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Abstract: The utilization of big data in infectious disease control represents 
a captivating opportunity, as these novel data streams offer the potential to 

enhance the timeliness of preventive measures. Various healthcare providers 

in both the public and private sectors generate, store, and analyse extensive 

datasets to enhance the quality of services they deliver. Recently, the 

outbreak of the new coronavirus, COVID-19, has posed significant threats to 

human health, life, production, social connections, and international 

relations, placing them in substantial peril. Consequently, the adoption of big 

data technologies has played a pivotal role in the response to the pandemic. 

Infectious diseases manifest when a person contracts a disease from a 

pathogen transmitted by another person, posing challenges that affect both 

individual and macroscales. Furthermore, the unknown patterns of infectious 
illnesses add complexity to the prediction process. This study aims to 

establish a big data framework for predicting infectious diseases by 

uncovering new patterns of symptoms, ultimately enhancing healthcare 

infection prevention and control. To achieve this objective, machine-learning 

algorithms such as K-Nearest Neighbors and Random Forest were employed 

for cleaning and maintaining extensive datasets collected from December 

2019 to June 2020. Additionally, FP-growth and the Park, Chen, and Yu 

algorithms were applied to identify new patterns. The results demonstrated 

the superior performance of the Support Vector Machines (SVM) classifier, 

which achieved the highest accuracy of 98.2%. The Random Forest (RF) 

classifier had the highest precision (92.80%), and the SVM classifier had the 

highest F1 score (94.80%). Similarly, the Park, Chen, and Yu algorithm 
outperformed FP growth, achieving an accuracy rate of 98.5%. These 

findings underscore the potential of big data and machine learning in pattern 

recognition and predicting infectious diseases, ultimately contributing to 

improved public health outcomes. 

 

Keywords: Big Data, Healthcare, Association Rule Mining, Random Forest, 

Infection Diseases, PCY Algorithm 

 

Introduction 

The emergence of big data platforms and advancements 

in machine learning algorithms have enabled researchers to 

extract insights from massive amounts of data. This could 

potentially lead to the development of more effective 

approaches for the surveillance and control of infectious 

illnesses Anwar and Khan (2020). 

The simplicity of storing, manipulating, and 
analyzing diverse data formats at large scale May be 
beneficial for health institutions and public health 
officials to promptly respond to and manage infectious 
disease outbreaks. Recently researchers have recognized 

the promises of big data in enhancing infectious disease 
monitoring and control. 

Lee et al. (2022) examined the difficulties in using 

big data to comprehend the spatial distribution and 

transmission of infectious illnesses from a 

technological, practical, and ethical standpoint. 

Integration of multiple data streams gathered at various 
spatial scales is technically difficult due to the 

heterogeneity of data sets and data types in this sector; 

a larger usage of multilevel Bayesian statistical 

methodologies would help to solve this problem and 

the conceptual gap between traditional epidemiology 

and the world of big data. 
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It is possible to find new patterns and relationships by 
mining the passive data created by the Internet, mobile 

phones, satellites, and radio-frequency sensors, which are 
becoming more widely available. Since around 2001, the 

number of papers at the intersection of big data, digital 
epidemiology, and infectious diseases has increased almost 

exponentially, attesting to the fact that the area of infectious 
diseases research is not immune to the big data revolution. 

Since around 2001, the number of researchers at the 
nexus of big data and infectious diseases has increased 

almost exponentially, attesting to the fact that the area of 
infectious diseases research is not immune to the big data 

revolution. For this special issue, this study introduces a 
smart Big Data framework to predict infectious diseases 

by finding novel symptom patterns to enhance 
healthcare's infection prevention and control. 

 To achieve this objective, the effectiveness of the 
performance of the machine learning algorithms like K-

Nearest Neighbors (K-NN) and the Random Forest (RF) 
models was used to clean and maintain big data in 

addition to the mining model FP-growth and Park, Chen, 
and Yu of China (PCY) to discover new symptoms rules. 

This study focused on Covid-19 symptoms as a case study 
for a type of infectious disease. 

Related Works 

Big data offers great potential in the field of 

communicable disease monitoring, as it can improve the 
timeliness and accuracy of information by leveraging new 

data sources. These sources also provide access to 
previously inaccessible populations. By utilizing these data 

sources, we can gather information about the effectiveness 
of vaccines and medications, as well as enhance disease 

surveillance efforts. The promises of these big-data flows 
must be weighed against caution, though. 

Singh et al. (2020) provided a succinct history of 
disease monitoring, pointed out the flaws in active systems, 

and argued that symptomatic surveillance has to be 
strengthened and deepened using big data. Influenza is used 

as a case study, where a high volume of medical claims data 
gathered by large private sector data warehouses sheds light 

on the spread of pandemics with good spatial detail. The 
high volume of medical claims data is partly caused by 

privacy issues and restrictions on access to electronic health 
data in government and academia. 

 They also showed how cutting-edge digital monitoring 
technologies, like Google Flu Trends (Grein et al., 2020), 

could malfunction due to overfitting and quickly become 
obsolete. This issue becomes especially important after 

significant changes in disease dynamics, such as the advent 
of a new pandemic virus. Continuous testing against 

conventional surveillance systems acts as a buffer against 
these problems. To enhance the timeliness, accuracy, and 

depth of current surveillance indicators, "hybrid" systems 
that combine digital big data with traditional laboratory-

based surveillance and electronic health data are most likely 

the way forward considering the rise and fall of systems 
based solely on digital search engine data. 

Koppeschaar et al. (2017) discussed participatory 
surveillance, utilizing the European-influenza 

Reporting-System-Influenza net as an example. In an 
attempt to assist Sentinel physician-based systems in 

Europe that have become established, this monitoring 
system depends on volunteers signing up online to report 

their health on a weekly basis. The researchers recognize 
how a system like this can be utilized to track any urgent 

medical issues instantly. 
Liu et al. (2018) Discovered that smartwatches might 

be used to detect COVID-19 pre-symptoms. They 
examined the physiological and activity data gathered 

from the COVID-19 infection cases' smartwatches. They 
concluded that by using a two-level warning system based 

on significant increases in resting heart rate relative to 
individual baseline, 63% of COVID-19 cases might be 

identified before symptoms manifest. Additionally, they 
discovered that employing wearable technology for 

activity tracking and health monitoring could aid in the 
early recognition of respiratory infections. Some 

investigations have concentrated on determining the 
medical traits and symptoms connected with positive 

COVID-19 cases since the symptoms of COVID-19 have 
not yet been thoroughly defined and because COVID-19 

is a dynamic disease. 

Buchy et al. (2021) based on identifying the symptoms 

associated with the positive results of the COVID-19 test 

and it was focused on a set of Healthcare Workers 

(HCWs). Initial examination was by phone and a COVID-

19 PCR test was conducted on each HCW to record 

symptoms associated with each case. The study 

discovered that the most general symptoms of positive 

COVID-19 cases were fever, myalgia, and anosmia, while 

the negative cases essentially have no symptoms, or the 
symptoms are restricted to nasal congestion and sore 

throat. Because of the timely scanning, collection, 

analysis, and distribution of regional and local online 

resistance index reports, they offer Resistance Open, a 

novel online platform for monitoring bacterial resistance 

to antibiotics. This strategy is a natural progression from 

earlier attempts to monitor epidemics of infectious 

diseases on a worldwide scale through the curation and 

analysis of various online data sources. 
Salathé et al. (2023) used data from individuals 

conducting online research or reporting their symptoms of 

post-exposure in health forums, on Twitter, or on 
Facebook to improve the identification of drug adverse 

events in the future. These data streams can be used to 
generate statistical mining of unstructured texts, which 

can considerably increase the timeliness of monitoring in 
this field and reveal correlations among adverse events 

and certain medications. The same justification might be 
given for tracking vaccine-related adverse events, which 

now depend on physicians' passive reporting. To track 
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vaccine hesitancy and medicine uptake, it is crucial to 
extract publicly generated digital data for data on behavior 

and sentiment (Salathé et al., 2023). 
Finding a balance between the cost of baseless 

notifications and the timeliness of social media 

information is a significant difficulty in this situation. 

Moreover, allegations of side effects can damage quickly 

and permanently the public's perception of life-saving 

medications or vaccines. Using hybrid systems that 

combine big-data streams with passive physician reports 

of adverse events will help protect the specificity and 
accuracy of the alerts, just like with disease monitoring. 

Wu et al. (2020) consider the status of epidemiological 

modeling and determine whether it is comparable to 

particle physics in the 1970s. They contend that one way 

to meet the problem of catching up with this Postponed 

development is to use epidemiological modeling of non-

health data, such as online search queries. They draw an 

Intriguing comparison between illness predictions. The 

authors also point out that it can be difficult to convey 

forecast uncertainty, although it is usually done 

in meteorology rather than in disease forecasts because 

everyone can grasp a 20% likelihood of rain but not a 20% 
risk of an epidemic. Finally, although the fundamental 

laws of physics govern weather forecasts, human behavior 

alterations can also affect an outbreak's dynamics and 

skew its associated digital footprints, potentially 

complicating disease forecasts. 

Aiello et al. (2020) presented that systems of disease 

surveillance are essential to monitoring and preventing 

public health issues. The use, potential, risks, and ethics 

of Internet- and social media-based data collection for 

public health surveillance are discussed in this study. By 

incorporating digital surveillance into public health as 
well as existing applications, that could be enhanced with 

greater integration, validation, and clarification of the 

regulations pertaining to ethical considerations. Hybrid 

systems that combine traditional surveillance data with 

information from social media posts, crowdsourcing, and 

search queries are promising advances. 

Materials and Methods 

Proposed Big Data Framework for Enhancing 

Health Care Infection and Control 

This study presents a big data framework to control 

infectious diseases. The main purpose is to manage and 

control the healthcare system by preventing the spread of 

infectious diseases. The proposed framework consists of 

four main phases, which are the data acquisition phase, data 

pre-processing phase, Association Rule Generation (ARG) 

Phase, and classification Phase. Depicted in (Fig. 1.)  

Data Set 

In this study, the data set comprises various patients, 

both male and female, from various age groups. Different 

characteristics or symptoms are employed for analysis, 

forecasting, and pandemic detection were taken from 

https://github.com/beoutbreakprepared/nCoV2019. The 

selected seven attributes are chosen from among 31 

attributes, as shown in (Table 1). 

 

 
 
Fig. 1: Big data framework for enhancing healthcare infection and control 
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Table 1: Selected attribute 

S Attribute Description 

1 ID Identify the document for each patient 

2 Age Age of the patient 

3 Gender Male/female 

4 Country Name of the reported country 

5 Date onset symptoms the date of onset of the patient's infection 

6 Symptoms List of reported symptoms in the case description 

7 Outcome 0 the patient's discharge 

  1 the patient recovered 

  2 the patient died 
 
Data Acquisition Phase (DAP) 

Timely yet accurate Data Acquisition (DA) is required 

during health emergencies to report public health 

responses. Epidemiological data is necessary in case of 

emerging epidemics to observe and expect spread of 

infection. For example, novel coronavirus Cases were 

first recorded in Wuhan, Hubei province, China, in 

December 2019 and have since prevalence across the 

world. Epidemiological data is collected and organized 

individual-level data from national, data of province, and 

data of cities health reports, as well as additional 

information from online reports and official government 
sources (Xu, 2020). The structured data sets were 

collected from epidemiological data with a set size of 5.9 

GB from the COVID-19 outbreak from December 2019 

and 2020 and 143 countries' real-time case information. 

Data Pre-Processing Phase (DPP) 

Data pre-processing is the main stage in the process of 

data mining by converting the raw data to accurate data. 

An important feature of DPP is the ability to enhance the 

accuracy of the proposed model. For that, this Phase starts 
by cleaning data, to ensure that the algorithm is only 

considering relevant data and not being influenced by any 

abnormal or incorrect data. In addition, the proposed 

model aims to minimize the time and resources desired to 

train the model by handling missing values or removing 

redundant data. In the proposed Phase, the major processes 

of DPP include data cleaning and handling missing values 

models. Data cleaning consists of two major steps: Remove 

outliers and feature selection. Outliers are data points that 

dramatically deviate from the other observations in a 

dataset. It could occur because of measurement 

inconsistency or incorrect data point filling. For example, 
the distribution like people's age 356 is not a valid age, 

while 45 is. Outliers can be discovered by using the Inter 

Quartile Range (IQR). IQR calculates the variation in the 

data set. Any value, that is above the range of -1.5-1.5 IQR 

is classified as outliers. Calculating the interquartile range 

takes the third quartile value and subtracts the first quartile 

value, as shown in the formula (Eq. 1): 
 
𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (1) 
 

The second step of data cleaning is feature selection, 

which is a selection of sample sets of relevant features. 

Where feature selection can be obtained by calculating the 

mutual information between all features as a score using 

(𝑓𝑖 ∈ 𝐹) and the target class is (c) then, the feature that 

will achieve the largest score is selected. The selection of 

the feature with the largest score can be calculated with 

Eqs. (2-3): 
 

𝑎𝑟𝑔𝑚𝑎𝑥 (𝐼𝑑𝑒𝑟𝑖𝑣𝑒𝑑 (𝑓𝑖,𝑐))

 𝑓𝑖 ∈ 𝐹
 (2) 

 

𝐷(𝑆, 𝑐) =
1

𝑆
∑ 𝐼(𝑓𝑖;𝑐)𝑓𝑖∈𝑆  (3) 

 
The average value of all mutual information values 

between each individual feature 𝑓𝑖 and class c determines 

the significance of a feature set S for that class. Cleaning 

has two steps in handling missing values, where it is vital 

to fill in the missing data values in data sets. Classification 

tasks can be applied to fill the missing data values in the 

dataset. However, the simplest solution is to simply fill 
them with zero which will dramatically decrease the 

accuracy of the model. Using machine learning models, 

such as the Random Forest model or k-nearest neighbors 

model can support enhancing the accuracy of data. 

Handle Missing Values (HMV) 

HMV is an imputation technique and it can be 

effectively scaled to handle substantial amounts of data. 

For instance, RFM can be employed for this purpose. 

Additionally, RFM can effectively manage the non-

linearity of data and address outliers. 

The Random Forest Model (RFM) contains contained 

mixed-variables of data (both numbers and categorical). 

An iterative imputation method supported by RFM. For 

instance, (Fig. 2) shows an example of how RF can handle 

missing values. RFM is arranged in three steps: 
 

 Step 1(initialization): When the selected column has 

missing values, the missing values are filled with the 

variable's mean of the respective columns for 

continuous variables or its most frequent class (for 

categorical variables) 

 Step 2 (imputation): The dataset is split into two 

groups: The training data, which is made up of the 

observed variables, and the prediction set which is 

made up of the missing observations. These training 

and prediction sets are fed to random forest and then 

the predicted value is imputed to the variable's 

missing portion. After imputing all the variables, one 

iteration is completed. 

 Step 3 (stop): The second step is repeated until a 

halting condition is reached. The MF ran for three 

iterations and then stopped. The iterative stopping 

criterion was reached when the variance between the 

previously imputed values and the newly imputed data 

https://en.wikipedia.org/wiki/Mutual_information
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increased for the first time with respect to categorical 

and numerical variable types. Multiple iterations 

enabled the algorithm to be trained on better quality 

data than it previously predicted (Su et al., 2020) 

 When all the values with missing variables have been 

imputed, one imputation iteration is completed 

 Step 4 (error evaluation): Calculation of the value of 

the Absolute Error using Eq. (4): 

 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑒𝑟𝑟𝑜𝑟 = |𝑎𝑐𝑡𝑢𝑎𝑙𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒| (4) 

 

Association Rule Mining Phase (ARMP) 

Association rule mining is a method for discovering 

interesting associations among items in big databases. It 

is a proposed scheme to establish strong rules discovered 

in datasets by some measures of interest (Shahin et al., 

2021). In any specified transaction with an assortment of 

variables, association rules are intended to discover the 

rules that set how or why certain items are joint. To 

achieve this proposed goal, there are various types of 

algorithms available for generating association rules in 

data mining (Rasheed et al., 2020), including the FP-

growth Algorithm and the PCY Algorithm. 

Park-Chen-Yu (PCY) algorithm. Three researchers 

park, Chen, and Yu from China developed the PCY 

algorithm. This algorithm is used in the field of big data 

analysis for association rules mining when the dataset is 

very huge and numerous transactions (Zhang et al., 2023). 

The PCY algorithm contains two passes known as pass 1 

and pass 2. By leveraging the idle memory from pass 1, a 

hash table is maintained to track the occurrences of all 

items in pass1, referred to as 1 Count. For each item set, 

consisting of items = [i_1…. i_k], hash all pairs to an item 

set of the hash table and increment the count of the item 

set by 1. The min sup is calculated by using Eq. (5): 

 

𝑀𝑖𝑛sup(𝑥) = (𝑒∧(𝑎𝑥 − 𝑏)) + 𝑐 (5) 

 

where, x is the number of transactions in the dataset, a, b, 

and c are constants because it increases minsup when there 

is little data and decreases it when there is more data as 

shown in Fig. (3) (Zhang et al., 2023). 

 

 
 
Fig. 2: Example of RF algorithm for handling missing values 

 
 

Fig. 3: Two passes of the PCY algorithm 

 

For example, after the spread of COVID-19 disease, 

patients used search engines to search for symptoms of 

common infections via the Internet. This transaction is 

noted. If a patient is infected with COVID-19 from any 

other person with the symptoms, the main purpose of this 

algorithm is to discover frequent item sets, along with fever 

patients frequently infected coughs. The transactional 
dataset in (Table 2) contains eight transactions, with a 

Threshold value or minimization value equal to three, the 

letter p represents the patient and hash function. 

So, from the above example Table 1, the Cough is the 

most frequent symptom with fever symptom, so, it is 

considered a frequent item. Suppose we assign cough = 1, 

fever = 2, malaise = 3, ARVI = 4 and dry mouth = 5. Then, 

Table 2 shows the data set after the change. 

Using buckets and the technique of map-reduce for 

solving the problem: 

 

 Candidates are mapped and the length of each pair is 
determined as shown in (Table 3) 

 Use a hash function to locate the bucket number 

 

Step 1: Map each element to determine its length, 

by calculating the frequency of each symptom as shown 

in (Table 4). 

Step 2: Eliminate all elements with counts lower than  

One, but there is no count lower than one, so the 

candidate set is equal to {1, 2, 3, 4, 5}. 

Step 3: Every candidate set has been mapped into pairs 

and the lengths of each pair have been calculated as shown 

in (Table 5). 

Avoid using pairs that have previously been written. 

Listing all sets with lengths greater than the threshold 

value: {(1, 3) (2, 3) (1, 4) (1, 5) (4, 5) (2, 5) (3, 4) (3, 5)}. 

Step 4: Use hashing functions. (The bucket number is 

provided). By calculating the hash function I multiply J 

mod ten as represented in (Table 6). 

Step 5: In the last step, the candidate set has been 

prepared as shown in (Table 7). 
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Table 2: Example transaction dataset 

Transaction Id Transaction symptom 

P1 Cough, Fever, Malaise 
P2 Cough, (ARVI), Dry mouth 
P3 Cough, Malaise 
P4 Fever, Dry mouth 
P5 Cough, (ARVI), Fever 
P6 Cough, Fever, Malaise, Dry mouth 
P7 Fever, Malaise, Dry mouth 
P8 Malaise, Fever 
 
Table 3: Transaction dataset after changing symptoms with 

numbers 

Transaction Id Transaction symptom 

P1 1, 2, 3 
P2 1, 4, 5 
P3 1, 3 
P4 2, 5 
p5 1, 3, 4 
P6 1, 2, 3, 5 
P7 2, 3, 5 
P8 2, 3 
 
Table 4: The length of each element is mapped 

Symptom # Key Frequency 

1 1 5 
2 2 5 
3 3 5 
4 4 2 
5 5 4 
 
Table 5 Lengths of each pair 

Transaction Id Transaction symptom Lengths of each pair 

P1 {(1, 2) (1, 3) (2, 3)} (2, 3, 3) 
P2 {(1, 4) (1, 5) (4, 5)} (4, 5) 
P3 {(1, 3)} 1 
P4 {(2, 5)} (2, 5) 
p5 {(1, 3) (1, 4) (3, 4)} (3, 4) 
P6 {(1, 2) (1, 3) (1, 5) (2, 3) (3, 5) 
 (2, 5) (3, 5)} 
P7 {(2, 3) (2, 5)} 1 
P8 {(2, 3)} 1 
 
Table 6: The value of each pair after implementing the hash 

function 

Pairs Hash function Value 

(1, 3) (1*3) mod 10 3 
(2, 3) (2*3) mod 10 6 
(1, 4) (1*4) mod 10 4 
(1, 5) (1*5) mod 10 5 
(4, 5) (4*5) mod 10 0 
(2, 5) (2*5) mod 10 0 
(3, 4) (3*4) mod 10 2 
(3, 5) (3*5) mod 10 5 
 
Table 7: Bucket Number arranges the pairs 

Bucket no. Pairs 

0 (4, 5) 
0 (2, 5) 
2 (3, 4) 
3 (1, 3) 
4 (1, 4) 
5 (1, 5) 
5 (3, 5) 
6 (2, 3) 

Table 8: The candidate set is arranged by HSF 

Candidate  Highest support Bucket Bit 
set Pairs frequency no. vector 

(4, 5) (4, 5) 3 0 1 
(2, 5) (2, 5) 4 0 1 
(3, 4) (3, 4) 3 2 1 
(1, 3) (1, 3) 3 3 1 
(1, 4) (1, 4) 5 4 1 
(1, 5) (1, 5) 3 5 1 
(3, 5) (3, 5) 3 5 1 
(2, 3) (2, 3) 5 6 1 
 

 
 
Fig. 4: The linked list represents a key-value pair-linked list 

using hashing function 
 

The Highest Support Frequency (HSF) is the 

number of duplications of that vector. By reviewing 

pairs with a support frequency lower than three, the 

candidate set is rejected if its support is below three as 

represented in (Table 8). 

Then, the pairs are arranged in ascending order of their 
acquired bucket number, as shown in (Fig. 4). 

Calculating the confidence. Confidence of this 

association rule is the probability of j given items =
[𝑖1; … . 𝑖𝑘], in the form i j, where j and I are a separate set 

of symptoms, i.e., i j =. i is known as the antecedent of the 

rule and J is known as the consequent. It is also referred 

to as "if-then," where "if" stands for the antecedent and 

"then" for the consequence (Kaushik et al., 2021). In 

general, Support, confidence, and lift are used to gauge 

how effective newly discovered rules are. Support can 

officially be described in Eq. (8): 
 
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐼 → 𝐽) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡({𝐼} ∪ {𝐽})  (6) 
 

Therefore, the frequency (or generality) of a rule for a 

definition of confidence is calculated in Eq. (9): 
 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐼 → 𝐽) =
Pr[𝐼∪𝑗]

Pr[𝐼]
=

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐼∪𝑗)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐼)
 (7) 

 
where, the percentage of patients who have j to all 
illnesses is the fraction of patients who have j., Lift 

indicates the frequency of symptom Y occurrence during 

symptom i occurring while controlling the likelihood of 
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symptom j occurrence (Li and Sheu, 2021). The 

correlations among j and I are determined by the lift value, 

which can be independent (= 1), positively associated 
(>1), or negatively related (<1). 

Results 

The proposed framework has been applied and tested. 

The performance of handling missing values was evaluated 

by comparing it with the RF model in the Machine 

Learning library (MLlib) and the K-NN model. MLlib is an 
Apache Spark machine-learning library that includes PF-

growth and PCY algorithm implementation for data mining 

(Shahin et al., 2021) dataset. 

Handle Missing Values Models 

The Support Vector Machine (SVM) Model 

The Support Vector Machine (SVM) uses a function ϕ 

to map the training data from the input space into a higher 
dimensional feature space and then build a separating 

hyperplane in the feature space with the maximum margin 

(Idri et al., 2018) (Idri A). The transformation should be 

chosen in a certain way so that their dot product leads to a 

kernel-style function by using Eq. (8): 
 
𝐾(𝑥, 𝑥𝑖) = 𝜙(𝑥). 𝜙(𝑥𝑖) (8) 
 

Given a training set of data Eq. (9): 
 
𝑆 = {(𝑥1, 𝑦1), (𝑥2 , 𝑦2). . . (𝑥𝑛 , 𝑦𝑛)} (9) 
 
where, xi є Rd denotes an input vector and yi є R is its 

corresponding target value, the regression problem 

determines a function f that can approximate targeted 

values accurately. f (x) is given by Eq. (10): 
 
𝑓(𝑋) =< 𝑤, ∅(𝑋) > +𝑏 (10) 
 
where, w є Rd, b є R, and ϕ denote a nonlinear 

transformation from Rd to high-dimensional space. 
ε-SVR aims to find a function f (x) that has at most ε 

deviation from the actually obtained targets yi for the 

training data set and simultaneously is as flat as possible. 

The Random Forest (RF) Model 

The Random Forest (RF) model is implemented in 
the Spark framework, which relies on Resilient 
Distributed Datasets (RDDs) for executing parallel 
tasks. NumPy and Pandas are imported to read in the 
mentioned COVID-19 dataset. To present the 
effectiveness of the imputers, a complete dataset without 

any missing values was taken and then the data at 
random was amputated and created missing values. Then 
the imputers are used to predict missing data and 
compare it to the original. The missing-PY library for 
Miss Forest Functions (MFF) and the mice forest library 
for mice forest were used for Implementation. The four 
techniques to impute data were used: 

 Step 1: Six lists of unique random numbers ranging 

starting from number zero are made to the Covid-19 

dataset’s length. Using some pandas manipulation, 
the values of Age, Sex, date_onset_symptoms, 

lives_in_Wuhan, symptoms, and outcome are 

replaced with NaNs, based on the index positions 

generated at random, as shown in (Fig. 5) 

 Step 2: Thus, the imputation is performed. The target 

variable is removed from the data and then missing 

values are now imputed 

 Step 3: Imputed columns from the miss-forest 

algorithm are represented by creating a new data 

frame containing all columns in the original and 

imputed values as shown in (Fig. 6) that represent 
ten columns as a sample 

 Step 4: The absolute errors also known as the 

approximation errors are calculated by the original's 

value (the actual value) and the imputed value 

(measured value), the absolute errors are small 

between the original's value and the imputed value 

as shown in (Fig. 7), as a sample of the absolute 

errors are calculated 
 

 
 
Fig. 5: The table represents the dataset with Nan's Values 
 

 
 
Fig. 6: The table represents the dataset of the original addition 

to imputed values 
 

 
 
Fig. 7: The table represents the dataset of the original and 

imputed values after absolute errors are calculated 

https://onlinelibrary.wiley.com/doi/10.1002/smr.2114#smr2114-disp-0004
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Comparing Results between Support Vector Machine 

(SVM), Random Forest (RF), and (K-NN) Models 

The percentages of precision results of handling 

missing values of attributes are greater than by using the 

Random Forest (RF) model. The percentage accuracy 

result of handling missing values of attributes is greater 

than by using the Support Vector Machine (SVM) model 

as shown in Fig. 8. The F1-score result of handling 

missing values of attributes is greater than by using the 
Support Vector Machine model, The percentages 

accuracy result of handling missing values of attributes 

are smaller than by using the K-Nearest Neighbours 

(KNN) model as shown in (Tables 9-11). The accuracy of 

the backtesting is calculated using a Formula (11) that 

incorporates information from the current dataset: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)+∑(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

∑(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)+∑(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

∑(𝐹 𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)+∑(𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

  (11) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

∑(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) ∑(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 (12) 

 
The formula used to determine the F1 score is as follows: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗ 𝑅𝑒𝑐𝑎𝑙𝑙∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (13) 

 

 
 
Fig. 8: The precision, accuracy, and F1-score comparison of ML 

models in the outcome of different attributes 
 
Table 9: Outcome of five different attributes using the Support 

Vector Machine (SVM) 

Attribute Precision Accuracy F1-score 

Age 0.92 0.97 0.951 
Gender 0.93 0.976 0.942 
Country 0.91 0.987 0.921 
Symptoms 0.93 0.981 0.953 
Outcome 0.9 0.985 0.932 

 
Table 10: Outcome of five different attributes using random forest 

Attribute Precision Accuracy F1-score 

Age 0.94 0.95 0.94 
Gender 0.93 0.93 0.92 
Country 0.91 0.92 0.91 
Symptoms 0.92 0.97 0.96 

Outcome 0.94 0.94 0.93 

By comparing the performance of all the machine 

learning models when a different number of features are 

selected. We observed that all models produce maximum 

accuracy when the top 5 features are selected for the 

performance of SVM, RF, and K-NN classifiers, 

respectively as shown in Table 12. Support Vector 

Machines (SVM) have been reported to successfully 

handle missing values, particularly in datasets including 

different types of variables as shown in (Fig. 9). Overall, 

Support Vector Machines (SVM) had the smallest 

NRMSE (mean = 0.30) compared to Random Forest had 

NRMSE (mean = 0.35) and K-NN (mean = 0.39). In 

addition, the accuracy of Support Vector Machines (SVM) 

Random Forest (RF) is higher than the accuracy of K-NN. 

 
Table 11: Outcome of five different attributes using K-NN 

Attribute Precision Accuracy F1-score 

Age 0.90 0.88 0.89 

Gender 0.89 0.87 0.88 

Country 0.86 0.80 0.91 

Symptoms 0.89 0.89 0.91 

Outcome 0.83 0.83 0.85 

 
Table 12: Performance of ML models 

Model Precision Accuracy F1-score 

SVM 0.918 0.9652 0.948 

RF 0.928 0.942 0.932 

K-NN 0.874 0.854 0.888 

 

 
(a) 

 

 
(b) 
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(c) 

 
Fig. 9: Accuracy comparison of a different number of features 

are considered: (a) SVM, (b) RF, (c) K-NN 
 

Data Association Rule Mining (ARM) 

This phase is based on Apache Spark data frame 

preprocessing. In the implementation of the PCY algorithm, 

Spark RDD is used. The algorithms were executed and run 

by the Anaconda navigator using spark. All 3,048,576 

patients had their information retrieved and 1783 of them had 

frequency patterns of symptoms. The top 10 symptom rules 

are ordered by minimum support threshold ratings, so the 
case of symptoms in real life must be encoded. 

Frequency Patterns According to Gender 

Important symptom rules broken down by males as 
shown in (Table 13) and important symptom rules broken 
down by females as shown (Table 14), it is clear that the 
number of produced frequent patterns in the gender of the 

male is larger than the gender of the female dataset. 
Therefore, the algorithms were executed on various 
values of minimum support thresholds from 10-100%. 

Frequent patterns generated for females were 6001 
rules and frequent patterns were produced for males 6060 
rules, so a variance between male and female symptom 
rules was seen. The most common diagnoses in men were 
Smell and taste disturbance, Dry cough, Fever, and 
Headache. In women, the most common diagnoses were 
cough, rhinorrhoea, sore throat, pneumonia malaise/body 
aches, and weakness. 

Frequency Patterns According to Age 

When reported symptoms. The median age of 

patients was 52 years (SD ±31.5 years; IQR 66 years), 

where 57% of the patients were male and 43% of the 

patients were female. 

The age group between 20-45 years recorded 13319 

frequent symptoms, where the greatest number of 

symptoms was a dry mouth and fever with minimum 
support thresholds equal to 10% as shown in (Table 15). 

The age group between 45 and 65 years recorded 8056 

frequent symptoms, where the greatest number of 

symptoms were breathing problems, coughs, and weakness 

with minimum support thresholds equal to 20%. As shown 

in (Table 16 ). The age group more than 65 years recorded 

8023 frequent symptoms, where the greatest number of 

symptoms were breathing problems; nausea, and cough 

with minimum support thresholds equal to 20%. 
The group of discharged recorded 6522 Frequent 

symptoms, where common symptoms were mild cough, 

fever, and weakness with minimum support thresholds 

equal to 20% as shown in (Table 17). 
 

Table 13: Top 10 important symptom rules broken down by gender (male) 

  Mini support Generated 
Rules Candidate Set threshold % frequent rules 

Rule 1 {Malaise/Body Soreness 10 1015 
 /Dry mouth} 

Rule 2 {Cough/ Headache/  20 890 
 General malaise} 

Rule 3 {Cough/Fever/Headache/ 30 860 
 Malaise} 

Rule 4 {Anorexia/Fever} 40 610 
Rule 5 {Cough/General malaise/  50 590 

 Joint muscle pain} 
Rule 6 {/Dry Cough /Fever/ 60 560 

 Breathing difficulty} 
Rule 7 {Headache/ Malaise/ 70 495 

 body soreness,/(ARVI)} 80 405 
Rule 8 {Fever/Cough/ Headache} 90 330 

Rule 9 {(ARVI) / fever} 
Rule 10 {Chest distress/ Fever/ 100 305 

 Weak/ Dyspnea} 
 
Table 14: Top 10 important symptom rules broken down by gender (female) 

  Mini support Generated 
Rules Candidate set threshold % frequent rules 

Rule 1 {Cough/Fever/(ARVI)} 10 980 

Rule 2 {Cough/ General malaise/  20 910 
 Joint muscle pain} 

Rule 3 {Sore throat/ Headache/  30 840 
 Tiredness} 40 710 

Rule 4 {Dry mouth/ Fever/myalgia} 50 601 
Rule 5 {Fever/ Cough/ Vomiting} 

Rule 6 {Aching muscles/ Fever/  60 540 
 pneumonia} 

Rule 7 {Fever/cough/ 'aggressive  70 440 
 pulmonary} 

Rule 8 {Chills/Conjunctivitis/  80 380 
 Cough/ Fever} 

Rule 9 {Cough/Malaise/Body  90 310 
 soreness, Sputum} 

Rule 10 {Chest distress/ Cough/  100 290 
 Fever/ Gasp} 
 
Table 15: Top 10 important symptom rules broken down by age (20–45 years) 

  Minimum support Generated 

Rules Candidate set threshold % frequent rules 

Rule 1 {Dry mouth, Fever} 10 2654 

Rule 2 {Dry mouth, Sore throat} 20 2444 

Rule 3 {Fever, Pneumonia,  

 Sore throat} 30 2115 

Rule 4 {Cough, Malaise/body 40 1982 

 soreness, Sputum 

Rule 5 {Fever/ Cough/ Vomiting} 50 1230 

Rule 6 {Diarrhea / Sore throat} 60 924 

Rule 7 {Fever/cough/ 'aggressive 70 688 

 pulmonary} 

Rule 8 {Nausea/Nonrespiratory 80 561 

 symptoms} 

Rule 9 {Cough/Malaise/Body  90 411 

 soreness, Sputum} 

Rule 10 {Dry mouth/Weakness} 100 310 
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Table 16: Top 10 important symptom rules broken down by age 

(45–65 years) 

  Mini support Generated 

Rules Candidate set threshold % frequent rules 

Rule 1 {Breathing problem/ 10 1502 

 Cough/Weakness} 
Rule 2 {Weakness/ Nausea,} 20 1244 

Rule 3 {Myocardial infraction/ 30 1015 
 Cough} 

Rule 4 {Cough/Malaise/body 40 982 
 soreness/ Sputum 

Rule 5 {Dry mouth /Pneumonia} 50 940 
Rule 6 {Diarrhea / Sore throat} 60 634 

Rule 7 {Cough/ Sore throat/ 70 548 
 Sputum} 

Rule 8 {Nausea/Nonrespiratory 80 480 
 symptoms} 

Rule 9 {Cough/Malaise/Body 90 390 
 Soreness} 

Rule 10  {Heart failure /Cough} 100 321 
 
Table 17: Top 10 important symptoms rules broken down by Status 

(Discharge) 

  Mini support Generated 
Rules Candidate set threshold % frequent rules 

Rule 1 {Mild Cough/ Fever} 10 982 

Rule 2 {Mild cough / Fever/ 20 892 
 Weakness} 

Rule 3 {Cough/ Fever/ 30 849 
 Runny nose} 

Rule 4 {Cough/ Fever/ Sputum} 40 788 
Rule 5 {Cough/Fever/ Gasp} 50 686 

Rule 6 {Cough/ Dizziness/ Fever} 60 625 
Rule 7 {Aching muscles/ Fever/ 70 570 

 Pneumonia} 
Rule 8 {Fever / Aggressive 80 450 

 pulmonary symptomatology} 
Rule 9 {Cough/Malaise/Body 90 370 

 Soreness} 

Rule 10 {Fever /Weakness} 100 310 

 
Table 18 shows the group of recovered recorded 8397, 

where the common symptoms were malaise and body 

soreness in cases of recovered. 

The group of deaths recorded 1158 frequent 

symptoms, where common symptoms were acute left 

heart failure and acute coronary syndrome, fever, and 

difficulty breathing. The results of all common tables 

represent fatigue by 0.713 (71.3%) followed by fever at 

0.512 (51.2%), Smell and taste disturbance 0.424 

(42.4%), mild cough at 0.341 (34.1%), Dry cough 0. 262 

(26.2%), Muscle or joint pain 0.252 (25.2%) percentage, 

Headache 0. 232 (23.2%), Difficulty breathing 0.212 
(21.2%), Sore throat 0. 192 (19.2%), malaise 0.184 

(18.4%) of patients. Similar to this, the clinical 

characteristics and prognosis of the disease are strongly 

influenced by the patient's age. Similar trends were seen 

in our study's age-wise distribution of symptom patterns 

for individuals under the age of 45, as shown in Fig. 11. The 

other common symptoms in the pattern were body 

soreness, cough, dry mouth, Malaise, body soreness, 

sputum production, rhinorrhea and Aggressive pulmonary 

symptomatology which are included with the symptoms 

Among COVID-19 hospitalized patients who are young 

and middle-aged. Patients between the ages of 45 and 65 

have problems with breathing symptoms, along with 

Sputum, cough, and fever in patients more than 65 years of 
age, the symptom patterns are more often breathing 

problems followed by Nausea and other symptoms such as 

Anorexia, fever, body soreness, and Sore throat. Overall, 

our study's findings are consistent with those reported in the 

literature; younger persons are more likely than older adults 

to experience symptoms linked to the ear, nose, and throat. 

Comparison of the Rule Mining Algorithms in Real Time 

The performance of the most advanced rule-based 

algorithms across the COVID-19 symptoms data sets was 
compared as shown in (Fig. 11). To ensure an impartial 

evaluation, identical criteria are employed for assessing 

support and trust in both FP and PCY expansion techniques 

by conducting a comparison of running time on both 

techniques. To do that, we raised the number of transactions 

to ensure that the database was large enough. PCY and the 

FP-growth algorithms in the same setting, utilizing the MLlib 

package. Running the association rules using PCY is quicker 

than FP-growth, as demonstrated in Fig. 11. The 

investigation mentioned below showed that PCY offered the 

best setting for using the Covid-19 dataset. The algorithms 

were executed using the domain of minimum support with 
values starting at 10-20%. (Table 10) shows the number of 

produced frequent patterns for every Mini support value. 

(Fig. 10) represents the average running times by seconds for 

the PCY and FP-Growth algorithms by the thresholds. Each 

run was executed ten times to obtain a valid result for the 

running times and the average was calculated. For most 

thresholds. PCY performed better than FP-Growth. On 

average, PCY was 7.21% faster than FP-Growth. Modern 

information technologies are being used in the healthcare 

industry to address problems with global health such as 

unequal access to medical care, an increase in chronic 

illnesses, and rising medical expenses. Big data methods can 
be used to explain COVID-19 in terms of outbreak 

monitoring, viral development, disease prevention, and 

vaccine production. Health authorities can carefully manage 

and monitor the infectious disease. 
 

Table 18: Top 10 important symptom rules broken down by Status 

(Recovered) 

  Mini support Generated 

Rules Candidate set threshold % frequent rules 

Rule 1 {Malaise/body soreness} 10 1650 

Rule 2 {Fever, Sore throat} 20 1071 
Rule 3 {Sputum/ Cough/Fever} 30 987 

Rule 4 {Fever, Weakness} 40 901 
Rule 5 {problem of Breathing/ 50 887 

 Fever} 
Rule 6 {Aching muscles/ Fever/ 60 798 

 Pneumonia} 
Rule 7 {Fever, Headache} 70 653 

Rule 8 {Chest pain/ 80 550 
 Nasal congestion} 

Rule 9 {Dry mouth/ Dyspnea} 90 475 

Rule10 {Cough/ Dyspnea/ Fever} 100 425 
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Fig. 10: The running times of PCY and FP-Growth algorithms 
 

 
 
Fig. 11: Relative frequency of symptoms in COVID-19 patients 
 

Conclusion 

Infectious disease, the single biggest hazard to life, 

was the primary cause of this mortality. Many of those 
who survived to adulthood died of infectious diseases, 
either directly or indirectly, but trauma took on greater 
importance. Each infectious disease has distinct 
symptoms that are unique to it. General warning signals 
and symptoms that several infectious illnesses share. 
Processing big data is therefore one of the biggest 
challenges facing users of this data. Therefore, a 
framework was created to address missing values in big 
data, where the data sets were manipulated using the K-
NN model and random forest model. The results show that 
the Support Vector Machines (SVM) classifier achieved 

the highest accuracy of 98.2%. The Random Forest (RF) 
classifier had the highest precision (92.80%) and the SVM 
classifier had the highest F1-Score (94.80%). A new 
framework has been introduced to improve health care, 
like the use of big data for infectious disease control and 
prevention. This study offers a carefully optimistic view 
by using big data for infectious disease control and 
prevention, where new candidate sets of symptoms are 
discovered. The most common symptoms in our study 

encompassed malaise and body soreness, dry mouth, 
fever, chest distress, and breathing problems. 
Additionally, anorexia, sore throat, and aggressive 
pulmonary symptomatology are among COVID-19 
patients' symptoms. For most thresholds. PCY performed 
better than FP-Growth. On average, PCY was 8.45% 
faster than FP-Growth. Moreover, PCY in environments 
of distribution processing, similar to most mining 
algorithms, needs a large amount of data to be transmitted 

over the network. Therefore, bandwidth limitation is one 
of the major problems for the PCY algorithm, especially 
in this epoch of big data. In the future, improvements 
could be applied to the PCY algorithm by enhancing the 
distribution of hashes, which will improve the efficiency 
of the algorithm and reduce the execution time. 
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