

© 2024 Filippo Neri. This open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Mapping Learning Algorithms on Data, a Useful Step for

Optimizing Performances and Their Comparison

Filippo Neri

Department of Computer Science, University of Naples, Italy

Article history
Received: 19-03-2024
Revised: 02-07-2024
Accepted: 08-07-2024

Email: filippo.neri.email@gmail.com

Abstract: In this paper, we propose a novel methodology to map learning

algorithms on data (performance map) in order to gain more insights into the

distribution of their performances across their parameter space. This

methodology provides useful information when selecting a learner's best

configuration for the data at hand and it also enhances the comparison of
learners across learning contexts. In order to explain the proposed

methodology, the study introduces the notions of learning context,

performance map, and high-performance function. It then applies these

concepts to a variety of learning contexts to show how their use can provide

more insights into a learner's behavior and can enhance the comparison of

learners across learning contexts. The study is completed by an extensive

experimental study describing how the proposed methodology can be applied.

Keywords: Learning Algorithms, Decision Trees, Support Vector Machines,

Meta-Optimization of Learners, Comparing Learning Algorithms,

Performance Maps of Learning Contexts

Introduction

The standard approach used in machine learning is

to compare learning algorithms in contrast to their

performances on a data set unseen during the learning

phase. A learner's performance is expressed in the form

of a single numeric value representing, for instance, its

accuracy, the error rate, etc. Usually, a confidence

interval around the mean performance value is also

provided. However, in the end, a whole learner

behavior is condensed into just one single number (i.e.,

the mean accuracy).

All other information about the learning process (i.e.,

how the search in the hypothesis space was conducted,

what effect changing learning parameters produces, how

human-readable the found concept, etc.,) is simply

discarded. From the theoretical point of view, the user is

then supposed to select one learner over the other just by

considering a single number.

On the opposite, from the practical point of view, the

literature papers may only be partially helpful as they

usually hide away the important step of parameter

selection that is, however, performed by the authors but

generally not discussed in the paper.

When considering real data, we believe, instead, that a)

the step of parameter selection should be considered a full

part of the learning process and that b) a learner’s parameter

sensitivity should play a role in comparing learners across

different learning contexts. In fact, if a learner’s result is

very sensitive to its settings, the user may want to consider

selecting a lower-performing learner with stabler results to

ensure a more robust behavior on future data.

Following the above considerations, this study
describes a new methodology to compare learning systems

by using performance maps that make explicit a learner's

sensitivity to its parameter settings.

We define a performance map as the set of

performance values, associated with the parameter

settings that produced them when a leaner is applied to

some data. Performance maps are functions of learning

contexts. In order to understand how to build them, let us

then define what a learning context is for the extent of this

study. A learning context LC is a quadruple made of:

1. A learning algorithm L

2. A meta-optimization method M

3. The meta-optimized parameter space MOPS: The set
of parameter settings for L considered during meta-

optimization and

4. A data set D

Meta-optimization of learning systems, hyper-

parameter learning, or meta-learning consists in finding

the best-performing parameter settings for a learner by

searching the space of all possible parameter settings

(Blum and Roli, 2003; Grefenstette, 1986; Eiben et al.,

1999; Reif et al., 2012; Feurer and Hutter, 2019;

Lorenzo et al., 2017; Neri, 2022; 2024).

Filippo Neri / Journal of Computer Science 2024, 20 (9): 1110.1120

DOI: 10.3844/jcssp.2024.1110.1120

1111

Meta-optimization of a learner L is achieved by
performing multiple runs of L on D, using several
parameter settings, in order to evaluate L's performance for
each considered parameter setting. Either an exhaustive
search or a species meta-optimization algorithm M can be
used. And, the set of L’s parameter settings evaluated
during the meta-optimization process is the Meta-
Optimized Parameter Space (MOPS). The collection of
pairs <s, L’s performance >, with s in MOPS, allows us to

create the performance map (LC) that we are interested in.

The selected meta-optimization method M determines

the composition of MOPS and, in turn, of the performance

map (LC). Performance maps can be either complete if

MOPS is equal to the set of all parameter settings for L,

or partial/approximated if MOPS is a proper subset of it.
Meta-optimization is very effective and can improve

significantly the performance of a learning algorithm
(Camilleri et al., 2014; Camilleri and Neri, 2014). We will
show some instances of the case in the experimental part
below. In this study, however, we do not focus on meta-
optimization per se but we use it only as a tool to build
performance maps. Complementary methodologies to
meta optimization in learning include methods that helps
understanding (i.e., explaining) the decision made by the
learning system (Neri, 2023a; Neri, 2023c).

In the description of how performance maps are
created, the machine learner expert can easily recognize a
formalized version of the manual parameter tuning

process accomplished by all authors in order to select the
’most suitable’ configuration for running the learners
discussed in their papers.

Novelties of this study include:

1. The notion of learning context and it used to compare

learning algorithms or to tune their performance
2. The definition of performance maps and how they

can be used to compare learners
3. The description of how to create approximate (partial)

performance maps with relatively low computational
cost yet providing’ satisfactory’ information

4. The suggestion that previous research in the literature
has been implicitly using a weak version of the
performance maps method, here described, usually
performed informally by the authors before selecting
the configuration to use in the learners discussed in

their papers.
5. The suggestion that comparison tables among

learners, presented in the literature, would benefit
from being expanded and recalculated according to
performance maps to provide more insights to the
reader looking for the best learner/configuration
when dealing with a species data set

6. The observation is that performance maps t nicely in
the scope of the No Free Lunch Theorem (NFL)
(Wolpert and Macready, 1997). The NFL theorem
states that no learning algorithm can outperform all
the others over all data sets. Our proposal makes

explicit that changing parameter settings of a learning
algorithm produces a different learner which usually
has different a performance.

Finally, it is worthwhile to mention the challenging

research environment where this research has originated

(Neri, 2021c; 2023b).

Materials and Methods

State of the Art in Comparing Learning Algorithms

The standard procedure to compare learning

algorithms consists of contrasting their performances on
several data sets. It must be added that the comparison is
done after an ad hoc selection of the better-performing
parameter settings for the learners. Usually manually
discovered by running some trial tests.

Traditional performance measures include Accuracy,
error rate, R, etc. Their values are generally determined by
using a statistical methodology called n-fold cross-
validation (usually 5 or 10 folds are selected) on the whole
available data in order to determine a performance
interval (mean standard deviation) with known statistical
confidence (Refaeilzadeh et al., 2009; Stone, 1974).

Because performance measures reduce to a single value
the whole learner’s behavior, they may potentially miss
important aspects of the underlying learning process like,
for instance, the distribution of the performances over the
parameter space of the learner.

In addition to traditional performance measures, other
methodologies exist to evaluate a learner’s performance. For
instance: The Area Under the ROC Curve (AUC) (Bradley,
1997) or the rolling cross-validation (Racine, 2000;
Bergmeir and Benítez, 2012). AUC is applicable to any
classier producing a score for each case, but less appropriate
for discrete classifiers like decision trees. Rolling cross-

validation is only applicable to specie data types like time
series or data streams (Racine, 2000; Bergmeir and Benítez,
2012). In fact, more recent performance measures are not
generally applicable across learners or data types.

We then believe that, when learners need to be
compared, the information provided by the above
performance measures could be enhanced by including
some insights about the distribution of performances on
the learners’ parameter spaces. The latter information
would allow, for instance, to take into account the
probability of achieving a high performance by randomly
selecting a parameter from the learner’s parameter space

with uniform probability. Thus providing a measure of
confidence or stability in the best performance achieved
in the learning context under study.

Our Proposal: Comparing Learning Algorithms

with Performances Maps and Their HP(k) Values

This study proposes to compare learning algorithms by

confronting their performance maps and their HP (k) values.

Filippo Neri / Journal of Computer Science 2024, 20 (9): 1110.1120

DOI: 10.3844/jcssp.2024.1110.1120

1112

As said, given a learning context LC, its performance map

Pmap (LC) is the collection of pairs < s, L (s) >, with s in

MOPS and L (s) as the performance of L run with settings s.

From Pmap(LC), it is very simple to determine its best

performance (LC) (the map’s maximum).

The High-Performance function of a map HPPmap(LC)

(k) is defined as the ratio between the number of

parameter settings in MOPS producing a performance

with distance k from best (LC) and the cardinality of

MOPS, as in Eq. (1):

()

() () * (1)
()Pmap LC

p p MOPS L p best LC k
HP k

MOPS

 (1)

Where, p MOPS; 0 < k < 1 and L (p) is the performance

observed by running L with parameter settings p on the

data D. In the following, we will use HPLC (k), or simply

HP (k) when the learning context is clear, as shorthand for

HPPmap(LC) (k).

HPLC (k) also represents the fraction of the map area

above a certain performance level (best(LC) (1-k)) over

the whole map extension. And, from another point of

view, HPLC (k) is an estimate of the cumulative

distribution function ProbLC (X > best(LC) (1- k)), where

X is L (s) and s is randomly taken from MOPS with
uniform distribution.

We will show, in the experimental session, the values

of HPLC (k) for several learning contexts.

Learners and Meta-Optimization Methods

As said, the aim of our work is to compare learners

across learning contexts by using performance maps. In

order to practically show how our proposal works, we

selected two learners and two meta-optimization methods

so that we were able to present a full set of experiments.

Decision Trees (DT) (Quinlan, 2014) and Support

Vector Machines (SVM) (Cortes and Vapnik, 1995) are

selected as learners because they internally represent

knowledge in very different ways, thus demonstrating the

general applicability of our methodology. As meta-

optimization methods, we selected Grid Search, which

consists of the exhaustive enumeration of an input

parameter space and Simple Genetic Algorithm (SGA)

(Goldberg, 1989; Neri, 2005), in order to account for the case

of partial search of the input parameter space and the ensuing

partial performance map. We note that one can choose to

build a partial performance map as it has a lower

computational cost than a complete one. The pseudo-code for

the used SGA and Grid Search can be found in Appendix A.

The Parameter Spaces for the Selected Learners

The chosen parameter spaces for DT and SVM are

shown in Tables 1-2. These are the parameter spaces

searched by the meta optimizer.

Table 1: Value ranges for the selected parameters of DT

Learner Min impurity Min samples Max depth Timeout (secs)

DT {f i/10 for {f i for i = 2 {f i for i = 1 40

 i = 0 to 6g} to 150 step 10g} to 160 step 10g}

Table 2: Value ranges for the selected parameters of SVM

Learner Gamma Kernel C value Timeout (secs)

SV M scale Linear f i/100 for i = 1 to 40

 auto poly rbf 200 steps 20 g S

 sigmoid f i for i = 2 to

 200 step 20 g

In the case of DT, the parameters that mostly affect its

results have been identified as Minimum impurity
decrease (decrease of a node's impurity to allow for a node

splitting), minimum samples (the minimum number of

samples required to split an internal node) and max depth

(the maximum allowed depth of the tree). The parameter

space for DT contains combinations of values for the three

selected parameters. Similarly, for SVM, the chosen

parameters are gamma, kernel, and C value, which affect

the types of hyperplanes to be used and their boundary

positions (margin distance). Again the combination of

values for these three parameters dene the parameter

space for SVM.
It is important to note that our methodology is not

limited by the number of parameters used to define a

parameter space. In this experimentation, we dene the

parameter spaces with only three parameters per learner

simply because this choice will allow us to draw a 3-

dimensional representation of the performance maps built

in the experiments. Thus facilitating the understanding of

our work. If we had used more parameters it would have

been difficult to show the results in a graphical form.

The Timeout columns in the tables report the

maximum number of seconds an experiment will run

before timing out. As an anticipation, an experiment
consists of performing several 10-fold cross-validations

of the selected learner on the available data in order to

meta-optimize it.

Using a timeout is necessary for some data sets and

learners given the long run time required. In this study,

the time out is particularly needed when SVM is applied

to the Pima Indians Diabetes and Abalone data sets which

may require more than 30 min for each experiment.

Resulting in a full experimentation running for several

hours. The use of timeouts does not affect our comparison

methodology though it may produce approximate
performance maps. We denote a timeout experiment with

a negative value equal to -0.2 on a performance map.

Parameter settings for the meta-optimization methods

In the case of Grid Search, no parameters affect its

behavior because all points in the given parameter space

are evaluated.

In the case of SGA, instead, it is known that the

population size and the maximum number of generations

can deeply affect the result found by a genetic algorithm.

Here is why, in order to find the best parameter settings

Filippo Neri / Journal of Computer Science 2024, 20 (9): 1110.1120

DOI: 10.3844/jcssp.2024.1110.1120

1113

for the SGA, we meta-optimized the SGA by using a Grid

Search applied to the following parameter ranges:

Population size (30, 50, 80), max number of generations
(30, 50, 80), crossover probability (0.5, 0.7, 0.9) and

learner (DT or SVM).

As a performance measure, we were interested in the
genetic algorithm discovering a parameter setting

performing as close as possible to the best performance
discovered by Grid Search when used as a meta-optimizer
in the learning contexts. Also by using the lowest possible
population size and max generations.

The parameter settings for SGA are Population size
equal to 50, max number of generations equal to 50, and
crossover probability equal to 0.9. The fact that genetic
algorithms, in general, are robust learners makes it quite
easy to find one of the many suitable parameter settings
(Neri, 2005; 2008).

We kept the remaining parameters of SGA to their
default values as set in the Python library Genetic

Algorithm (https://pypi.org/project/geneticalgorithm/)
from which we built the SGA used in this study.

Data Set Descriptions

To perform the experiments in our study, we selected

four data sets with varying characteristics from the UCI

Machine Learning repository:

1. Mushrooms -8124 instances, 22 attributes

(categorical), classification task: To predict if a

mushroom is either edible or poisonous from some

physical characteristics (Schlimmer, 1987)

2. Pima Indians Diabetes -769 instances, 8 attributes

(categorical), classification task: To predict if the

patients have or do not have diabetes based on some
diagnostic measurements. Source:

https://www.kaggle.com/uciml/pima-indians-

diabetes-database

3. Congressional voting records -435 instances, 16

attributes (categorical), classification task: Predicting

Republican or Democratic membership from vote

record (Schlimmer, 1987)

4. Abalone -4177 instances, 8 attributes (categorical,

integer, real), regression task: Predicting the age of

abalone (a marine snail) from its physical

measurements (Waugh, 1995)

An open research question is if the proposed
methodology needs to be extended when different data
types for instance financial time series (Neri, 2012a;
2012c; 2010; 2011) or unusual domains are considered
(García-Magariño et al., 2019).

Building a performance map then could be
particularly useful when selecting a learner for some
novel data, because it provides information on the
robustness of the learner when different configurations
are used, a situation which is bound to happen in real-
world usage of a learning system.

Here is why we believe that comparing learners by

using performance maps provides more insights than the

use of a single-valued performance measure as
traditionally done in the literature.

Results and Discussion

Figures 1-4 show the performance maps for the learning

contexts of Table 3. The peruse makes explicit that:

1. If we consider all learning contexts, DT performs

better in a region of the parameter space where ’min
impurity’ is close to 0, ’min sample' is below 50, and
'max depth' is above 20. When increasing the 'min
impurity' value above 0.2, the performance decreases
abruptly and significantly

2. If we consider all learning contexts, SVM performs
better in a region or the parameter space where
’gamma’ is equal to ’scale’, ‘C-value' is lower than

1.0, and ‘kernel’ is ‘poly’, ‘rbf’ or ‘linear’
3. However, if we are interested in a species learner and

data, the performance map shows the locations of the
highest-performing parameter settings and it displays
how these regions vary in location and extensions
across the parameter space.

4. Performance maps do not need to be complete to be
useful. Completeness may require a high
computational cost to achieve. Indeed, even partial
performance maps are very helpful in selecting high-
performing parameter settings over just a blind
selection of the same done by manually undertaking

trial runs. Comparing performance maps using Grid
Search with those using SGA demonstrates the point.

Moreover, by perusing the results in Table 3 and the

performance maps, one can observe that even with
relatively low computational costs, it is already possible
to find high-performing parameter settings when an
effective meta-optimizer, such as SGA, is applied to
explore the learner’s parameter space.

(a)

Filippo Neri / Journal of Computer Science 2024, 20 (9): 1110.1120

DOI: 10.3844/jcssp.2024.1110.1120

1114

(b)

(c)

(d)

Fig. 1: Performance maps for the mushrooms data set. In the

cases of (a) <DT, Grid search>; (b) <DT, SGA>; (c)
<SVM, Grid search> and (d) <SVM, SGA>

(a)

(b)

(c)

Filippo Neri / Journal of Computer Science 2024, 20 (9): 1110.1120

DOI: 10.3844/jcssp.2024.1110.1120

1115

(d)

Fig. 2: Performance maps for the congressional voting records

data set. In the cases of (a) <DT, Grid search>; (b) <DT,
SGA>; (c) <SVM, Grid search> and (d) <SVM, SGA>

(a)

(b)

(c)

(d)

Fig. 3: Performance maps for the Pima Indians data set. In the
cases of (a) <DT, Grid search>; (b) <DT, SGA>; (c)
<SVM, Grid search> and (d) <SVM, SGA>

(a)

Filippo Neri / Journal of Computer Science 2024, 20 (9): 1110.1120

DOI: 10.3844/jcssp.2024.1110.1120

1116

(b)

(c)

(d)

Fig. 4: Performance maps for the abalone data set. In the cases

of (a) <DT, Grid search>; (b) <DT, SGA>; (c) <SVM,
Grid search> and (d) <SVM, SGA>. Note that the
highest points in (c) for ’poly’ and ’rbf' reach the value
of 0.56. Perspective makes them appear to be lower

High Performance in Learning Contexts

Table 4 introduces an additional measure to assist in
comparing learners across learning contexts: The high-

performance values HP (k). As introduced in Section 2.1,
HP (k) measures how frequently are high-performing

parameter settings within a (k 100)% distance from the
maximum on a given performance map. HP (k) values thus

allow us to express in short one of the main insights offered
by a performance map: How easy or difficult is to find high-

performing parameter settings for the learning context.
We could then compare two learning contexts in terms

of their HP (k) values for a given selection of k distances.
We could define a learning context as higher performant

than another if it has higher HP (k) values for a given
selection of k distances.

Table 3: Meta-optimization of learners in several learning contexts

 Learner and

Dataset meta optimization Best accuracy/R2 Std Evaluated points Time

Mushrooms DT-Grid 1.0 0.00 1440 197.45
 DT-SGA 1.0 0.00 49 6.70
 SVM-Grid 1.0 0.00 160 1000.25
 SVM-SGA 1.0 0.00 47 320.30
Congr. votes DT-Grid 0.96 0.03 1440 18.08
 DT-SGA 0.96 0.03 272 5.28

 SVM-Grid 0.97 0.02 160 5.50
 SVM-SGA 0.96 0.02 129 6.11
Diabetes DT-Grid 0.75 0.04 1440 62.53
 DT-SGA 0.75 0.04 241 12.50
 SVM-Grid 0.76 0.04 160 2312.26
 SVM-SGA 0.76 0.04 122 2127.17
Abalone DT-Grid 0.49 0.02 1440 133.13
(R2) DT-SGA 0.49 0.02 291 35.22

 SVM-Grid 0.56 0.02 160 1512.06
 SVM-SGA 0.56 0.02 109 1068.36

Filippo Neri / Journal of Computer Science 2024, 20 (9): 1110.1120

DOI: 10.3844/jcssp.2024.1110.1120

1117

Table 4: High-Performance values HP (k)) in several learning contexts

 Learner and HP (0.05) HP (0.10) HP (0.20)
Data set meta optimization Best accuracy (within 5% of best) (within 10% of best) (within 20% of best)

Mushrooms DT-Grid 1.00 0.16 0.16 0.66
Mushrooms DT-SGA 1.00 0.25 0.25 0.65
Mushrooms SVM-Grid 1.00 0.89 0.97 0.98
Mushrooms SVM-SGA 1.00 0.89 0.93 1.00
Congr. voting rec. DT-Grid 0.96 0.66 0.66 0.66
Congr. voting rec. DT-SGA 0.96 0.78 0.78 0.78
Congr. voting rec. SVM-Grid 0.97 0.91 0.96 0.96
Congr. voting rec. SVM-SGA 0.96 0.91 0.96 0.96
Diabetes DT-Grid 0.75 0.12 0.15 1.00
Diabetes DT-SGA 0.75 0.32 0.39 1.00
Diabetes SVM-Grid 0.77 0.31 0.32 0.58
Diabetes SVM-SGA 0.77 0.30 0.30 0.57
Abalone DT-Grid 0.49 0.09 0.23 0.28
Abalone DT-SGA 0.49 0.25 0.40 0.45
Abalone SVM-Grid 0.56 0.14 0.32 0.54
Abalone SVM-SGA 0.56 0.17 0.36 0.59

From Table 4, one can observe that the learning contexts

with SGA as the meta-optimizer have higher HP (k) values

than those associated with Grid Search. This means that the

performance maps associated with SGA contain more

parameter settings performing closer to the maximums

than performance maps associated with Grid search.

This finding is due to the capability of genetic

algorithms to focus their search towards high-performing

parameter settings and to avoid low-performing ones. On

the Contrary, Grid Search will have to include all parameter

settings in its exploration of the parameter space.

In addition, considering the Congressional Voting

Records data set, one can note that the learning context

with SVM and SGA dominates the learning context with

SVM and Grid Search. Indeed, Table 4 shows that SVM

is generally a more robust learner than DT across the

considered learning contexts finding consistently higher

HP-valued performance maps except in the case of

Diabetes (the No Free Lunch theorem at works!).

Methodology results in conclusion, the better-

performing pair <learner, meta optimizer> appears to be

<SVM, SGA> over the considered learning contexts.

We complete our experimental study by repeating that

using classic performance measures (accuracy, error rate,

etc.) together with performance maps and HP values

allows for a multi-faceted comparison of learning

algorithms across data sets including robustness to

varying parameter settings for the learner.

We believe that having more insight into the behavior of

a learner is especially useful when dealing with novel, unseen

data. Indeed, being able to calculate and possibly visualize its

performance map provides more confidence in how the

learner would behave in the future and what subset of

parameter settings are likely to produce high-performing

outcomes: the highest the HP (k) values, the highest the

probability that the learner will operate within the [best

performance *(1-k), best performance] range when variation

to its configurations settings will happen in the future.

Conclusion

In the paper, we propose to map learning algorithms

on data (performance map) in order to gain more insights

into the distribution of their performances across their

parameter space. This approach provides useful

information when selecting the best configuration for a

learning context and when comparing alternative learners.

To formalize the above ideas, we introduced the notions

of learning context, performance map, and high-

performance function. We then applied the concepts to a

variety of learning contexts to show their capabilities.

We showed that the proposed methodology can

provide more information on the robustness of a learner

in a given learning context thus enriching the traditional

single-valued performance measures used in literature

when comparing learners.

Future research directions are plentiful. Because meta-

optimization is a separate learning task itself, it opens up

a series of interesting research questions like How to

better use relatively small data samples or data streams.

Another direction is to study the application of this

methodology to more sophisticated learning systems such

as agent-based systems for modeling complex time series

in financial applications (Neri and García‐Magariño,

2020; Neri, 2012b; 2018; 2019; 2021a-b). Or what will

happen when neural networks are used as learners? How

to select their most important parameters and how to deal

with their long training time maybe in control applications

(Marino and Neri, 2019)?

A Simple Genetic Algorithm and Grid Search

In the study, we use two meta-optimizers SGA and

Grid search. The pseudo code for the SGA used in this

study can be found in Table 5 and that of Grid search can

be found in Table 6.

Filippo Neri / Journal of Computer Science 2024, 20 (9): 1110.1120

DOI: 10.3844/jcssp.2024.1110.1120

1118

Table 5: Simple Genetic Algorithm

//Note: each individual codes for a parameter set for the Learner
//Function DoExperiment performs a 10 fold cross validation
//on Learner, configured with the parameters coded by an

individual,
//applied on the data set Data
EvaluateFitness(Population, Learner, Data)
 for each individual in the Population
 Fitness(individual)= DoExperiment(Learner, individual,
 Data)
SGA(PopulationSize, MaxGenerations, Learner, Data) nGen = 1
 BestIndividual = {}
 Population = initPopulation(PopulationSize, Learner)

 EvaluateFitness(Population, Learner, Data) while nGen <
 MaxGenerations
 MatingPool = Select(Population)
 DoC rossOver(MatingPool)
 DoMutation(MatingPool)
 NextGenPopulation = ReplaceIn(MatingPool, Population)
 EvaluateFitness(NextGenPopulation, Learner, Data)
 Population = NextGenPopulation

 Maintain(BestIndividual,Population) //elitism
 BestIndividual = FindBestSolution(Population) nGen =
 nGen + 1
 end while return(BestIndividual)

Table 6: The Grid Search Algorithm.

//ParameterSpace contains all combinations of parameters for
the Learner
 GridSearch(Learner, Data, ParameterSpace)
 BestParameterSettings = {}
 BestAccuracy = 0
 For each p in ParameterSpace

 Accuracy = DoExperiment(Learner, p, Data)
 if (Accuracy > BestAccuracy) then
 BestParameterSettings = p
 return(BestParameterSettings)

One of the meta-optimization methods used in our

work is a Simple Genetic Algorithm (SGA) with elitism

(Goldberg, 1989). SGA is a well-known algorithm

therefore we will not explain it in detail. We implemented

SGA in Python 3.8, by adapting the library genetic

algorithm. In particular, we improved the SGA in the

library by (1) adding a cache memory inside the fitness

function to avoid repeated evaluations of the same

individual and (2) adding a stopping criterion based on a

minimum level of performance. The SGA stops when its

best individual has a fitness equal to or above the given

minimum. We did not add these two improvements in the

code in Table 5 to improve its readability.

The parameters used to run the SGA in all the learning

contexts are Max generation = 50, population size = 50,

mutation rate = 0.1, crossover rate = 0.9, replacement rate

= 0.9, crossover-type = uniform, stop-when-fitness-is-

above = 0.99.

The second meta-optimization method used in this

study is Grid Search. Grid Search consists of enumerating

all the possible values inside a given search space and

evaluating them. Also, Grid Search is a well-known

algorithm so we will not comment on it.

Acknowledgment

We thanks the anonymous reviewers for their

insightful comments.

Funding Information

The research here reported has not been funded.

Ethics

The research here reported has been respectful of any

ethical consideration concerning machine learning

research. Benchmark datasets have been used.

References

Bergmeir, C., & Benítez, J. M. (2012). On the use of

cross-validation for time series predictor

evaluation. Information Sciences, 191, 192-213.

https://doi.org/10.1016/j.ins.2011.12.028

Blum, C., & Roli, A. (2003). Metaheuristics in

combinatorial optimization: Overview and conceptual

comparison. ACM Computing Surveys (CSUR), 35(3),

268-308. https://doi.org/10.1145/937503.937505

Bradley, A. P. (1997). The use of the area under the

ROC curve in the evaluation of machine learning

algorithms. Pattern Recognition, 30(7), 1145-1159.

https://doi.org/10.1016/S0031-3203(96)00142-2

Camilleri, M., & Neri, F. (2014). Parameter optimization

in decision tree learning by using simple genetic

algorithms. WSEAS Transactions on Computers, 13,

582-591. https://core.ac.uk/download/pdf/55147372.pdf

Camilleri, M., Neri, F., & Papoutsidakis, M. (2014). An

algorithmic approach to parameter selection in

machine learning using meta-optimization techniques.

WSEAS Transactions on Systems, 13(1), 203-212.

 https://www.wseas.com/journals/systems/2014/a1657

02-311.pdf

Cortes, C., & Vapnik, V. (1995). Support-vector

networks. Machine Learning, 20(3), 273-297.

https://doi.org/10.1007/BF00994018

Eiben, Á. E., Hinterding, R., & Michalewicz, Z. (1999).

Parameter control in evolutionary algorithms. IEEE

Transactions on Evolutionary Computation, 3(2),

124-141.

https://doi.org/10.1109/4235.771166

Feurer, M., & Hutter, F. (2019). Hyperparameter

optimization. Automated Machine Learning: Methods,

Systems, Challenges, 3-33.

https://library.oapen.org/bitstream/handle/20.500.1265

7/23012/1/1007149.pdf#page=15

Filippo Neri / Journal of Computer Science 2024, 20 (9): 1110.1120

DOI: 10.3844/jcssp.2024.1110.1120

1119

García-Magariño, I., Plaza, I., & Neri, F. (2019). ABS-

MindBurnout: An agent-based simulator of the effects

of mindfulness-based interventions on job burnout.

Journal of Computational Science, 36, 101012.

https://doi.org/10.1016/j.jocs.2019.06.009

Goldberg, D. E. (1989). Genetic Algorithm in Search,

Optimization and Machine Learning, Addison. Wesley

Publishing Company, Reading, MA, 1(98), pp: 412.

ISBN-10: 9780201157673.

Grefenstette, J. J. (1986). Optimization of control

parameters for genetic algorithms. IEEE Transactions

on Systems, Man, and Cybernetics, 16(1), 122-128.

https://doi.org/10.1109/TSMC.1986.289288

Lorenzo, P. R., Nalepa, J., Kawulok, M., Ramos, L. S., &

Pastor, J. R. (2017). Particle swarm optimization for

hyper-parameter selection in deep neural networks.

In Proceedings of the genetic and evolutionary

computation conference (pp. 481-488).

https://doi.org/10.1145/3071178.3071208

Marino, A., & Neri, F. (2019). PID Tuning with Neural

Networks. Intelligent Information and Database

Systems, 476–487.

https://doi.org/10.1007/978-3-030-14799-0_41

Neri, F. (2005). Traffic packet based intrusion detection:

decision trees and genetic based learning

evaluation. WSEAS Transactions on Computers, 4(9),

1017-1024.

Neri, F. (2008). PIRR: A methodology for distributed

network management in mobile networks. WSEAS

Transactions on Information Science and

Applications, 5(3), 306-311.

 https://core.ac.uk/download/pdf/55017866.pdf

Neri, F. (2010). Software agents as a versatile

simulation tool to model complex systems. WSEAS

Transactions on Information Science and

Applications, 7(5), 609-618.
Neri, F. (2011). Learning and predicting financial time

series by combining natural computation and agent

simulation. In Applications of Evolutionary Computation:

EvoApplications 2011: EvoCOMNET, EvoFIN,

EvoHOT, EvoMUSART, EvoSTIM, and

EvoTRANSLOG, Torino, Italy, April 27-29, 2011,

Proceedings, Part II (pp. 111-119). Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-642-20520-

0_12

Neri, F. (2012a). A comparative study of a financial agent

based simulator across learning scenarios. In Agents

and Data Mining Interaction: 7th International

Workshop on Agents and Data Mining Interation,

ADMI 2011, Taipei, Taiwan, May 2-6, 2011, Revised

Selected Papers 7 (pp. 86-97). Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-642-27609-

5_7

Neri, F. (2012b). Agent-based modeling under partial and

full knowledge learning settings to simulate financial

markets. AI Communications, 25(4), 295-304.

https://doi.org/10.3233/AIC-2012-0537

Neri, F. (2012c). Learning predictive models for financial

time series by using agent based simulations.

Transactions on Computational Collective Intelligence

vi, 202-221.

https://doi.org/10.1007/978-3-642-29356-6_10.

Neri, F. (2018). Case study on modeling the silver and

Nasdaq financial time series with simulated annealing.

In Trends and Advances in Information Systems and

Technologies: Volume 2 6 (pp. 755-763). Springer

International Publishing. https://doi.org/10.1007/978-

3-319-77712-2_71

Neri, F. (2019). Combining machine learning and agent

based modeling for gold price prediction. In Artificial

Life and Evolutionary Computation: 13th Italian

Workshop, WIVACE 2018, Parma, Italy, September

10–12, 2018, Revised Selected Papers 13 (pp. 91-100).

Springer International Publishing.

https://doi.org/10.1007/978-3-030-21733-4_7

Neri, F. (2021a). Domain specific concept drift detectors

for predicting financial time series. arXiv preprint

arXiv:2103.14079.

https://doi.org/10.48550/arXiv.2103.14079

Neri, F. (2021b). How to Identify Investor’s types in real

financial markets by means of agent based simulation.

Proceedings of the 2021 6th International Conference

on Machine Learning Technologies, 141–149.

https://doi.org/10.1145/3468891.3468913

Neri, F., & García‐Magariño, I. (2020). Simulating and

modelling the DAX index and the USO Etf financial

time series by using a simple agent‐based learning

architecture. Expert Systems, 37(4), e12516.

https://doi.org/10.1111/exsy.12516

Neri, F. (2021c). Some key cultural obstacles to doing AI

research in the Italian Academic System. Available at

SSRN, id 3917044.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3

917044

Neri, F. (2022). Coevolution and learning symbolic

concepts: statistical validation: Empirical statistical

validation of co-evolutive machine learning

systems. Proceedings of the 2022 7th International

Conference on Machine Learning Technologies

(ICMLT 2022), ACM press, pp. 244-248.

Neri, F. (2023a). Explainability and interpretability in

agent based modelling to approximate market

indexes. Proceedings of the 2023 8th International

Conference on Machine Learning Technologies

(ICMLT 2023), ACM press, pp. 139-143.

https://doi.org/10.1016/j.jocs.2019.06.009
https://doi.org/10.1007/978-3-030-14799-0_41
https://doi.org/10.1145/3468891.3468913

Filippo Neri / Journal of Computer Science 2024, 20 (9): 1110.1120

DOI: 10.3844/jcssp.2024.1110.1120

1120

Neri, F. (2023b). Peer Reviewing in Experimental

Studies: a False Narrative Damaging Academic

Research, Hiding Fiefdoms Buildings, and
Supporting an Undeserving Publishing Business. A

Manifest. Call for Support and Sharing. Available at

SSRN, id 4621491.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id

= 4621491

Layfield, C. & Neri, F. (2023c). Explainability and

Interpretability in Decision Trees and Agent based

Modelling when Approximating Financial Time

series. A matter of balance with

performance. Proceedings of the 2023 8th

International Conference on Computational
Intelligence and Applications (ICCIA 2023), IEEE

press, pp. 42-46.

Neri, F. (2024). Preface to the conference

proceedings. Proceedings of the 2024 9th

International Conference on Machine Learning

Technologies (ICMLT 2024), ACM press, pp. 1.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., ... & Duchesnay, É. (2011).

Scikit-learn: Machine learning in Python. The

Journal of Machine Learning Research, 12, 2825-

2830.

https://www.jmlr.org/papers/volume12/pedregosa11
a/pedregosa11a.pdf?ref=https:/

Quinlan, J. R. (2014). C4. 5: Programs for machine

learning. Elsevier. pp: 312.

ISBN-10: 9780080500584.

Racine, J. (2000). Consistent cross-validatory model-

selection for dependent data: Hv-block cross-

validation. Journal of Econometrics, 99(1), 39-61.
https://doi.org/10.1016/S0304-4076(00)00030-0

Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-

validation. Encyclopedia of Database Systems,

532-538.

Reif, M., Shafait, F., & Dengel, A. (2012). Meta-learning

for evolutionary parameter optimization of

classifiers. Machine Learning, 87, 357-380.

 https://doi.org/10.1007/s10994-012-5286-7

Schlimmer, J. C. (1987). Concept acquisition through

representational adjustment. University of

California, Irvine.
 https://www.proquest.com/openview/6e555535561b

995253cf5f0b79c4921a/1?pq-

origsite=gscholar&cbl=18750&diss=y

Stone, M. (1974). Cross‐validatory choice and assessment

of statistical predictions. Journal of the Royal

Statistical Society: Series B (Methodological), 36(2),

111-133.

https://doi.org/10.1111/j.2517-6161.1974.tb00994.x

Waugh, S. (1995). Extending and benchmarking cascade-

correlation. Department of Computer Science,

University of Tasmania, Ph. D. Dissertation.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch
theorems for optimization. IEEE Transactions on

Evolutionary Computation, 1(1), 67-82.

https://doi.org/10.1109/4235.585893

