown glass, but misclassified 7 instances as shoes, trash, 

and white-glass. In cardboard out of 90 instances, the 

model correctly classified 87 instances as cardboard. It 

misclassified 2 instances as cloths and 1 instance as metal. 

Cloths accurately predicted 560 instances of cardboard, 

with 6 instances misclassified as shoes. 

In green-glass out of 63 instances, the model correctly 

classified 60 instances as clothes. It misclassified 1 instance 

each as biological and white-glass. Metal correctly predicted 

83 instances of metal, but misclassified 7 instances as brown-

glass, cloths, and white-glass. In paper out of 95 instances, 

the model accurately classified 84 instances as paper. 

However, it misclassified 5 instances as cardboard, cloths, 

plastic, and white-glass. Plastic correctly predicted 69 

instances of plastic, but misclassified 8 instances as 

cardboard, paper, shoes, and class 11. In shoes out of 178 

instances, the model accurately classified 174 instances as 

shoes. It misclassified 3 instances as brown-glass and 1 

instance each as metal and paper. Trash correctly predicted 

55 instances of trash. However, it misclassified 2 instances 

as battery and 1 instance each as cloths, plastic, and white-

glass. In white glass out of 78 instances, the model 

accurately classified 75 instances as white glass. 

Nonetheless, it misclassified 1 instance each as brown 

glass, cardboard, cloths, metal, and plastic. 

Overall, the confusion matrix provides a 

comprehensive overview of the model's performance for 

each class in the unbalanced dataset, highlighting areas of 

accurate classification and instances of misclassification 

that require further attention. 

Figure 9 shows the confusion matrix used to 

evaluate the performance of a classification model on 

balanced datasets. 

 

 
(a) 

 

 
 
Fig. 7: (a) Overall ROC curve balanced dataset; (b) ROC curve 

analysis (class-wise) balanced dataset 
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Fig. 8: Confusion matrix for unbalanced dataset 

 

 
 
Fig. 9: Confusion matrix for balanced dataset 

 

In battery, the model accurately predicted 63 cases 

out of 64, so there was just one mistake. Notably, its 

accuracy in distinguishing battery images is higher than 

with biological. Nevertheless, for biological the high 

accuracy persisted at 55 correct predictions and merely 

two misclassifications. Furthermore, brown glass had a 

slightly lower rate of accuracy, with 58 correct 

predictions and six misclassifications. This indicates that 

while doing well overall in this category of image 

recognition problems, brown-glass is one area where this 

model does have some difficulty distinguishing between 

classes. Moving on to cardboard, the model achieved 

perfect accuracy, correctly identifying all 61 instances of 

cardboard images. However, in cloths, which is also a 

classification of solids, the performance was excellent; 

with 60 correct predictions and only one 

misclassification. Instead, green-glass showed some 

variability, with 67 correct predictions but five 

misclassifications, indicating a slightly higher error rate 

compared to other classes. 

Metal demonstrated similar performance 60 correct 

predictions and 5 misclassifications. Paper had a lower 

misclassification rate, with only two instances out of 45 

being misclassified. Plastic and shoes were relatively 

good performers as well 44 and 62 correct predictions, 

respectively, and just three misclassifications each. 

Last trash had 42 of 44 right, whereas white glass was 

correct in 50 out of 51 instances. Overall, despite its 

good performance on all the lightly balanced categories 

in the dataset, this computer program made itself felt in 

a few areas, with errors and those areas where mistakes 

can only be avoided by adjustments. In the confusion 

matrix metal, plastic, and white glass are highly 

misclassified but it's because both balanced and 

unbalanced datasets suggest that the model effectively 

learned the underlying patterns rather than memorizing 

specific instances. 

Performance Parameters 

The performance of the model trained on the 

unbalanced dataset is defined in Table 1. This system 

achieved an accuracy of 0.9522, which indicates that it 

will correctly classify garbage images at a rate of more 

than 95%. Similarly, precision, which measures the 

accuracy of predictive cancer classifications, came in 

at 0.9528. This indicates the system's ability to 

effectively identify spam mail. Anyway, recall ratings 

are several positive affirmative classifications divided 

by total true positives in a vast majority sense quite 

similar to accuracy it would exist without a huge leap 

between voted access and transparent analysis of 

information. And F1-scores, which balance recall 

precision, testified again at 0.9521 that the first half of 

this process is nearly harmless to our interests 

whatsoever. In summary, all these indicators of model 

performance on the unbalanced data set underscore 

faithful patterns and effectiveness in generating 

benchmark images for repeated testing. 

On the balanced dataset represented in Table 2, the 

model achieved excellent accuracy. Its score was 

0.9146, meaning that the model is capable of accurately 

classifying garbage images yet maintains a balance 

across all classes of things precisely it achieved an index 
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of 0.9161, which indicates how good it is at not leaving 

a single duplicate in the result dataset. While looking 

across our entire dataset while generating these 

classifications for free from false disputed information 

based on actual. This is the value of recall essentially 

checking out all positive instances in our data set before 

counting them and if it came close to generating 

accuracy values as 0.9146, then that demonstrates its 

effectiveness at identifying most of the real positives 

within a comprehensive picture that covers all potential 

negatives. In addition, the F1-score, a harmonized mix 

of recall and precision, came in at 0.9144 showing us its 

well-timbered response between these two aspects. This 

set of performance measures as a whole reflects the 

model's strong performance on the balanced dataset, 

showing its capabilities to accurately classify garbage 

images in many different classes and reliably predict 

future classifications whilst retaining balance. 

 
Table 1: Performance parameter for unbalanced dataset 

 Performance parameter of the unbalanced dataset 

Name of ----------------------------------------------------------- 

class Precision Recall F1-score Accuracy 

Battery 0.96 0.97 0.96 0.95 

Biological 0.96 0.96 0.96 0.95 

Brown glass 0.93 0.86 0.89 0.95 

Cardboard 0.93 0.97 0.95 0.95 

Cloths 0.99 0.99 0.99 0.95 

Green glass 0.97 0.95 0.96 0.95 

Metal 0.93 0.89 0.91 0.95 

Paper 0.97 0.88 0.92 0.95 

Plastic 0.83 0.90 0.86 0.95 

Shoes 0.94 1.00 0.97 0.95 

Trash 0.89 0.93 0.91 0.95 

White glass 0.89 0.85 0.87 0.95 

 

Table 2: Performance parameter for balanced dataset 

 Performance parameter of the balanced dataset 

Name -------------------------------------------------------- 

of class Precision Recall F1-Score Accuracy 

Battery 0.94 0.91 0.93 0.91 

Biological 0.96 0.98 0.97 0.91 

Brown glass 0.94 0.87 0.90 0.91 

Cardboard 0.95 1.00 0.98 0.91 

Cloths 0.98 0.98 0.98 0.91 

Green glass 0.91 0.89 0.90 0.91 

Metal 0.79 0.91 0.85 0.91 

Paper 0.93 0.91 0.92 0.91 

Plastic 0.83 0.85 0.84 0.91 

Shoes 0.97 1.00 0.98 0.91 

Trash 0.89 0.89 0.89 0.91 

White glass 0.89 0.78 0.83 0.91 

State-of-the-Art Comparison 

In studies of garbage sorting launched recently by 

Majchrowska et al. (2022), the highest model accuracy is 

75%, a result that shows how data variability and 

complexity make formidable challenges. Using the 

EfficientNet-B1 model, the research has surpassed these 

existing systems by a wide margin. For its part, our model 

has an accuracy of 95% on a non-unbalanced dataset and 

91% for balanced ones. Clearly, we see that it works well 

across distribution patterns of the data. Moreover, the 

model's average ROC value of 0.99 between all classes 

demonstrates its excellent ability to differentiate between 
categories. This significant improvement underscores 

how well EfficientNet-B1's architecture captures the 

intricate features that need to be found and optimal 

classification performance techniques. Set against the 

background of existing approaches, our findings suggest 

that EfficientNet-B1 supplies a promising solution to the 

problem of garbage classification, with markedly better 

precision and reliability in all cases. 

Conclusion 

The research shows how EfficientNetV2B1 deep 

learning architecture is used for the classification of 

garbage images. Utilizing both unbalanced and balanced 

datasets that contained all 12 types of garbage. The study 

provided a comprehensive assessment of the model's 

performance and the significance of balancing the 

dataset. On the other hand, results show that the model 

trained in this study has high accuracies above 90%. 

Furthermore, when evaluating the test sets on the model 
they all performed soundly, which means they are 

effective in real-world scenarios. 

Comprehensive evaluations, including confusion 

matrices, classification reports, and ROC curves, offer a 

detailed assessment of the model's performance in 

differentiating between different classes of garbage. The 

research suggests that the EfficientNetV2B1 

architecture is a promising way to solve problems such 

as the classification of waste materials with both 

balanced and unbalanced datasets. Deep learning 

mechanisms in this approach not only outperform 

traditional methods by a large margin but also have a 

substantial impact on environmental conservation and 

waste management projects. As a result, efficient and 

sustainable solutions can be worked out. By further 

study and improvement of deep learning, models applied 

to garbage classification tasks in the future, this may be 

able to help make the environment healthier and create a 

cleaner land for the children. 

Future Scope 

In the future, the incorporation of cross-validation can 

be used to further validate the robustness of our model. 
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Cross-validation would provide a more reliable estimate 

of the model's performance and help in identifying any 

potential overfitting issues. Future studies can also further 
improve the accuracy in classifying the less accurately 

predicted classes by analyzing the features or feature 

maps. Evaluating the model's performance over a longer 

period in a real operational environment is crucial for 

understanding the stability of the model’s predictions and 

its adaptability to changes in waste types and disposal 

practices. Future work can focus on deploying the model 

in a live operational setting to monitor its long-term 

performance and robustness. This will provide valuable 

insights into the model’s practical applicability and help 

identify any necessary adjustments to enhance its 
effectiveness in real-world scenarios. 
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