

 © 2024 Andres Boldori. This open-access article is distributed under a Creative Commons Attribution

 (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

p ≠ np: The Set of Deterministic Problems that are Solvable in

Polynomial Time is Unequal to the Set of Non-Deterministic

Problems that are Solvable in Polynomial Time

Andres Boldori

Department of Mathematics, University of Zurich, Zurich, Switzerland

Article history

Received: 23-01-2024

Revised: 26-03-2024

Accepted: 06-04-2024

Email: boldori084@gmail.com

Abstract: This study constructs a solution to the “p vs. np” problem using

complexity theory. We show through counterexamples that p ≠ np and

formalize the two sets using stochastic, probabilistic and non-deterministic

modeling. While the well-known sets “pspace” and “npspace”, analyzing the

storage of a device, can be claimed to be equal, p and np differ and are

exclusively defined through the elapsed time of their algorithms. Indeed,

calculations including the probabilistic family of discrete uniform

distributions prove the well-known inequality p ≠ np. In this study, using

complexity and probability theory, we give some examples that fit into the

new theory: There are problems that can be solved by non-deterministic

Turing machines and which are in np (they are non-deterministic and just of

polynomial time growth), but they are not in p itself (since they are not,

deterministic and just of polynomial time growth).

Keywords: p ≠ np, Complexity Theory, p and np Complexity, Exponential

Runtime, Hamiltonian Paths

Introduction

The amazing aim of this study is to provide a

formalization and a probabilistic, even almost

combinatorial proof of the inequality of the well-known

theoretical sets p and np. This is a short contribution to

science, as the inequality already follows mathematically

from the literature and therefore, no further simulations or

experiments are needed except the ones already at hand

within the bibliography. This study generalizes the work

of Glock et al. (2022) “the n-queens completion

problem”, (Gent et al., 2017) “complexity of n-queens

completion”, (Conrad et al., 1994) “solution of the

knights Hamiltonian path problem on chessboards” and

(Squirrel et al., 1996) “A Warnsdorff-Rule Algorithm

for Knights Tours on Square Chessboards” to a proof

of p ≠ np. This theoretical generalization ultimately and

almost becomes independent of the original papers. In

addition, we use the experience of the Monte Carlo

simulations on the chessboard within Silver et al. (2018)

“Mastering chess and shogi by self-play with a general

reinforcement learning algorithm”. Notice that the

literature and references mentioned within the referenced

books and papers themselves also are indirectly relevant

to this study. The solution of p ≠ np is quite difficult to

find within the family of discrete uniform distributions,

but easy to understand.

Research Question, Main Research Objecti-ves and

Basic Definitions

The clay mathematics institute of Oxford defined p vs. np
as one of the most important problems in technical and
mathematical science and we show in this study, that it can be

solved as an application of complexity theory (Compare to
Encyclopedia of Philosophy, 2015) "computational
complexity theory"). For instance, testing for a given solution
candidate of a problem to be indeed a solution is not resource-
taking at all, whereas, solving an arbitrary problem that might
be unresolved, is, a priori, arbitrarily expensive. From the

probabilistic point of view, the right class of problems
must be taken into account to prove and formalize p ≠ np.
We start with the definition of the deterministic Turing
machine and go ahead with the theoretic and probabilistic
model of a non-deterministic Turing machine (Fig. 1).

Fig. 1: Diagramme of the two theoretical sets p and np

Andres Boldori / Journal of Computer Science 2024, 20 (10): 1263.1269

DOI: 10.3844/jcssp.2024.1263.1269

1264

Def. Deterministic Turing Machine (DTM)

A deterministic Turing machine is a 7-tuple:

𝐴 = { 𝑄, 𝑞0, 𝛤, 𝛻, 𝛴, 𝐹, 𝛿 } where:

Q: Is a finite non-empty set of states

q0 ∈ Q: The initial state

Γ: Finite, non-empty set of tape alphabet

 symbols

∇ ∈ Γ: The blank symbol

Σ ⊆ Γ\∇ : The set of input symbols

F ⊆ Q: The set of final states or accepting states

δ: (Q\F) × Γ→ Q × Γ × {L, R} the

 transition function

Def. Non-Deterministic Turing Machine (NTM)

A non-deterministic Turing machine is a 7-tuple:

𝐴 = {𝑄, 𝑞0, 𝛤, 𝛻, 𝛴, 𝐹, 𝛿} where:

Q: Is a finite non-empty set of states

q0 ∈ Q: The initial state

Γ: Finite, non-empty set of tape

 alphabet symbols

∇ ∈ Γ: The blank symbol

Σ ⊆ Γ\∇: The set of input symbols

F ⊆ Q: The set of final states or accepting states

δ ⊆ ((Q\F) × Γ) × (Q × Γ× {L, N, R}) the

 transition relation

The difference between a Deterministic (DTM) and a

non-deterministic (NTM) Turing machine hence just lies

in the different definition of δ. A DTM and an NTM

usually operate within an infinite tape T: Z → Γ (compare

with the definition above) and have a read/write head that

can read from and write to the tape (Fig. 2). The algorithm

which is executed by the machine, as well as a large but

finite memory, is specified by the transition function

(DTM), or by the transition relation (NTM). A DTM is

executed by applying its transition function delta to the

current state and tape symbol repeatedly until termination

(acceptance of the execution). As soon as the DTM enters

one of the final states, it halts (terminates) and the

calculation is over. Symbols written on the tape can be

overwritten or erased by writing a blank symbol, which is

equivalent to an empty field.

Fig. 2: Infinite tape of a deterministic turing machine already

containing the three symbols S1, S2 and S3 and two

blank symbols

The DTM transition function gives you the one and

only function value (“new state”, “symbol to write") in

return if the pair (“current state”, “symbol on tape") is

given. The transition relation of the NTM, on the other

hand, gives to any single possible (“state”, “symbol”) pair

a whole set of, for the calculation possible, new (“state”,

“symbol”) pairs (in the shape of an overall set). The

transition relation therefore yields an entire tree of execution

commands if applied many times. A non-deterministic

Turing machine allocates all possible paths of a problem

in parallel by giving a tree of possible execution paths as

an outcome. Like a discrete stochastic process, the

possibilities for execution at a given time form an entire

set of objects. A ("stochastic") execution path like the one

of the NTM terminates if and only if one path of the tree

terminates. The tape of an NTM is not used but only to

verify the paths of the NTM. Also, the NTM is executed

by applying its transition relation delta repeatedly until

termination. An NTM is said to be terminating, if one path

of the repeated concatenations of the transition relation

terminates. The definition of the deterministic Turing

machine above could as well be changed and adapted

easily by having an additional possibility of its "head"

staying where it is (N), like within the one of a non-

deterministic Turing machine. The head of the NTM and

DTM will turn to the Left (L) and to the Right (R) on the

infinite tape (or, which has no influence on the proof

below, stay where it is (N), if an NTM). Neither a DTM

nor an NTM needs to terminate necessarily, as they will

remain within an infinite loop instead. Before starting the

calculation and its algorithm, the DTM and the NTM do

have the possibility of the tape to already contain a finite

number of entries out of the set of input symbols Σ.

Def. Problem

A problem X is an ordered set (3-tuple) containing a

set a of input values, a set b of output variables and an

unknown algorithm w. A solution to a problem X is a set

of values y = b(w).

Def. p, np

p is the set of problems, which possess a solution that

can be calculated by a DTM in polynomial time. A

problem A, which can be solved by a DTM within

polynomial time lies in p: A ∈ p.

np is the set of problems, which possess a solution that

can be calculated by an NTM in polynomial time. A

problem B, which can be solved by an NTM within

polynomial time lies in np: B ∈ np.

The sets p and np are defined as the sets of problems

which can, respectively, be solved by a DTM

(deterministic Turing machine) and an NTM (non-

deterministic Turing machine) in polynomial time as a

function of the size of the problem parameters. The only

Andres Boldori / Journal of Computer Science 2024, 20 (10): 1263.1269

DOI: 10.3844/jcssp.2024.1263.1269

1265

difference in their definition is that the set np allows the

problems within to be solved by a tree but the set p just allows

the problems within to be solved by concatenations of the

same function, algorithm, calculation steps, evaluation steps

(all within polynomial time, the number of transition

relation/function concatenations). If the definitions were not

restricted to polynomial growth in the time variable,

questions about the two sets would certainly be less

interesting. It is equivalent to ask if there is one realization of

the theoretical concept of an NTM at all (which is not a DTM

itself) for polynomial time algorithms, or is the theoretical

definition of an NTM redundant and unnecessary even if

restricted in time? The transition function must not

necessarily be small, it can be an algorithm or just an

entire "pc". Below, Problem X is defined as one

counterexample of the invalid equation p = np.

Proof of n ≠ np

The reader will certainly have noticed that the

definitions of the sets p and np belong to those of a DTM

and an NTM, but restricted to polynomial time efficiency.

The readers should also have noticed that the definition of

an NTM contains all the models of all possible

deterministic Turing machines and therefore is a

generalization thereof. Are the sets of problems solved by

NTM´s and DTM´s differing from each other under the

polynomial time growth restriction? The problem of p vs.

np can be translated into a logical one which is formally

more convenient to solve: The DTM and the NTM are, up

to their "execution" (transition relation or function),

identical. Each transition function can be translated into a

transition relation, but the converse does not hold. We

need to prove that there is one problem (X), which can

be calculated by an NTM within polynomial time, but

whose result cannot longer be calculated by a DTM in

polynomial time. The following problem X can be

solved by an NTM within polynomial time, which

means that there is a tree of polynomial depth,

containing the solution within one path, but there is no

DTM which can solve (compute the output or outcome

of) problem X within polynomial time.

Problem X

Is there a sequence q containing respectively one

number per column of a random m × n matrix X of

“integers” (numbers in ℤ), with entries drawn

independently and all from the same discrete uniform

distribution U [−v, v] ⊂ ℤ, with v arbitrary and fixed in ℕ

(ℕ not containing 0), which has got sum zero,
1

0
n

ii
q

=
= ?

(Each of the possible outcomes {−v, −v + 1, ... ,v − 1,v} of

one entry of X occurs with probability
1

2 1 +
 .)

Fig. 3: One possible realization of Matrix X of problem X. The

emphasized “squares” show a possible solution sequence

candidate q to problem X which is "summed up" for

verification within a separated additional row below

The Solution to Problem X

The number of columns n of matrix X is the size

parameter of problem X, it may be increased for

comparison. The range v from which the discrete uniform

distribution is drawn as the number of rows m of matrix X

remain fixed. Problem X and the used discrete

probabilistic uniform distribution contradicts the equality

of the two sets p and np, in other words, we draw from the

uniform distribution and want to see if the sum of the

outcomes "cancels out" to 0 again. The table above shows

a possible outcome situation of matrix X as an example.

Within a random matrix X of integers as described and

shown in the table above, the number of possible different

sequences {qi}n≥i≥1 of the random variables {Xi, j}i, j

(entries of the Matrix X) containing exactly one number

per column is mn (which is exponential in n and not

polynomial). It follows directly: Problem X p, since the

numbers of the matrix X are drawn randomly and

independently. The Table above (Fig. 3.) shows one

sample of the matrix X of random numbers (integers) and

a possible path q (compare to Glock et al. (2022) “the n-

queens completion problem”).

1. qi should appear within column i in the table (Fig. 3.).

There are therefore m comparisons per element to verify

q as a solution as there are m·n comparisons in total

2. The sequence q must be summed up and the result

compared to 0 to verify it. To calculate this sum, n-1

additions are needed

The number of operations needed to confirm whether

a new sequence is or is not a solution path of problem X

is polynomial in n: m ·n +n-1 = n ·(m + 1)-1. In the worst

case, there are mn sums of all possible paths to be

calculated. Since the numbers within matrix X are

independently drawn, each case is the worst case and each

algorithm solving the problem must calculate the entire

amount of sums to know if there is one sequence with a

sum equal to zero, or not. So, there are mn sums to

calculate anyway within problem X and therefore, there is

Andres Boldori / Journal of Computer Science 2024, 20 (10): 1263.1269

DOI: 10.3844/jcssp.2024.1263.1269

1266

no DTM that can solve it within polynomial time

(problem X lies outside p). But to confirm or to reject a

solution of problem X requires as well not more than

polynomial time and therefore it must lie in np. More

formally speaking, in our case, all possible “one number

per column sums” of an in the variable n increasing m × n

matrix X cannot be calculated fast enough (within

polynomial time) by a DTM if X is a realization of n·m

independent and identically (i. i. d.), uniformly distributed

random variables. The notion of a random variable is not

necessarily primary in this article, since we only analyze

its realization (the “outcome” of, see probability theory).

Nonetheless, problem X can be verified by an NTM just

within polynomial time. As a matter of fact, problem X ∈ np

but problem X p and the two sets cannot be equal. There

are problems solved by NTM’s which are in np, but not in

p. The NTM within the proof below can solve problem X

within a polynomial amount of transition relation

applications. A solution provided by an NTM is always of

theoretical nature since it is a tree. An NTM never solves

a problem directly but does test (allocate) if the numbers

and objects within are ready for calculation and then

decides if the problem is solvable/terminating, or not. If

we wanted to formalize the “stochastic and probabilistic"

definitions of an NTM into real-world calculation steps

for problem X, the NTM would sum up at a given time

n0, all possible (and in total mn0) partial sums, up to

column n0, which contain one number per column. The

DTM instead calculates the output of the problem

explicitly and path by path. So, classically it will not

calculate all partial sums but an entire sum of one

possible path and will alter its entries systematically

until all sums are calculated, achieving the same result.

A part of the algorithm and also of the transition function

and transition relation the DTM and NTM would use for

problem X (in common) does look like the following:

1. Add all numbers of a sequence q containing one

number per column of Matrix X, → s

2. If s = 0, return true (coding yes), otherwise return

false (coding no)

We still did not specify “a sequence", hence the set

definitions below hold to both, to a DTM and to an NTM

solving problem X:

Q: = {“read”, “write”, “True”, “False”}

q0: = “write”

Γ: = {z ∈ Z | −v·n ≤ z ≤ v·n} ∪ {∇} write a partial

 sum of problem X

Σ: = Γ\∇

F: = {“True”, “False”}

Finally, the definitions of the DTM and NTM solving

problem X are, respectively, for a DTM δ0: =:

1. If the current state is “read", read the current symbol
on the tape and store it in the memory. If it is a zero,
change into state "True" (The DTM terminates),
otherwise change state into "write" and turn the
read/write head to the right

2. If k = mn + 1, change state into "False" (the DTM terminates)

3. If k = 1, define the first row of entries of the matrix X

as the first “adequate” sequence r
4. If k ≥ 1 and the current state is "write", add the

adequate sequence r of entries of matrix Xi,j. Write its
sum to the tape. Change current state into state
“read”. Define the new adequate sequence of entries
of the matrix X as follows: Alter the last entry of the
adequate sequence r according to the last column of
matrix X, after that the last two entries according to
the last two columns of matrix X, ... until as well
altering the first entry of the adequate sequence
according to the first column (once) of X. Repeat all
past steps, respectively, once again for each of the
entries of the first column of matrix X, until all and
(in total) mn different possible sequences have been
summed once k: = k+1

And for an NTM, δ1: =:

1. Store all possible partial sums of matrix X including

all columns up to j as a new mj- dimensional vector h.
If j = n and one entry of h is zero, change into state
“True”, else change into state “False” j: = j +1

The algorithms on both machines repeat the execution

of δi until termination (each repetition is one time unit) and
the variables before starting the calculation are set to i: = 1,
j: = 1, k: = 1. δ0 takes the input as possible sequence by
possible sequence, where δ1 takes the input column by
column. The DTM differs from the NTM in the
calculation procedure, but both always terminate and
yield the result, if there is a sequence within the outcome
of the random discrete uniform matrix X as we defined it
above. The application of the transition function or
transition relation requires one unit of time. The required
space is not analyzed further (i.e., large enough). There is
no transition function replacing the transition relation δ1

for problem X within an algorithm that runs just a
polynomial amount of time (number of transition function
applications), since there are exponentially many possible
sequences of matrix X, to be calculated. Since the NTM
also writes an (in n) exponential amount of symbols
within each application of its transition relation, the
elapsed time (counting the number of transition relation
applications), is again polynomial (the exponential
growth cancels out). Still, each path of the execution tree
(of polynomial depth) the NTM (above) generates can be
verified (traversed) within a polynomial amount of time
(since there is just a polynomial amount of transition
relation applications, of the NTM within the set np). There
is no transition function replacing the NTM in polynomial
time, since the transition function of the DTM just writes
a predefined constant, non-random (and therefore in time

Andres Boldori / Journal of Computer Science 2024, 20 (10): 1263.1269

DOI: 10.3844/jcssp.2024.1263.1269

1267

just linearly increasing) amount of symbols at each
application of the transition function. Hence np ≠ p.

The Theorem of Savitch as a Conclusion of the Proof

p ≠ np

Def. Pspace, Npspace

The two sets of all problems, which can be solved by a

DTM and an NTM within polynomial space, respectively.

The theorem of savitch (informal):

1. Each NTM with traversing time n can be replaced by

a DTM with traversing time mn, where m is the

maximal amount of objects per node (calculation step

of the NTM)

2. pspace = npspace

Complexity theory lies somewhere in the intersection

of computer science and mathematics. We don’t discuss

applications of the theorem of savitch nor its proof,

directly in this article but we try to explain its

assumptions. A (finite) NTM’s calculation possesses n

nodes, one for each application of the transition relation,

each containing a set of up to m different objects to

possibly calculate. An NTM and a DTM calculate the

solution of the given problem from node 1 to node n. The

calculated “nodes" (transition function applications) of a

DTM are sequentially and simply connected, whereas the

objects to calculate within the nodes of an NTM are

connected like within a tree to one or to many objects of

the next node, respectively. Within the traveling salesman

problem, for instance, each of the nodes of the NTM

would not just contain one city, but all cities to travel to

(and all nodes would be identical) as they would be

connected through their objects, the next cities to travel to.

Here, the connection of the nodes defines the travel (cities

A, B, C, D, E) and not the (identical) nodes themselves.

Each planar graph can be embedded within a new

graph by defining all nodes containing exactly all

possible objects (Fig. 4.).

Fig. 4: From now on, each node contains all possible objects

(and cities) and not just one"

We leave the above K7 (Fig. 5.) aside and recall the

proof of p ≠ np. If we use the notion of graphs, objects

and nodes, a DTM possesses just one object per node

(transition function application). The nodes of an NTM

(transition relation application) contain each and in total

more objects than a single one. However, not all

algorithms share the same calculation efficiency. An

algorithm needs one unit of time to traverse one node in

addition (as such, time is defined here). The NTM now

starts at node one and calculates all paths “in parallel”,

yielding a tree of calculation possibilities as a result and

stops at node n. Defining m·n new nodes, one for each

object of the n NTM’s nodes, allows one single DTM to

traverse the same calculation. Since the generated tree (of

the NTM) possesses at least mn edges (connection of the

objects with the ones of the next node), a DTM can in

general not solve an NTM’s problem within less time than

mn (transition function applications). Indeed, we just take

a look at algorithms which increase the units of time

needed as a polynomial function of the problem size

parameters. Each problem that can be solved by a non-

deterministic Turing machine can also be solved explicitly

by a theoretic probabilistic (and mathematical) model.

However, the Theorem of Savitch also concerns data

storage. The two sets p and np are defined just through

their polynomial traversing time and therefore differ

within calculations including the family of uniform

distributions. The sets pspace and npspace could indeed

be identical, since the space used by an algorithm within

a device does not depend on the way the data is stored,

deterministically or non-deterministically. The result

npspace = pspace is therefore not an exclusively

surprising one. All the conclusions in this particular

section do not and cannot replace any additional proof of

any additional theorem.

Fig. 5: Also the edges of a Kn let themselves capture within a

table: Two identical columns containing all possible

nodes are aequivalent to the Kn, but in our terms still not

convenient to represent it graphically. N identical

columns containing all of n different nodes can instead be

used by an NTM to calculate along the paths of a Kn.

Andres Boldori / Journal of Computer Science 2024, 20 (10): 1263.1269

DOI: 10.3844/jcssp.2024.1263.1269

1268

The Queens Completion Problem

The queens completion problem fits into the
framework of NTM's and DTM's. NTM's for instance are
already used for time allocation, computational decision
problems, verification of solutions of a problem,

randomization, randomly accessed space, etc. The
chessboard and chess (alphazero, chessprogramme from
DeepMind) may not be completely independent of this
discussion. "{read, write, True, False}" separates the
DTM from the NTM and p from np. If we took a solving
path of the well known travelling salesman problem, as

another example of a Hamiltonian paths problem, it would
not be difficult to recognize it as one within a reasonable
amount of time, but to find or to discard that there is
another one, is more time-expensive. Another issue is that
the queens completion problem still cannot be classified
as polynomial or exponential in time. Both, like many

other problems of this class lead to the question, if p ≠ np,
or not. However, neither the travelling salesman nor the
queens completion problem are convenient to show the
inequality. Again, the aim of this section is not necessarily
to classify the queens completion problem within the sets
of problems p and np or even to solve it, but to show an

example of our framework (within the proof of p ≠ np).

Remark

An 8×8 chessboard is a black and white squared board.
There are 32 figures in the game of chess, 16 white and
16 black. Each of the two "colours" contains 1 king, 1

queen, 2 rooks, 2 bishops, 2 knights and 8 pawns. So, up
to how many queens (black or white) can one place on the
chessboard, with there being no possibility of capturing
themselves? The answer is maximally n, since each queen
has to be placed in its own column. But, for instance, the
queens set on the board must also necessarily be placed

on different diagonals not to capture themselves. The
black queens must be at least a knight move away from
the white ones and two queens of the same colour are at
least one move further ahead from a knight´s move (since
a knight´s move always leads to the opposite colour).
Also, the total number of possible knight moves as a

further example of a Hamiltonian paths problem on the
chessboard, is already known. To find a possible
algorithm for the queens completion problem or to see
there is none could look like the following.

Fig. 6: The initial configuration on the left cannot be

"completed" this way since the five queens on the right

already cover the entire board

Queens Completion Problem

Can there n-m queens (black and white) be added to a

position where m queens have already been placed within

an n × n chess-like squared board? They should have no

possibility of capturing each other. Is there one position of

queens y which “completes” a given initial configuration

a (of queens):

1. The NTM could do as follows: as soon as there are as

many white as black queens in the initial

configuration, go ahead with the colour: white. If

there are more queens of one colour in the initial

configuration, go ahead with this colour

2. See (a) and (b)

(a) Try to complete the board by adding just queens of

the opposite color than 1.)

(b) If not possible, add one queen of color 1.) to the initial

configuration and again try to complete it by adding

queens of the opposite colour than 1.). Try all

possibilities for that one queen

3. If not already terminated, try 2.) but by adding 2

queens of colour 1.), 3 queens, ..., up to n-m queens

Or maybe also the opposite strategy is leading to

success within this problem: 1. Place up to 4 queens on

the border of the board, the next up to 4 queens on the

"second row border (new border of the board without its

current border)" ...etc., until up to 1 queen within the 4

middle squares of the board. Below (Fig. 6.) is shown an

initial configuration to complete and a first attempt to

complete it (within the algorithm above, the time needed

to find a solving configuration grows in general

exponentially with the size of the board n):

Materials and Methods

 This study represents a rather theoretical and

mathematical methodology. No materials are used except

the ones already used in Silver et al. (2018) "Mastering

chess and shogi by self-play with a general reinforcement

learning algorithm".

Results and Discussion

The major result p not equal np within this work is an

outstanding discovery. Within the last decades, more and

more "relevant information" has been released within this

topic. For instance, Glock et al. (2022) “The n-queens

completion problem", which at last made the whole proof

Andres Boldori / Journal of Computer Science 2024, 20 (10): 1263.1269

DOI: 10.3844/jcssp.2024.1263.1269

1269

of p ≠ np possible was published just in 2022. The

examples chosen within the proof are optimal and easiest

possible: A DTM and an NTM which compute the sums

of a random Matrix X and represent a counterexample to

the equation at hand using the sets p and np, are not to

observe any day. Within any "deterministic" problem

which has no random components and which increases its

running time cost exponentially in its parameters, one still

could define a solving DTM´s transition function which

calculates an exponential amount each application. But

indeed, this setting would be inconvenient to prove p not

np since, for all problems with random components

(which are as well in these sets), the DTM would exactly

be useless and the calculation of its transition function still

just always predefined.

Conclusion

We have shown successfully and mathematically that

the sets p and np are distinct: P ≠ np. One of the so-called

millennium problems claimed by the clay mathematics

institute of Oxford has been solved with this study. We are

very grateful to have been able to contribute and even to

solve the entire problem.

Acknowledgment

This work was funded by the University of Zurich,

Switzerland. We want to thank to all who made this

patiently possible: Prof. Dr. Reinhard Furrer, Prof. Dr.

Regula Kyburz-Graber, Prof. Dr. Erwin Bolthausen and to

the now emerited Leader of the Mathematics Institute of

the University Prof. Dr. Andrew D. Barbour, whom also

recommended the book: Everitt, B. S. (1999). “An R and

S-Plus Companion to Multivariate Analysis, Springer

Texts in Statistics” as introduction to simulation using R.

Funding Information

The authors have not received any financial support or

funding to report.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

no ethical issues involved.

References

Conrad, A., Hindrichs, T., Morsy, H., & Wegener, I.

(1994). Solution of the knight’s Hamiltonian path

problem on chessboards. Discrete Applied

Mathematics, 50(2), 125-134.

https://doi.org/10.1016/0166-218x(92)00170-q

Everitt, B. S. (1999). An R and S-Plus Companion to

Multivariate Analysis, Springer Texts in Statistics (1st

Ed.), Springer London, XIII, 221.

 https://doi.org/10.1007/b138954

Gent, I. P., Jefferson, C., & Nightingale, P. (2017).

Complexity of n-Queens Completion. Journal of

Artificial Intelligence Research, 59, 5512.

https://doi.org/10.1613/jair.5512

Glock, S., Munhá Correia, D., & Sudakov, B. (2022). The

n-queens completion problem. Research in the

Mathematical Sciences, 9, 41.

https://doi.org/10.1007/s40687-022-00335-1

SEP. (2015). Computational Complexity Theory. Stanford

Encyclopedia of Philosophy.

https://plato.stanford.edu/entries/computational-

complexity/?ref=https://githubhelp.com

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I.,

Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran,

D., Graepel, ... (2018). A general reinforcement

learning algorithm that masters chess, shogi and go

through self-play. Science, 362(6419), 1140-1144.

https://doi.org/10.1126/science.aar6404

Squirrel, D., & Cull, P. (1996). A Warnsdorff-Rule

Algorithm for Knights Tours on Square Chessboards.

https://raw.githubusercontent.com/douglassquirrel/w

arnsdorff/master/5_Squirrel96.pdf

