

© 2024 Shilpa R. G., Pushphavathi T. P. and Murthy P. V. R. This open-access article is distributed under a Creative

Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Design and Development of an Automatic Penetration Test

Generation Methodology for Security of Web Applications

Shilpa R. G., Pushphavathi T. P. and Murthy P. V. R.

Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bangalore, India

Article history
Received: 16-03-2024
Revised: 17-05-2024
Accepted: 29-05-2024

Corresponding Author:
Shilpa R. G.
Faculty of Engineering and
Technology, M. S. Ramaiah
University of Applied Sciences,
Bangalore, India
Email: shilparg.ms.mc@msruas.ac.in

Abstract: In today's world, web application security is becoming more crucial.

Web applications frequently hold sensitive data, which might be compromised

if it were to fall into the hands of a hostile attacker. This leads to significant

losses for businesses and customers alike and exposes the qualities of

confidentiality, integrity, and availability. A penetration test is an attempt to

exploit vulnerabilities in an IT infrastructure with the goal of evaluating its
security. Existing methodologies do not have a systematic basis to represent

information gathered hence creating automatic attack generation difficult. The

proposed model-based penetration test framework provides a repeatable,

systematic approach for conducting penetration tests based on appropriate

models of the behavior of the web application. It incorporates a novel approach

for model-built security tests along the two scopes of vulnerability coverage

criteria and automated attack generation from vulnerability mapping and

abstract behavior of web applications. The algorithms are proposed for both

manual and automatically driven penetration tests from the state models. The

proposed approach is illustrated on a web app location within the banking

sector exploiting input validation vulnerabilities.

Keywords: Penetration Testing, Vulnerabilities, SQL Injection, Secondary

SQL Injection, Client-Side Manipulation, Model Driven Testing, State Models

Introduction

The growing dependence on online applications for a

range of functions, from basic webpages to intricate web

applications managing confidential information, has made

the security of web applications a critical problem. In

today's world, web application security is becoming more

and more crucial. Web applications are susceptible to a

surplus of security vulnerabilities, which malicious

hackers can exploit to compromise their availability,

integrity, or confidentiality. Insufficient input validation

outlooks out as a significant security apprehension for

web applications Li and Xue (2014). According to the

study carried out by Cisco dated March 2, 2023, India

ranks second in terms of all breaches disclosed in 2022.

Ransomware was the cause of 33% of the attackers, while

unprotected databases in India accounted for 17% of

cyber-attacks. According to the study carried out by

positive technologies the applications managing

government data accounts and are the targets of the most

attacks. The percentage of attacks that targeted web

applications rose from 14-23 percent in comparison to

2020. This is most likely a result of the rising quantity of

data in government information systems and the

expanding number of online services available. The

number of breaches increased by 83% of data breaches in

2022, 59% of data breaches have been exposed on social

security and mobile users have become victims of mobile

cybercrime within the past year. Along with government

institutions, the most vulnerable websites are the bank's

web applications. Critical vulnerabilities were found in

over 89% of the financial institution's systems.
To safeguard the security and consistency of web-

based systems, developers and administrators must

systematically address these vulnerabilities through

rigorous security methods and constant monitoring

Awang and Manaf (2013). Vulnerabilities fall into three

categories: Input validation vulnerabilities, session

management vulnerabilities, and application management

vulnerabilities (Choiriyah and Qomariasih, 2023).
Developers and security experts need to be conscious of

these weaknesses and depend on robust security practices,

including secure coding techniques, periodic security

assessments, and the execution of appropriate security

approaches, to be able to manage these risks effectively.

By cautiously endeavoring to exploit weaknesses, a

penetration test is an attempt to assess an IT system's

security. Bacudio et al. (2011) discuss the benefits,

Shilpa R. G. et al. / Journal of Computer Science 2024, 20 (10): 1176.1184

DOI: 10.3844/jcssp.2024.1176.1184

1177

strategies, and techniques of carrying out penetration

tests. A penetration testing methodology which is divided

into four stages namely information gathering, attack

generation, exploitation, and reporting the vulnerabilities

is suggested by the author. The paper lacks the approach

for adequacy criteria for penetration tests. The continual

occurrence of vulnerabilities has resulted in an increase in
demand for approaches that may identify vulnerabilities

in deployed web-based applications. As a consequence, in

order to be able to prevent/detect potential vulnerabilities

and security issues, it is essential to enhance testing

techniques as well as the effectiveness of significant

processes. Penetration testing is crucial for effectively

discovering and fixing vulnerabilities in web applications,

which helps organizations strengthen their safety

measures and decrease the probability of cyber-attacks

Benikhlef et al. (2016).

Currently, a significant gap in penetration testing is in
the area of process steps and methodologies for attack
generation so as to form a sound basis for penetration test
design. A related gap is that no models are used to
represent information gathered thereby making automatic
attack generation difficult.

Model-based design is incorporated in Model-Based

Testing (MBT) in order to systematize test activities or

model test artifacts Schmidt et al. (2016). At the abstract

model level, MBT enables preliminary generation and

automatic validation of tests. An enormous number of

model-based testing techniques used today incorporate

into account the automated creation of test cases from a

functional description of the system. Existing penetration
methodologies are insufficient to generate automatic

penetration tests from the information gathered. Model-

based testing lowers the amount of expertise needed for

security testing and improves the level of abstraction in

various aspects, it provides a systematic approach to

gather the information for automatic test generation. MBT

recycles functional system information, allowing the test

engineer to abstract from numerous factors in this regard.

But in order to validate security requirements, the testing

professional also needs to be fairly knowledgeable in

security in order to generate tests Felderer et al. (2011) as
penetration/security testing is tightly coupled with attack,

attack models can possibly fill this gap. Based on the

research gaps following are the research questions to be

addressed in order to fill the gap.

Research Questions

1. How do we arrive at the mapping of existing tools to

known vulnerabilities? How to integrate this

mapping into the relevant penetration test process?

2. How can penetration tests (penetration-related

sequence diagrams) be automatically generated?

3. What is an effective way of forming a knowledge base

or model representation from the information gathered?

4. How can attacks be generated automatically from a

model of information gathered?

This study proposes a repeatable, methodical model-

based penetration test basis for conducting penetration

tests built on appropriate models of behavior of the web

application. It is predominantly a manual process step

from the information-gathering phase to that of attack

generation. There exists a strong need for effective

automatic penetration test generation while a lot of work

is done in penetration test automation. Systematic

methods of representing a knowledge base of

vulnerabilities or models for them in the context of

penetration test design are also not reported. Current

trends are more about penetration test automation

(execution of attacks/scripts) but not about automatic

penetration test generation. By addressing these research

concerns, penetration testing could make major

advances that would make vulnerability detection and

attack scenario creation more effective and efficient.

Furthermore, by incorporating automation and model-

based approaches into the penetration testing procedure,

it may be possible to address current knowledge gaps

and improve testing procedures.

Related Work

For the past era, Model-Based Testing (MBT) has

remained a hot topic of significant research interest and

some recent studies have discovered some real benefits

that come from using it in daily life. Web application

security is highly endorsed and safeguarded by

penetration testing. Vulnerabilities are identified by

testers in a web application by simulating attacks. In
direction to achieve this effectively, testers depend on

automated methods, which collect input vector data

around the targeted web-based application. The efficacy

of the attack is determined by the application's

responses. The current techniques for accomplishing

these processes are frequently inadequate exposing

untested and vulnerable portions of the web-based

application unidentified.

Model-based Security Testing (MBST), which comes

under the broad area of MBT, concentrates more

specifically on the System Under Test (SUT's) security
requirements, particularly those associated with

validation, authorization, privacy, and reliability of data

Lunkeit and Schieferdecker (2018). MBST approaches

may address concerns concerning the security testing

methods used nowadays. Accordingly, early testing

through development and process automation during

security testing has been rendered possible by MBST

Felderer et al. (2016). The paper also indicates possible

directions for future research, like testing in combination

with security and safety or prioritizing attacks based on

known vulnerabilities. Sommer et al. (2023) discuss

Shilpa R. G. et al. / Journal of Computer Science 2024, 20 (10): 1176.1184

DOI: 10.3844/jcssp.2024.1176.1184

1178

model-driven approach to security testing. The

automobile attack database comprising 361 attacks is used

to analyze the model for likely attack paths constructed on

real-world attacks. Sommer et al. (2021). As a result,

attacker privileges can precisely represent crucial attack

vectors within automotive networks as illustrated in the

work. Casola et al. (2024) propose the approach, that
developers may automatically generate a security test

procedure while receiving a set of appropriate security

tests that they can replicate for their apps which saves time

and effort typically needed for penetration testing tasks,

asset identification, and mitigation of test-failures.

However, the suggested method relies on catalogs and a

security data framework that may be used to formalize the

knowledge of security experts.

Lonetti et al. (2023) propose IoT system validation
spanning a broad spectrum of test ideas in developing
application domains that can be enhanced by MBST.
MBST devices in core IoT domains have shown to be
efficient at evaluating the system's security against an
array of popular IoT attacks. The research also promises
to combine model-based security testing through further
security test techniques, namely fuzz or penetration

testing. Halfond et al. (2011) suggest a novel approach
that addresses the disadvantages of the penetration testing
methods currently in existence. This approach identifies
an attack that can successfully target a web application
and develops input vector identification using two newly
developed sophisticated evaluation techniques. Attacks
are simulated automatically by input vector data but this
approach lacks automatic generation of penetration tests
from the input vector data.

A model-driven repeatable, meticulous, and affordable

technique of Web application penetration test framework
unified into a Security-Oriented Software Development

Life Cycle is proposed by Xiong and Peyton (2010). The
Recommended framework is an informal methodology and

does not ensure a systematic approach for penetration test
generation. Also, it fails to define the vulnerability

coverage that the framework can achieve. Model-based
testing methods commonly address functional features. The

version of this method to vulnerability testing that proposes
refining the accurateness and correctness of testing is

proposed. Lebeau et al. (2013) propose a behavioral model
and test patterns as the foundation for a Model-Based

approach to testing vulnerability that targets to address both
logical and scientific vulnerabilities. This approach is not

widely used for security testing. A model-based penetration
test framework that provides an entirely integrated

approach within the system development life cycle
suggests a dependable, systematic, and economical

approach for web applications. Web penetration testing
models are assessed using TTCN-3, the test specification

language. Further, Stepien et al. (2012) revealed merging
distinctive simulations for the appropriate web

vulnerabilities and application functionalities caused by a

web abstraction model, and a TTCN-3 test framework

model is demonstrated. The model fails to address
Vulnerability test coverage which can be the basis for

prioritizing the penetration tests. MBST is based on formal
methodologies, but first, the security specialist is required to

develop a suitable web application model. Penetration testing
can be instead successful, but the security analyst's

experience is crucial. To bridge the gap between these two
security testing methodologies, Peroli et al. (2018) present

MobSTer, an MBST framework that is formal and flexible.
The basic idea is that model-checking methods allow an

analyst to execute security testing disregarding crucial tests
by automating the process of accessing potentially

vulnerable areas in the web application. The authors
highlighted that employing model-based security testing has

several advantages. But for real advantage an exhaustive
approach to security modeling and testing is essential.

Peleska et al. (2018) presented practical benefits, such as

automated requirement traceability, continuous test method

regeneration in regression testing and more logical and

effective test result analysis. Garousi et al. (2021) provide

intangible but important benefits, MBT improved test case

design in a measured investigation with a software testing

corporation compared to the previously used model-free test

scripts which resulted in increasing the accuracy of fault

detection. MBST presents the same benefits as MBT. As

illustrated by Peroli et al. (2018) pertaining to security

testing, the prototypes are essential to be augmented with the

security objectives that the SUT must adhere to. However,

the primary advantage of these security-enriched models is

their reusability Murthy and Shilpa (2018).

Design and Development

Existing Penetration Testing Methodology

A particular methodology to identify vulnerabilities in

web-based applications is penetration testing. Through

assaulting the applications employing automated tools or

manual techniques, it attempts to take advantage of

vulnerabilities in a web application by the attacker or an

unauthorized user. Typically, penetration reports provide

a summary of a list of vulnerabilities that were found.
However, this technique is incomplete and falls short

since there are normally no morals that stipulate which

penetration tests to execute and what inputs to try.

Information gathering, attack generation, and response
analysis are the three stages of the current penetration
testing methodology. An overview of all three phases is

shown in Fig. 1. Penetration testers use a variety of tools
and tactics to gain information about a certain web
application at the time of the information-gathering phase.
Penetration testers might create and exploit attacks based
on the information obtained during this phase. At the
attack-generating step, the information gathered is
employed to create attacks on the intended web application.

Shilpa R. G. et al. / Journal of Computer Science 2024, 20 (10): 1176.1184

DOI: 10.3844/jcssp.2024.1176.1184

1179

The information collection process is mostly done by hand,
except for the generation of attacks, which can be
automated with the aid of automated attack scripts. During
the response analysis phase, a tester examines the web

application responses to evaluate the efficacy of the attacks
and prepares a report for any vulnerabilities discovered.

Proposed Penetration Testing Methodology

The proposed Penetration methodology is shown in

Fig. 2. The penetration tests are designed to map the

vulnerabilities. Information gathered relates to functional

requirements, functional test cases, and security risks,

vulnerability knowledge base, scanning tool reports,

security testing reports, and Penetration Test Coverage

(PTC) metrics. Penetration tests are designed based on the

information gathered. The main source of information for

the penetration test design process step is based on the

black-box testing method and is the set of functional
scenarios/ functional test scenarios. Our objective is to

develop automatic and effective attack generation

algorithms from suitable models of information gathered.

State models in the context of security events

(vulnerabilities) are considered models of information.

Systematic Approach to Penetration Test Design

Existing methodologies lack clear guidelines to design

penetration tests as a part of the penetration test process.

Organizations can improve their ability to proactively

identify and mitigate security risks, as well as the scalability

and repeatability of security testing processes, and ultimately

strengthen their overall security posture against evolving

threats and vulnerabilities, by implementing automatic

penetration test generation techniques. The activities for the

design of the penetration test process consist of either:

1) Manually specifying necessary penetration tests by

deriving them from functional test scenarios as

shown in Fig. 3. Using UML sequence diagrams

Or

2) Specifying a state model of penetration tests based on

the functional test model and generating penetration
tests from the model as shown in Fig. 4a and 4b

Fig. 1: Existing penetration testing methodology Halfond et al.

(2011)

Fig. 2: Proposed penetration testing methodology

Fig. 3: Systematic approach to penetration test design using

manual method

(a)

(b)

Fig. 4: Systematic approach to penetration test design using

state model

Shilpa R. G. et al. / Journal of Computer Science 2024, 20 (10): 1176.1184

DOI: 10.3844/jcssp.2024.1176.1184

1180

Proposed Penetration Test Generation Methodology

The main source of information for the process of

designing penetration tests step is the set of functional

scenarios/ functional test scenarios. The activities of test

process of penetration testing are affected by:

1) A change in functionality (hence, corresponding

change in the functional test scenarios)

2) A change in web-based application code (driven by

functionality-related changes or otherwise)

3) Updated vulnerability knowledge

4) A change in the platform on which web application

is deployed

While the fact that functional test scenarios may be used as
a basis for penetration test design is mentioned in Stepien et al.
(2012) a systematic method of deriving penetration tests
from functional test scenarios is lacking. Although functional
test scenarios may be considered the basis for penetration test
design there is no systematic methodology to develop
penetration tests from functional tests Stepien et al. (2012).
The information collected from all pertinent sources for the
application that is being developed or released pertains to
functional requirements, functional test cases, and security
risks in the environment of the entire web application,

comprising the platform on which the application runs and
released as shown in Fig. 5. The information gathered
impacts the design of penetration tests.

The proposed method uses the information listed
below to create penetration tests that are centered on the
black-box approach:

 Functional test events (functional test scenario is a

sequence of functional test events)

 The set of vulnerabilities that can be exploited as each

functional test event or stimulus occurs (the function

vulnerabilityMapping (functional test event) is the set
of vulnerabilities that can be exploited at the time the

functional test event is triggered)

 Our original contribution suggested to existing

penetration test processes is to introduce a step for

determining vulnerability mapping (functional test

event) for each and every functional test event of the

web application under test

A fundamental aspect of penetration test design is

creating penetration test events based on vulnerability

mapping (functional test event) at each functional test

event. Information gathered from architects, developers,

customers (end users), field failures, and vulnerability

knowledge aids in the creation of penetration test events

as shown in Fig. 6.

A penetration test event is inserted at a relevant
position either preceding or following each functional test
event (in a functional test scenario) position based on
vulnerability mapping. Individual normal or penetration
test scenarios are represented as sequence diagrams.

Fig. 5: Proposed penetration test generation methodology

Fig. 6: Gathering information on exploitable vulnerabilities at

each level of a functional test scenario

Penetration test coverage is a metric that indicates the

fraction or percentage of penetration testing carried out.

In this study, the Penetration Test Coverage (PTC) a part

of the information gathered is proposed. PTC = 0%

initially. PTC = 60% indicates that 40% of testing for

penetration still needs to be done. In order to perform

penetration testing, we first define PTC 1-length

penetration test event sequence, or PTC 1-event, as

penetration test coverage obtained by inserting only

penetration test event sequences of length 1 at each

functional test event position within a functional test

scenario. PTC 1-event is typically set to 0% as part of the

information that is gathered during penetration testing.

Functional Test Scenarios with Penetration Test

Events Inserted

A functional test scenario is of the form below:

 <fte1, ftr1>, <fte2, ftr2>, …………………<ftek, ftrk>,

where ftei is an event or stimulus in the ith test step of
the scenario

Shilpa R. G. et al. / Journal of Computer Science 2024, 20 (10): 1176.1184

DOI: 10.3844/jcssp.2024.1176.1184

1181

 ftri is an expected response of web application to the

user's browser or client

An adequate or complete collection of functional test

scenarios is a prerequisite for demonstrating the

thoroughness of penetration testing. When an attack is

detected using user input and cookie fields during

information collection, the web application's Input

Vectors (IVs) can be documented. These weaknesses are

incorporated in the VulnerabilityToMapping (functional

test event). Automated web crawlers are used by

penetration testers to identify the IVs in the web

application. A penetration test event pte is defined for a

functional test scenario to be inserted at a designated

functional test event position. For example, ith position as

in Fig. 7. To develop penetration tests as shown in Fig. 8.

Fig. 7: Functional test scenario

Fig. 8: Generating a penetration test by inserting a penetration

test event into a functional test

Penetration testers need guidelines about ptei to be

inserted at ftei i in [1…..k]. Hence, it is proposed that the

hints or guidelines based on which ptei is to be inserted

come from vulnerability mapping information.

Vulnerability mapping (ftei) of a functional test event ftei

is the set of vulnerabilities exploited as the event ftei

occurs. As many as |Vulnerability Mapping (ftei)|
penetration tests are generated from the functional event

ftei. Each penetration test event at ftei is created on a ptei,

i = 1. | Vulnerability mapping (ftei)|.

Selecting a PTE (Penetration Test Event)

A pte is identified or designed by a penetration tester

based on vulnerability mapping functional test scenario

(ftei) so that the vulnerability is potentially exploited.

Vulnerability mapping (ftei) > =0.

Algorithm to Derive Penetration Tests by Using

UML Sequence Diagram

Algorithm 1: Penetration Path Generation Algorithm

 Algorithm_Pen_Test_ Design

 Input: Functional Test Scenarios and Vulnerability

Knowledge
 Output: Corresponding Penetration Test Scenarios

1. for i =1 to # of functional test scenarios

2. begin

3. ftsi functional test scenario;

4. for j =1 to len (ftsi)

5. begin

6. Vulnerability Set = Vulnerability

 Mapping (ftej);

7. for each VK in the Vulnerability Set

8. begin

9. Create pte from VK and ftej;

10. emit ftsi after insertion of pte at ftej as a

penetration test
11. end

12. end

13. end

When the above Algorithm_Pen_Test_ Design is run,
it may be necessary to note or record each pte in j €
[1…….len (ftsi)] so that for insertion of a pte at ftej, if
some previous ptes are also required, (at position <j) they
are also explicitly made a part of the penetration test
scenario. This is expected to be required when two or more
vulnerabilities arising at different functional test events
need to be exploited together one after another for a
combined effect to design a penetration test scenario. In this
study, we confine to the insertion of only one penetration

test event to create each penetration test scenario.

Design of Penetration Tests Using State Model

A case study on banking is considered and illustrated

with the help of a state model and with functional test

Shilpa R. G. et al. / Journal of Computer Science 2024, 20 (10): 1176.1184

DOI: 10.3844/jcssp.2024.1176.1184

1182

scenarios as shown in Fig. 9. Penetration testing

scenarios arise when an administrator exploits a model

of the banking application, such as incorporating a new

branch for banking operations. Penetration tests are

formulated on functional testing. The penetration test

design incorporates scenarios like "<Enter User ID,

Enter Password, Enter Branch name, Enter Address,

and Enter City>" derived from functional testing. The

initial stage of designing a penetration test

encompasses authenticating or identifying

vulnerabilities at each step within a functional test

scenario. By methodically examining the application's

behavior in response to inputs, potential security

weaknesses can be acknowledged and addressed

efficiently. Additionally, considering real-world user

interfaces and possible attack vectors enriches the

depth of penetration testing, ensuring ample coverage

of security assessments Murthy and Shilpa (2018).

Algorithm to Derive Penetration Tests from State

Models

Algorithm 2: Penetration Path Generation Algorithm

"A depth-first traversal-based algorithm is used to

generate functional test paths from the state model in
Fig. 9.

genPath(S, Path)

 {

 if S is a final state

 emit(Path)

 else

 for each transition T out of S

 {

 if (not cycle (Path, T))

 {

 nextState=T.destState();
 genPath(nextState, concat(T,Path));

 }

 }

A test generation algorithm based on depth-first

traversal has been implemented to create functional tests,

as depicted in Algorithm 2. For instance, one of the

functional tests derived from the state model is

demonstrated in the path outlined below. For occurrence,

Path 1 as shown below demonstrates one of the functional

tests derived from the state model: “Path 1: State initial-

>Event Enter User id->State User id Entered->Event

Enter Password->State Password Entered->Event Select

Operation State Operation Selected (Add Branch

Operation) ->Event Enter Branch Name->State Branch

Name Entered->Event Enter Branch Address ->State

Branch Address Entered-> Event Enter Branch City-

>State Branch City entered Guard condition [Entered

branch does not exist already] ->State Branch Added”

Murthy and Shilpa (2018).

Generation of Penetration Tests from Every Path in

the Model

In the state model of the bank application, illustrated

in Fig. 9, vulnerability sets are mapped to events occurring

along state transitions. For example, the event "Enter User

Id" is associated with the vulnerability set {SQLi, CSM}

as shown in Table 1. In the formerly demonstrated finite-

state machine model, each path exploits one vulnerability

at each susceptible event or state transition when applying

Vulnerability Length-1 Coverage. Subsequently, when

considering Path 1, two instances are generated with

respect to the event "Enter User Id": One targeting the

SQL injection vulnerability and the other targeting the

Client State Manipulation (CSM) vulnerability.

Moreover, if various methods of SQL injection are

attempted, multiple instances aimed at exploiting SQL

injection at the "Enter User Id" event are generated. By

incorporating vulnerability sets at each vulnerable state

transition within Path 1, ten instances of penetration tests

are generated as shown in Table 2 using the

VulnerabilityMapping function. This approach ensures

exhaustive coverage of potential security vulnerabilities

within the bank application's functionality, enhancing its

resilience against potential cyber-attacks.

Comprehensive penetration testing requires an

efficient number of functional tests since they take into

account all representative settings in which events or

vulnerabilities could be exploited.

Fig. 9: Illustrating bank application using a model-based approach

Table 1: Vulnerability mapping along the functional events

Event name Vulnerability mapping

Enter USER_ID {SQL Injection, Client State Manipulation}

Enter Password {Client State Manipulation, SQL Injection}

Enter Branch Name {Cross Site Scripting, SQL Injection}

Enter Address {Client State Manipulation, SQL Injection}

Enter City {SQL Injection, Cross Site Scripting}

Shilpa R. G. et al. / Journal of Computer Science 2024, 20 (10): 1176.1184

DOI: 10.3844/jcssp.2024.1176.1184

1183

Table 2: Penetration test instances for a functional Test:

Vulnerability length-1

Test Enter Enter Enter Enter Enter
ID User_ID Password Branch Address City
 T1 SQLi x x x x
 T2 CSM x x x x
 T3 x CSM x x x
 T4 x SQLi x x x
 T5 x x XSS x x
 T6 x x SQLi x x
 T7 x x x CSM x
 T8 x x x SQLi x
 T9 x x x x SQLi
T10 x x x x XSS

Conclusion and Future Scope

The objective of the model-based penetration testing
methodology proposed in this study is to enable
automated penetration tests at a primary phase of the
development of web applications. This systematic
approach can be used to automatically generate attack
paths in the form of penetration tests in the process of
penetration testing. Based on suitable web-based

application behavior models, a methodical approach and
methodology for penetration test design is proposed. A
framework for abstracting web application activity that
takes vulnerability mapping information into account
and generates automated penetration tests from state
models is presented. An algorithm is designed and
implemented for both the manual method using UML
sequence diagrams and the automated development of
penetration tests from state models.

Our original contribution involves an approach

defining the behavior of the web application by
constructing comprehensive state models. These models
incorporate different inputs, outputs, states, transitions,
and user and external system interactions. A structured

basis for additional analysis by using methods like as state
charts, Petri nets, or finite state machines to represent the
dynamic behavior of the application is created. We have

designed and implemented algorithms for both automatic
and manual penetration test generation in order to
implement our methodology. Using model checking,

these algorithms methodically extract penetration tests
from the state models and examine the state space of the
application. To validate the efficacy of our approach, a
case study demonstrating bank application is presented.

This case study illustrates how the state model is
constructed, how vulnerabilities are mapped onto the
model, and how test cases are derived both automatically

and manually. By executing these tests against real-world
web applications, the methodology's ability to uncover
and mitigate security vulnerabilities in a structured,
systematic manner is demonstrated. Coverage can improve

the methodology's efficacy. In this regard penetration test
occurrences for a functional test vulnerability Length-1
coverage is proposed which is an original research

contribution to the field of penetration testing.

The future scope of the work will involve applying the

proposed automated methodology for generating

penetration tests to other classes of vulnerabilities, such as

session management and application management

vulnerabilities, such as broken authentication and Cross-

Site Request Forgery (CSRF). Furthermore, the

developed algorithms and techniques will support the
practical application of our methodology. These tools

support constructing and visualizing state models,

identifying vulnerabilities, generating test cases, and

executing penetration tests. By seamlessly integrating

with existing development and testing workflows,

research aims to promote the adoption and application of

the proposed methodology by security practitioners and

software developers alike.

Acknowledgment

I express my gratitude to Dr. T. P. Pushphavathi and

Dr. P. V. R. Murthy, my fellow authors, for their

invaluable guidance and mentoring. Their domain

expertise in security was really beneficial to me as I

completed my task. I am grateful to Paladion Networks

Pvt. Ltd for providing the web application needed to

complete our research.

Funding Information

There was no funding obtained to help in the writing

of this manuscript.

Author’s Contributions

Shilpa R. G.: Contributed to the written paper and

outcomes.

Pushphavathi T. P. and Murthy P. V. R.:
Recommendations were made after the entire manuscript

was evaluated.

Ethics

By signing this, I, Ms. Shilpa R.G., verify that the
following is true for this manuscript:

1) Nothing that has been published before is original to

the writers and is their own creation

2) No other publications are currently considering

publishing the paper

3) The work precisely and fully signifies the authors'

own investigation

4) The findings are appropriately contextualized within

the body of previous and current research

5) Every author has personally and actively contributed

significantly to the work that resulted in the

publication and they will accept public accountability

for its contents

Shilpa R. G. et al. / Journal of Computer Science 2024, 20 (10): 1176.1184

DOI: 10.3844/jcssp.2024.1176.1184

1184

References

Awang, N. F., & Manaf, A. A. (2013). Detecting

Vulnerabilities in Web Applications Using

Automated Black Box and Manual Penetration

Testing. In Advances in Security of Information and
Communication Networks (Vol. 381, pp. 230–239).

https://doi.org/10.1007/978-3-642-40597-6_20

Bacudio, A. G., Yuan, X., Bill Chu, B. T., & Jones, M.
(2011). An Overview of Penetration Testing.

International Journal of Network Security & Its

Applications, 3(6), 19–38.
https://doi.org/10.5121/ijnsa.2011.3602

Benikhlef, I., Wang, C., & Gulomjon, S. (2016). Mutation

Based SQL Injection Test Cases Generation for the

Web Based Application Vulnerability Testing.
Proceedings of the 2nd International Conference on

Electronics, Network and Computer Engineering

(ICENCE 2016), 546–551.
https://doi.org/10.2991/icence-16.2016.104

Casola, V., De Benedictis, A., Mazzocca, C., & Orbinato,

V. (2024). Secure software development and testing:

A model-based methodology. Computers & Security,
137, 103639.

https://doi.org/10.1016/j.cose.2023.103639

Choiriyah, A., & Qomariasih, N. (2023). Security
Analysis on Websites Belonging to the Health

Service Districts in Indonesia Based on the Open

Web Application Security Project (OWASP) Top 10

2021. 2023 International Conference on Information
Technology and Computing (ICITCOM), 267–272.

https://doi.org/10.1109/icitcom60176.2023.10442816

Felderer, M., Agreiter, B., Zech, P., & Breu, R. (2011).
A Classification for model-based security testing.

109–114.

Felderer, M., Zech, P., Breu, R., Büchler, M., &
Pretschner, A. (2016). Model-based security testing:

a taxonomy and systematic classification. Software

Testing, Verification and Reliability, 26(2), 119–148.

https://doi.org/10.1002/stvr.1580
Garousi, V., Keleş, A. B., Balaman, Y., Güler, Z. Ö., &

Arcuri, A. (2021). Model-based testing in practice:

An experience report from the web applications
domain. Journal of Systems and Software, 180,

111032. https://doi.org/10.1016/j.jss.2021.111032

Halfond, W. G. J., Choudhary, S. R., & Orso, A. (2011).

Improving penetration testing through static and
dynamic analysis. Software Testing, Verification and

Reliability, 21(3), 195–214.

https://doi.org/10.1002/stvr.450
Lebeau, F., Legeard, B., Peureux, F., & Vernotte, A.

(2013). Model-Based Vulnerability Testing for Web

Applications. 2013 IEEE 6th International

Conference on Software Testing, Verification and
Validation Workshops, 445–452.

https://doi.org/10.1109/icstw.2013.58

Li, X., & Xue, Y. (2014). A survey on server-side

approaches to securing web applications. ACM

Computing Surveys, 46(4), 1–29.

https://doi.org/10.1145/2541315

Lonetti, F., Bertolino, A., & Di Giandomenico, F. (2023).

Model-based security testing in IoT systems: A Rapid

Review. Information and Software Technology, 164,

107326. https://doi.org/10.1016/j.infsof.2023.107326

Lunkeit, A., & Schieferdecker, I. (2018). Model-Based

Security Testing - Deriving Test Models from

Artefacts of Security Engineering. 2018 IEEE

International Conference on Software Testing,

Verification and Validation Workshops (ICSTW),

244–251. https://doi.org/10.1109/icstw.2018.00056

Murthy, P. V. R., & Shilpa, R. G. (2018). Vulnerability

Coverage Criteria for Security Testing of Web

Applications. 2018 International Conference on

Advances in Computing, Communications and

Informatics (ICACCI), 489–494.

https://doi.org/10.1109/icacci.2018.8554656

Peleska, J., Brauer, J., & Huang, W. (2018). Model-Based

Testing for Avionic Systems Proven Benefits and

Further Challenges. In Leveraging Applications of

Formal Methods, Verification and Validation.

Industrial Practice (Vol. 11247, pp. 82–103). Springer.

https://doi.org/10.1007/978-3-030-03427-6_11

Peroli, M., De Meo, F., Viganò, L., & Guardini, D.

(2018). MobSTer: A model‐based security testing

framework for web applications. Software Testing,

Verification and Reliability, 28(8), e1685.

https://doi.org/10.1002/stvr.1685

Schmidt, A., Durak, U., & Pawletta, T. (2016). Model-

based testing methodology using system entity

structures for MATLAB/Simulink models.

SIMULATION, 92(8), 729–746.

https://doi.org/10.1177/0037549716656791

Sommer, F., Kriesten, R., & Kargl, F. (2021). Model-

Based Security Testing of Vehicle Networks. 2021

International Conference on Computational Science

and Computational Intelligence (CSCI), 685–691.

https://doi.org/10.1109/csci54926.2021.00179

Sommer, F., Kriesten, R., & Kargl, F. (2023). Survey of

Model-Based Security Testing Approaches in the

Automotive Domain. IEEE Access, 11, 55474–55514.

https://doi.org/10.1109/access.2023.3282176

Stepien, B., Peyton, L., & Xiong, P. (2012). Using TTCN-

3 as a modeling language for web penetration testing.

2012 IEEE International Conference on Industrial

Technology, 674–681.

https://doi.org/10.1109/icit.2012.6210016

Xiong, P., & Peyton, L. (2010). A model-driven

penetration test framework for Web applications.

2010 Eighth International Conference on Privacy,

Security and Trust, 173–180.

 https://doi.org/10.1109/pst.2010.5593250

https://doi.org/10.1007/978-3-642-40597-6_20
https://doi.org/10.5121/ijnsa.2011.3602
https://doi.org/10.2991/icence-16.2016.104
https://doi.org/10.1016/j.cose.2023.103639
https://doi.org/10.1109/icitcom60176.2023.10442816
https://doi.org/10.1002/stvr.1580
https://doi.org/10.1016/j.jss.2021.111032
https://doi.org/10.1002/stvr.450
https://doi.org/10.1109/icstw.2013.58
https://doi.org/10.1145/2541315
https://doi.org/10.1016/j.infsof.2023.107326
https://doi.org/10.1109/icstw.2018.00056
https://doi.org/10.1109/icacci.2018.8554656
https://doi.org/10.1007/978-3-030-03427-6_11
https://doi.org/10.1002/stvr.1685
https://doi.org/10.1177/0037549716656791
https://doi.org/10.1109/csci54926.2021.00179
https://doi.org/10.1109/access.2023.3282176
https://doi.org/10.1109/icit.2012.6210016
https://doi.org/10.1109/pst.2010.5593250

