
 

 

 © 2024 Andres Boldori. This open-access article is distributed under a Creative Commons Attribution 

 (CC-BY) 4.0 license. 
 

Journal of Computer Science 

 
 

Original Research Paper 

p ≠ np: The Set of Deterministic Problems that are Solvable in 

Polynomial Time is Unequal to the Set of Non-Deterministic 

Problems that are Solvable in Polynomial Time 
 

Andres Boldori 

 

Department of Mathematics, University of Zurich, Zurich, Switzerland 
 

Article history 

Received: 23-01-2024 

Revised: 26-03-2024 

Accepted: 06-04-2024 

 

Email: boldori084@gmail.com 

Abstract: This study constructs a solution to the “p vs. np” problem using 

complexity theory. We show through counterexamples that p ≠ np and 

formalize the two sets using stochastic, probabilistic and non-deterministic 

modeling. While the well-known sets “pspace” and “npspace”, analyzing the 

storage of a device, can be claimed to be equal, p and np differ and are 

exclusively defined through the elapsed time of their algorithms. Indeed, 

calculations including the probabilistic family of discrete uniform 

distributions prove the well-known inequality p ≠ np. In this study, using 

complexity and probability theory, we give some examples that fit into the 

new theory: There are problems that can be solved by non-deterministic 

Turing machines and which are in np (they are non-deterministic and just of 

polynomial time growth), but they are not in p itself (since they are not, 

deterministic and just of polynomial time growth). 

 

Keywords: p ≠ np, Complexity Theory, p and np Complexity, Exponential 

Runtime, Hamiltonian Paths 
 

Introduction 

The amazing aim of this study is to provide a 

formalization and a probabilistic, even almost 

combinatorial proof of the inequality of the well-known 

theoretical sets p and np. This is a short contribution to 

science, as the inequality already follows mathematically 

from the literature and therefore, no further simulations or 

experiments are needed except the ones already at hand 

within the bibliography. This study generalizes the work 

of Glock et al. (2022) “the n-queens completion 

problem”, (Gent et al., 2017) “complexity of n-queens 

completion”, (Conrad et al., 1994) “solution of the 

knights Hamiltonian path problem on chessboards” and 

(Squirrel et al., 1996) “A Warnsdorff-Rule Algorithm 

for Knights Tours on Square Chessboards” to a proof 

of p ≠ np. This theoretical generalization ultimately and 

almost becomes independent of the original papers. In 

addition, we use the experience of the Monte Carlo 

simulations on the chessboard within Silver et al. (2018) 

“Mastering chess and shogi by self-play with a general 

reinforcement learning algorithm”. Notice that the 

literature and references mentioned within the referenced 

books and papers themselves also are indirectly relevant 

to this study. The solution of p ≠ np is quite difficult to 

find within the family of discrete uniform distributions, 

but easy to understand. 

Research Question, Main Research Objecti-ves and 

Basic Definitions 

The clay mathematics institute of Oxford defined p vs. np 
as one of the most important problems in technical and 
mathematical science and we show in this study, that it can be 

solved as an application of complexity theory (Compare to 
Encyclopedia of Philosophy, 2015) "computational 
complexity theory"). For instance, testing for a given solution 
candidate of a problem to be indeed a solution is not resource-
taking at all, whereas, solving an arbitrary problem that might 
be unresolved, is, a priori, arbitrarily expensive. From the 

probabilistic point of view, the right class of problems 
must be taken into account to prove and formalize p ≠ np. 
We start with the definition of the deterministic Turing 
machine and go ahead with the theoretic and probabilistic 
model of a non-deterministic Turing machine (Fig. 1). 
 

 
 
Fig. 1: Diagramme of the two theoretical sets p and np 
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Def. Deterministic Turing Machine (DTM) 

A deterministic Turing machine is a 7-tuple: 

𝐴 = { 𝑄, 𝑞0, 𝛤, 𝛻, 𝛴, 𝐹, 𝛿 } where: 

 

Q:  Is a finite non-empty set of states  

q0 ∈ Q:   The initial state 

Γ:  Finite, non-empty set of tape alphabet 

  symbols 

∇ ∈ Γ:  The blank symbol 

Σ ⊆ Γ\∇  : The set of input symbols  

F ⊆ Q:   The set of final states or accepting states 

δ:  (Q\F) × Γ→ Q × Γ × {L, R} the 

  transition function 
 

Def. Non-Deterministic Turing Machine (NTM) 

A non-deterministic Turing machine is a 7-tuple:  

𝐴 = {𝑄, 𝑞0, 𝛤, 𝛻, 𝛴, 𝐹, 𝛿} where: 

 

Q:  Is a finite non-empty set of states  

q0 ∈ Q:  The initial state 

Γ:  Finite, non-empty set of tape  

  alphabet symbols 

∇ ∈ Γ:  The blank symbol 

Σ ⊆ Γ\∇:  The set of input symbols  

F ⊆ Q:  The set of final states or accepting states 

δ ⊆   ((Q\F) × Γ) × (Q × Γ× {L, N, R}) the 

  transition relation 
 

The difference between a Deterministic (DTM) and a 

non-deterministic (NTM) Turing machine hence just lies 

in the different definition of δ. A DTM and an NTM 

usually operate within an infinite tape T: Z → Γ (compare 

with the definition above) and have a read/write head that 

can read from and write to the tape (Fig. 2). The algorithm 

which is executed by the machine, as well as a large but 

finite memory, is specified by the transition function 

(DTM), or by the transition relation (NTM). A DTM is 

executed by applying its transition function delta to the 

current state and tape symbol repeatedly until termination 

(acceptance of the execution). As soon as the DTM enters 

one of the final states, it halts (terminates) and the 

calculation is over. Symbols written on the tape can be 

overwritten or erased by writing a blank symbol, which is 

equivalent to an empty field. 
 

 
 
Fig. 2: Infinite tape of a deterministic turing machine already 

containing the three symbols S1, S2 and S3 and two 

blank symbols 

The DTM transition function gives you the one and 

only function value (“new state”, “symbol to write") in 

return if the pair (“current state”, “symbol on tape") is 

given. The transition relation of the NTM, on the other 

hand, gives to any single possible (“state”, “symbol”) pair 

a whole set of, for the calculation possible, new (“state”, 

“symbol”) pairs (in the shape of an overall set). The 

transition relation therefore yields an entire tree of execution 

commands if applied many times. A non-deterministic 

Turing machine allocates all possible paths of a problem 

in parallel by giving a tree of possible execution paths as 

an outcome. Like a discrete stochastic process, the 

possibilities for execution at a given time form an entire 

set of objects. A ("stochastic") execution path like the one 

of the NTM terminates if and only if one path of the tree 

terminates. The tape of an NTM is not used but only to 

verify the paths of the NTM. Also, the NTM is executed 

by applying its transition relation delta repeatedly until 

termination. An NTM is said to be terminating, if one path 

of the repeated concatenations of the transition relation 

terminates. The definition of the deterministic Turing 

machine above could as well be changed and adapted 

easily by having an additional possibility of its "head" 

staying where it is (N), like within the one of a non-

deterministic Turing machine. The head of the NTM and 

DTM will turn to the Left (L) and to the Right (R) on the 

infinite tape (or, which has no influence on the proof 

below, stay where it is (N), if an NTM). Neither a DTM 

nor an NTM needs to terminate necessarily, as they will 

remain within an infinite loop instead. Before starting the 

calculation and its algorithm, the DTM and the NTM do 

have the possibility of the tape to already contain a finite 

number of entries out of the set of input symbols Σ. 

Def. Problem 

A problem X is an ordered set (3-tuple) containing a 

set a of input values, a set b of output variables and an 

unknown algorithm w. A solution to a problem X is a set 

of values y = b(w). 

Def. p, np 

p is the set of problems, which possess a solution that 

can be calculated by a DTM in polynomial time. A 

problem A, which can be solved by a DTM within 

polynomial time lies in p: A ∈ p. 

np is the set of problems, which possess a solution that 

can be calculated by an NTM in polynomial time. A 

problem B, which can be solved by an NTM within 

polynomial time lies in np: B ∈ np. 

The sets p and np are defined as the sets of problems 

which can, respectively, be solved by a DTM 

(deterministic Turing machine) and an NTM (non-

deterministic Turing machine) in polynomial time as a 

function of the size of the problem parameters. The only 
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difference in their definition is that the set np allows the 

problems within to be solved by a tree but the set p just allows 

the problems within to be solved by concatenations of the 

same function, algorithm, calculation steps, evaluation steps 

(all within polynomial time, the number of transition 

relation/function concatenations). If the definitions were not 

restricted to polynomial growth in the time variable, 

questions about the two sets would certainly be less 

interesting. It is equivalent to ask if there is one realization of 

the theoretical concept of an NTM at all (which is not a DTM 

itself) for polynomial time algorithms, or is the theoretical 

definition of an NTM redundant and unnecessary even if 

restricted in time? The transition function must not 

necessarily be small, it can be an algorithm or just an 

entire "pc". Below, Problem X is defined as one 

counterexample of the invalid equation p = np. 

Proof of n ≠ np 

The reader will certainly have noticed that the 

definitions of the sets p and np belong to those of a DTM 

and an NTM, but restricted to polynomial time efficiency. 

The readers should also have noticed that the definition of 

an NTM contains all the models of all possible 

deterministic Turing machines and therefore is a 

generalization thereof. Are the sets of problems solved by 

NTM´s and DTM´s differing from each other under the 

polynomial time growth restriction? The problem of p vs. 

np can be translated into a logical one which is formally 

more convenient to solve: The DTM and the NTM are, up 

to their "execution" (transition relation or function), 

identical. Each transition function can be translated into a 

transition relation, but the converse does not hold. We 

need to prove that there is one problem (X), which can 

be calculated by an NTM within polynomial time, but 

whose result cannot longer be calculated by a DTM in 

polynomial time. The following problem X can be 

solved by an NTM within polynomial time, which 

means that there is a tree of polynomial depth, 

containing the solution within one path, but there is no 

DTM which can solve (compute the output or outcome 

of) problem X within polynomial time. 

Problem X 

Is there a sequence q containing respectively one 

number per column of a random m × n matrix X of 

“integers” (numbers in ℤ ), with entries drawn 

independently and all from the same discrete uniform 

distribution U [ −v, v] ⊂ ℤ, with v arbitrary and fixed in ℕ 

(ℕ not containing 0), which has got sum zero,
1

0
n

ii
q

=
= ? 

(Each of the possible outcomes {−v, −v + 1, ... ,v − 1,v} of 

one entry of X occurs with probability 
1

2 1 +
 .) 

 
 
Fig. 3: One possible realization of Matrix X of problem X. The 

emphasized “squares” show a possible solution sequence 

candidate q to problem X which is "summed up" for 

verification within a separated additional row below 

 

The Solution to Problem X 

The number of columns n of matrix X is the size 

parameter of problem X, it may be increased for 

comparison. The range v from which the discrete uniform 

distribution is drawn as the number of rows m of matrix X 

remain fixed. Problem X and the used discrete 

probabilistic uniform distribution contradicts the equality 

of the two sets p and np, in other words, we draw from the 

uniform distribution and want to see if the sum of the 

outcomes "cancels out" to 0 again. The table above shows 

a possible outcome situation of matrix X as an example. 

Within a random matrix X of integers as described and 

shown in the table above, the number of possible different 

sequences {qi}n≥i≥1 of the random variables {Xi, j}i, j 

(entries of the Matrix X) containing exactly one number 

per column is mn (which is exponential in n and not 

polynomial). It follows directly: Problem X  p, since the 

numbers of the matrix X are drawn randomly and 

independently. The Table above (Fig. 3.) shows one 

sample of the matrix X of random numbers (integers) and 

a possible path q (compare to Glock et al. (2022) “the n-

queens completion problem”). 
 
1. qi should appear within column i in the table (Fig. 3.). 

There are therefore m comparisons per element to verify 

q as a solution as there are m·n comparisons in total 

2. The sequence q must be summed up and the result 

compared to 0 to verify it. To calculate this sum, n-1 

additions are needed 
 

The number of operations needed to confirm whether 

a new sequence is or is not a solution path of problem X 

is polynomial in n: m ·n +n-1 = n ·(m + 1)-1. In the worst 

case, there are mn sums of all possible paths to be 

calculated. Since the numbers within matrix X are 

independently drawn, each case is the worst case and each 

algorithm solving the problem must calculate the entire 

amount of sums to know if there is one sequence with a 

sum equal to zero, or not. So, there are mn sums to 

calculate anyway within problem X and therefore, there is 
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no DTM that can solve it within polynomial time 

(problem X lies outside p). But to confirm or to reject a 

solution of problem X requires as well not more than 

polynomial time and therefore it must lie in np. More 

formally speaking, in our case, all possible “one number 

per column sums” of an in the variable n increasing m × n 

matrix X cannot be calculated fast enough (within 

polynomial time) by a DTM if X is a realization of n·m 

independent and identically (i. i. d.), uniformly distributed 

random variables. The notion of a random variable is not 

necessarily primary in this article, since we only analyze 

its realization (the “outcome” of, see probability theory). 

Nonetheless, problem X can be verified by an NTM just 

within polynomial time. As a matter of fact, problem X ∈ np 

but problem X p and the two sets cannot be equal. There 

are problems solved by NTM’s which are in np, but not in 

p. The NTM within the proof below can solve problem X 

within a polynomial amount of transition relation 

applications. A solution provided by an NTM is always of 

theoretical nature since it is a tree. An NTM never solves 

a problem directly but does test (allocate) if the numbers 

and objects within are ready for calculation and then 

decides if the problem is solvable/terminating, or not. If 

we wanted to formalize the “stochastic and probabilistic" 

definitions of an NTM into real-world calculation steps 

for problem X, the NTM would sum up at a given time 

n0, all possible (and in total mn0) partial sums, up to 

column n0, which contain one number per column. The 

DTM instead calculates the output of the problem 

explicitly and path by path. So, classically it will not 

calculate all partial sums but an entire sum of one 

possible path and will alter its entries systematically 

until all sums are calculated, achieving the same result. 

A part of the algorithm and also of the transition function 

and transition relation the DTM and NTM would use for 

problem X (in common) does look like the following: 
 

1. Add all numbers of a sequence q containing one 

number per column of Matrix X, → s 

2. If s = 0, return true (coding yes), otherwise return 

false (coding no) 
 

We still did not specify “a sequence", hence the set 

definitions below hold to both, to a DTM and to an NTM 

solving problem X: 

 

Q: =  {“read”, “write”, “True”, “False”} 

q0: = “write” 

Γ: = {z ∈ Z | −v·n ≤ z ≤ v·n} ∪ {∇} write a partial  

  sum of problem X 

Σ: = Γ\∇ 

F: =  {“True”, “False”} 

 

Finally, the definitions of the DTM and NTM solving 

problem X are, respectively, for a DTM δ0: =: 

1. If the current state is “read", read the current symbol 
on the tape and store it in the memory. If it is a zero, 
change into state "True" (The DTM terminates), 
otherwise change state into "write" and turn the 
read/write head to the right 

2. If  k = mn + 1, change state into "False" (the DTM terminates) 

3. If k = 1, define the first row of entries of the matrix X 

as the first “adequate” sequence r 
4. If k ≥ 1 and the current state is "write", add the 

adequate sequence r of entries of matrix Xi,j. Write its 
sum to the tape. Change current state into state 
“read”. Define the new adequate sequence of entries 
of the matrix X as follows: Alter the last entry of the 
adequate sequence r according to the last column of 
matrix X, after that the last two entries according to 
the last two columns of matrix X, ... until as well 
altering the first entry of the adequate sequence 
according to the first column (once) of X. Repeat all 
past steps, respectively, once again for each of the 
entries of the first column of matrix X, until all and 
(in total) mn different possible sequences have been 
summed once k: = k+1 

 
And for an NTM, δ1: =: 

 
1. Store all possible partial sums of matrix X including 

all columns up to j as a new mj- dimensional vector h. 
If j = n and one entry of h is zero, change into state 
“True”, else change into state “False” j: = j +1 

 
The algorithms on both machines repeat the execution 

of δi until termination (each repetition is one time unit) and 
the variables before starting the calculation are set to i: = 1, 
j: = 1, k: = 1. δ0 takes the input as possible sequence by 
possible sequence, where δ1 takes the input column by 
column. The DTM differs from the NTM in the 
calculation procedure, but both always terminate and 
yield the result, if there is a sequence within the outcome 
of the random discrete uniform matrix X as we defined it 
above. The application of the transition function or 
transition relation requires one unit of time. The required 
space is not analyzed further (i.e., large enough). There is 
no transition function replacing the transition relation δ1 

for problem X within an algorithm that runs just a 
polynomial amount of time (number of transition function 
applications), since there are exponentially many possible 
sequences of matrix X, to be calculated. Since the NTM 
also writes an (in n) exponential amount of symbols 
within each application of its transition relation, the 
elapsed time (counting the number of transition relation 
applications), is again polynomial (the exponential 
growth cancels out). Still, each path of the execution tree 
(of polynomial depth) the NTM (above) generates can be 
verified (traversed) within a polynomial amount of time 
(since there is just a polynomial amount of transition 
relation applications, of the NTM within the set np). There 
is no transition function replacing the NTM in polynomial 
time, since the transition function of the DTM just writes 
a predefined constant, non-random (and therefore in time 
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just linearly increasing) amount of symbols at each 
application of the transition function. Hence np ≠ p. 

The Theorem of Savitch as a Conclusion of the Proof 

p ≠ np 

Def. Pspace, Npspace 

The two sets of all problems, which can be solved by a 

DTM and an NTM within polynomial space, respectively. 

 

The theorem of savitch (informal): 

 

1. Each NTM with traversing time n can be replaced by 

a DTM with traversing time mn, where m is the 

maximal amount of objects per node (calculation step 

of the NTM) 

2. pspace = npspace 

 

Complexity theory lies somewhere in the intersection 

of computer science and mathematics. We don’t discuss 

applications of the theorem of savitch nor its proof, 

directly in this article but we try to explain its 

assumptions. A (finite) NTM’s calculation possesses n 

nodes, one for each application of the transition relation, 

each containing a set of up to m different objects to 

possibly calculate. An NTM and a DTM calculate the 

solution of the given problem from node 1 to node n. The 

calculated “nodes" (transition function applications) of a 

DTM are sequentially and simply connected, whereas the 

objects to calculate within the nodes of an NTM are 

connected like within a tree to one or to many objects of 

the next node, respectively. Within the traveling salesman 

problem, for instance, each of the nodes of the NTM 

would not just contain one city, but all cities to travel to 

(and all nodes would be identical) as they would be 

connected through their objects, the next cities to travel to. 

Here, the connection of the nodes defines the travel (cities 

A, B, C, D, E) and not the (identical) nodes themselves. 

Each planar graph can be embedded within a new 

graph by defining all nodes containing exactly all 

possible objects (Fig. 4.). 

 

 
 
Fig. 4: From now on, each node contains all possible objects 

(and cities) and not just one" 

We leave the above K7 (Fig. 5.) aside and recall the 

proof of p ≠ np. If we use the notion of graphs, objects 

and nodes, a DTM possesses just one object per node 

(transition function application). The nodes of an NTM 

(transition relation application) contain each and in total 

more objects than a single one. However, not all 

algorithms share the same calculation efficiency. An 

algorithm needs one unit of time to traverse one node in 

addition (as such, time is defined here). The NTM now 

starts at node one and calculates all paths “in parallel”, 

yielding a tree of calculation possibilities as a result and 

stops at node n. Defining m·n new nodes, one for each 

object of the n NTM’s nodes, allows one single DTM to 

traverse the same calculation. Since the generated tree (of 

the NTM) possesses at least mn edges (connection of the 

objects with the ones of the next node), a DTM can in 

general not solve an NTM’s problem within less time than 

mn (transition function applications). Indeed, we just take 

a look at algorithms which increase the units of time 

needed as a polynomial function of the problem size 

parameters. Each problem that can be solved by a non-

deterministic Turing machine can also be solved explicitly 

by a theoretic probabilistic (and mathematical) model. 

However, the Theorem of Savitch also concerns data 

storage. The two sets p and np are defined just through 

their polynomial traversing time and therefore differ 

within calculations including the family of uniform 

distributions. The sets pspace and npspace could indeed 

be identical, since the space used by an algorithm within 

a device does not depend on the way the data is stored, 

deterministically or non-deterministically. The result 

npspace = pspace is therefore not an exclusively 

surprising one. All the conclusions in this particular 

section do not and cannot replace any additional proof of 

any additional theorem. 

 

 
 

Fig. 5: Also the edges of a Kn let themselves capture within a 

table: Two identical columns containing all possible 

nodes are aequivalent to the Kn, but in our terms still not 

convenient to represent it graphically. N identical 

columns containing all of n different nodes can instead be 

used by an NTM to calculate along the paths of a Kn. 
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The Queens Completion Problem 

The queens completion problem fits into the 
framework of NTM's and DTM's. NTM's for instance are 
already used for time allocation, computational decision 
problems, verification of solutions of a problem, 

randomization, randomly accessed space, etc. The 
chessboard and chess (alphazero, chessprogramme from 
DeepMind) may not be completely independent of this 
discussion. "{read, write, True, False}" separates the 
DTM from the NTM and p from np. If we took a solving 
path of the well known travelling salesman problem, as 

another example of a Hamiltonian paths problem, it would 
not be difficult to recognize it as one within a reasonable 
amount of time, but to find or to discard that there is 
another one, is more time-expensive. Another issue is that 
the queens completion problem still cannot be classified 
as polynomial or exponential in time. Both, like many 

other problems of this class lead to the question, if p ≠ np, 
or not. However, neither the travelling salesman nor the 
queens completion problem are convenient to show the 
inequality. Again, the aim of this section is not necessarily 
to classify the queens completion problem within the sets 
of problems p and np or even to solve it, but to show an 

example of our framework (within the proof of p ≠ np). 

Remark 

An 8×8 chessboard is a black and white squared board. 
There are 32 figures in the game of chess, 16 white and 
16 black. Each of the two "colours" contains 1 king, 1 

queen, 2 rooks, 2 bishops, 2 knights and 8 pawns. So, up 
to how many queens (black or white) can one place on the 
chessboard, with there being no possibility of capturing 
themselves? The answer is maximally n, since each queen 
has to be placed in its own column. But, for instance, the 
queens set on the board must also necessarily be placed 

on different diagonals not to capture themselves. The 
black queens must be at least a knight move away from 
the white ones and two queens of the same colour are at 
least one move further ahead from a knight´s move (since 
a knight´s move always leads to the opposite colour). 
Also, the total number of possible knight moves as a 

further example of a Hamiltonian paths problem on the 
chessboard, is already known. To find a possible 
algorithm for the queens completion problem or to see 
there is none could look like the following. 
 

 
 
Fig. 6: The initial configuration on the left cannot be 

"completed" this way since the five queens on the right 

already cover the entire board 

Queens Completion Problem 

Can there n-m queens (black and white) be added to a 

position where m queens have already been placed within 

an n × n chess-like squared board? They should have no 

possibility of capturing each other. Is there one position of 

queens y which “completes” a given initial configuration 

a (of queens): 

 

1. The NTM could do as follows: as soon as there are as 

many white as black queens in the initial 

configuration, go ahead with the colour: white. If 

there are more queens of one colour in the initial 

configuration, go ahead with this colour 

 

2. See (a) and (b) 

 

(a) Try to complete the board by adding just queens of 

the opposite color than 1.) 

(b) If not possible, add one queen of color 1.) to the initial 

configuration and again try to complete it by adding 

queens of the opposite colour than 1.). Try all 

possibilities for that one queen 

 

3. If not already terminated, try 2.) but by adding 2 

queens of colour 1.), 3 queens, ..., up to n-m queens 

 

Or maybe also the opposite strategy is leading to 

success within this problem: 1. Place up to 4 queens on 

the border of the board, the next up to 4 queens on the 

"second row border (new border of the board without its 

current border)" ...etc., until up to 1 queen within the 4 

middle squares of the board. Below (Fig. 6.) is shown an 

initial configuration to complete and a first attempt to 

complete it (within the algorithm above, the time needed 

to find a solving configuration grows in general 

exponentially with the size of the board n): 

Materials and Methods 

 This study represents a rather theoretical and 

mathematical methodology. No materials are used except 

the ones already used in Silver et al. (2018) "Mastering 

chess and shogi by self-play with a general reinforcement 

learning algorithm". 

Results and Discussion 

The major result p not equal np within this work is an 

outstanding discovery. Within the last decades, more and 

more "relevant information" has been released within this 

topic. For instance, Glock et al. (2022) “The n-queens 

completion problem", which at last made the whole proof 
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of p ≠ np possible was published just in 2022. The 

examples chosen within the proof are optimal and easiest 

possible: A DTM and an NTM which compute the sums 

of a random Matrix X and represent a counterexample to 

the equation at hand using the sets p and np, are not to 

observe any day. Within any "deterministic" problem 

which has no random components and which increases its 

running time cost exponentially in its parameters, one still 

could define a solving DTM´s transition function which 

calculates an exponential amount each application. But 

indeed, this setting would be inconvenient to prove p not 

np since, for all problems with random components 

(which are as well in these sets), the DTM would exactly 

be useless and the calculation of its transition function still 

just always predefined. 

Conclusion 

We have shown successfully and mathematically that 

the sets p and np are distinct: P ≠ np. One of the so-called 

millennium problems claimed by the clay mathematics 

institute of Oxford has been solved with this study. We are 

very grateful to have been able to contribute and even to 

solve the entire problem. 
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