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Abstract: In this paper, we propose a novel methodology to map learning 

algorithms on data (performance map) in order to gain more insights into the 

distribution of their performances across their parameter space. This 

methodology provides useful information when selecting a learner's best 

configuration for the data at hand and it also enhances the comparison of 
learners across learning contexts. In order to explain the proposed 

methodology, the study introduces the notions of learning context, 

performance map, and high-performance function. It then applies these 

concepts to a variety of learning contexts to show how their use can provide 

more insights into a learner's behavior and can enhance the comparison of 

learners across learning contexts. The study is completed by an extensive 

experimental study describing how the proposed methodology can be applied. 
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Introduction 

The standard approach used in machine learning is 

to compare learning algorithms in contrast to their 

performances on a data set unseen during the learning 

phase. A learner's performance is expressed in the form 

of a single numeric value representing, for instance, its 

accuracy, the error rate, etc. Usually, a confidence 

interval around the mean performance value is also 

provided. However, in the end, a whole learner 

behavior is condensed into just one single number (i.e., 

the mean accuracy). 

All other information about the learning process (i.e., 

how the search in the hypothesis space was conducted, 

what effect changing learning parameters produces, how 

human-readable the found concept, etc.,) is simply 

discarded. From the theoretical point of view, the user is 

then supposed to select one learner over the other just by 

considering a single number. 

On the opposite, from the practical point of view, the 

literature papers may only be partially helpful as they 

usually hide away the important step of parameter 

selection that is, however, performed by the authors but 

generally not discussed in the paper. 

When considering real data, we believe, instead, that a) 

the step of parameter selection should be considered a full 

part of the learning process and that b) a learner’s parameter 

sensitivity should play a role in comparing learners across 

different learning contexts. In fact, if a learner’s result is 

very sensitive to its settings, the user may want to consider 

selecting a lower-performing learner with stabler results to 

ensure a more robust behavior on future data. 

Following the above considerations, this study 
describes a new methodology to compare learning systems 

by using performance maps that make explicit a learner's 

sensitivity to its parameter settings. 

We define a performance map as the set of 

performance values, associated with the parameter 

settings that produced them when a leaner is applied to 

some data. Performance maps are functions of learning 

contexts. In order to understand how to build them, let us 

then define what a learning context is for the extent of this 

study. A learning context LC is a quadruple made of: 
 
1. A learning algorithm L 

2. A meta-optimization method M 

3. The meta-optimized parameter space MOPS: The set 
of parameter settings for L considered during meta-

optimization and 

4. A data set D 
 

Meta-optimization of learning systems, hyper-

parameter learning, or meta-learning consists in finding 

the best-performing parameter settings for a learner by 

searching the space of all possible parameter settings 

(Blum and Roli, 2003; Grefenstette, 1986; Eiben et al., 

1999; Reif et al., 2012; Feurer and Hutter, 2019; 

Lorenzo et al., 2017; Neri, 2022; 2024). 
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Meta-optimization of a learner L is achieved by 
performing multiple runs of L on D, using several 
parameter settings, in order to evaluate L's performance for 
each considered parameter setting. Either an exhaustive 
search or a species meta-optimization algorithm M can be 
used. And, the set of L’s parameter settings evaluated 
during the meta-optimization process is the Meta-
Optimized Parameter Space (MOPS). The collection of 
pairs <s, L’s performance >, with s in MOPS, allows us to 

create the performance map (LC) that we are interested in. 

The selected meta-optimization method M determines 

the composition of MOPS and, in turn, of the performance 

map (LC). Performance maps can be either complete if 

MOPS is equal to the set of all parameter settings for L, 

or partial/approximated if MOPS is a proper subset of it. 
Meta-optimization is very effective and can improve 

significantly the performance of a learning algorithm 
(Camilleri et al., 2014; Camilleri and Neri, 2014). We will 
show some instances of the case in the experimental part 
below. In this study, however, we do not focus on meta-
optimization per se but we use it only as a tool to build 
performance maps. Complementary methodologies to 
meta optimization in learning include methods that helps 
understanding (i.e., explaining) the decision made by the 
learning system (Neri, 2023a; Neri, 2023c). 

In the description of how performance maps are 
created, the machine learner expert can easily recognize a 
formalized version of the manual parameter tuning 

process accomplished by all authors in order to select the 
’most suitable’ configuration for running the learners 
discussed in their papers. 

Novelties of this study include: 
 
1. The notion of learning context and it used to compare 

learning algorithms or to tune their performance 
2. The definition of performance maps and how they 

can be used to compare learners 
3. The description of how to create approximate (partial) 

performance maps with relatively low computational 
cost yet providing’ satisfactory’ information 

4. The suggestion that previous research in the literature 
has been implicitly using a weak version of the 
performance maps method, here described, usually 
performed informally by the authors before selecting 
the configuration to use in the learners discussed in 

their papers. 
5. The suggestion that comparison tables among 

learners, presented in the literature, would benefit 
from being expanded and recalculated according to 
performance maps to provide more insights to the 
reader looking for the best learner/configuration 
when dealing with a species data set 

6. The observation is that performance maps t nicely in 
the scope of the No Free Lunch Theorem (NFL) 
(Wolpert and Macready, 1997). The NFL theorem 
states that no learning algorithm can outperform all 
the others over all data sets. Our proposal makes 

explicit that changing parameter settings of a learning 
algorithm produces a different learner which usually 
has different a performance. 

 
Finally, it is worthwhile to mention the challenging 

research environment where this research has originated 

(Neri, 2021c; 2023b). 

Materials and Methods 

State of the Art in Comparing Learning Algorithms 

The standard procedure to compare learning 

algorithms consists of contrasting their performances on 
several data sets. It must be added that the comparison is 
done after an ad hoc selection of the better-performing 
parameter settings for the learners. Usually manually 
discovered by running some trial tests. 

Traditional performance measures include Accuracy, 
error rate, R, etc. Their values are generally determined by 
using a statistical methodology called n-fold cross-
validation (usually 5 or 10 folds are selected) on the whole 
available data in order to determine a performance 
interval (mean standard deviation) with known statistical 
confidence (Refaeilzadeh et al., 2009; Stone, 1974). 

Because performance measures reduce to a single value 
the whole learner’s behavior, they may potentially miss 
important aspects of the underlying learning process like, 
for instance, the distribution of the performances over the 
parameter space of the learner. 

In addition to traditional performance measures, other 
methodologies exist to evaluate a learner’s performance. For 
instance: The Area Under the ROC Curve (AUC) (Bradley, 
1997) or the rolling cross-validation (Racine, 2000; 
Bergmeir and Benítez, 2012). AUC is applicable to any 
classier producing a score for each case, but less appropriate 
for discrete classifiers like decision trees. Rolling cross-

validation is only applicable to specie data types like time 
series or data streams (Racine, 2000; Bergmeir and Benítez, 
2012). In fact, more recent performance measures are not 
generally applicable across learners or data types. 

We then believe that, when learners need to be 
compared, the information provided by the above 
performance measures could be enhanced by including 
some insights about the distribution of performances on 
the learners’ parameter spaces. The latter information 
would allow, for instance, to take into account the 
probability of achieving a high performance by randomly 
selecting a parameter from the learner’s parameter space 

with uniform probability. Thus providing a measure of 
confidence or stability in the best performance achieved 
in the learning context under study. 

Our Proposal: Comparing Learning Algorithms 

with Performances Maps and Their HP(k) Values 

This study proposes to compare learning algorithms by 

confronting their performance maps and their HP (k) values. 
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As said, given a learning context LC, its performance map 

Pmap (LC) is the collection of pairs < s, L (s) >, with s in 

MOPS and L (s) as the performance of L run with settings s. 

From Pmap(LC), it is very simple to determine its best 

performance (LC) (the map’s maximum). 

The High-Performance function of a map HPPmap(LC) 

(k) is defined as the ratio between the number of 

parameter settings in MOPS producing a performance 

with distance k from best (LC) and the cardinality of 

MOPS, as in Eq. (1): 
 

 
( )

( ) ( ) * (1 )
( )Pmap LC

p p MOPS L p best LC k
HP k

MOPS

   
   (1) 

 

Where, p  MOPS; 0 < k < 1 and L (p) is the performance 

observed by running L with parameter settings p on the 

data D. In the following, we will use HPLC (k), or simply 

HP (k) when the learning context is clear, as shorthand for 

HPPmap(LC ) (k). 

HPLC (k) also represents the fraction of the map area 

above a certain performance level (best(LC) (1-k)) over 

the whole map extension. And, from another point of 

view, HPLC (k) is an estimate of the cumulative 

distribution function ProbLC (X > best(LC) (1- k)), where 

X is L (s) and s is randomly taken from MOPS with 
uniform distribution. 

We will show, in the experimental session, the values 

of HPLC (k) for several learning contexts. 

Learners and Meta-Optimization Methods 

As said, the aim of our work is to compare learners 

across learning contexts by using performance maps. In 

order to practically show how our proposal works, we 

selected two learners and two meta-optimization methods 

so that we were able to present a full set of experiments. 

Decision Trees (DT) (Quinlan, 2014) and Support 

Vector Machines (SVM) (Cortes and Vapnik, 1995) are 

selected as learners because they internally represent 

knowledge in very different ways, thus demonstrating the 

general applicability of our methodology. As meta-

optimization methods, we selected Grid Search, which 

consists of the exhaustive enumeration of an input 

parameter space and Simple Genetic Algorithm (SGA) 

(Goldberg, 1989; Neri, 2005), in order to account for the case 

of partial search of the input parameter space and the ensuing 

partial performance map. We note that one can choose to 

build a partial performance map as it has a lower 

computational cost than a complete one. The pseudo-code for 

the used SGA and Grid Search can be found in Appendix A. 

The Parameter Spaces for the Selected Learners 

The chosen parameter spaces for DT and SVM are 

shown in Tables 1-2. These are the parameter spaces 

searched by the meta optimizer. 

Table 1: Value ranges for the selected parameters of DT 

Learner Min impurity Min samples Max depth Timeout (secs) 

DT {f i/10 for  {f i for i = 2 {f i for i = 1 40 

 i = 0 to 6g} to 150 step 10g} to 160 step 10g} 

 

Table 2: Value ranges for the selected parameters of SVM 

Learner Gamma Kernel C value Timeout (secs) 

SV M scale Linear f i/100 for i = 1 to 40 

 auto poly rbf  200 steps 20 g S 

  sigmoid f i for i = 2 to  

   200 step 20 g  

 

In the case of DT, the parameters that mostly affect its 

results have been identified as Minimum impurity 
decrease (decrease of a node's impurity to allow for a node 

splitting), minimum samples (the minimum number of 

samples required to split an internal node) and max depth 

(the maximum allowed depth of the tree). The parameter 

space for DT contains combinations of values for the three 

selected parameters. Similarly, for SVM, the chosen 

parameters are gamma, kernel, and C value, which affect 

the types of hyperplanes to be used and their boundary 

positions (margin distance). Again the combination of 

values for these three parameters dene the parameter 

space for SVM. 
It is important to note that our methodology is not 

limited by the number of parameters used to define a 

parameter space. In this experimentation, we dene the 

parameter spaces with only three parameters per learner 

simply because this choice will allow us to draw a 3-

dimensional representation of the performance maps built 

in the experiments. Thus facilitating the understanding of 

our work. If we had used more parameters it would have 

been difficult to show the results in a graphical form. 

The Timeout columns in the tables report the 

maximum number of seconds an experiment will run 

before timing out. As an anticipation, an experiment 
consists of performing several 10-fold cross-validations 

of the selected learner on the available data in order to 

meta-optimize it. 

Using a timeout is necessary for some data sets and 

learners given the long run time required. In this study, 

the time out is particularly needed when SVM is applied 

to the Pima Indians Diabetes and Abalone data sets which 

may require more than 30 min for each experiment. 

Resulting in a full experimentation running for several 

hours. The use of timeouts does not affect our comparison 

methodology though it may produce approximate 
performance maps. We denote a timeout experiment with 

a negative value equal to -0.2 on a performance map. 

Parameter settings for the meta-optimization methods 

In the case of Grid Search, no parameters affect its 

behavior because all points in the given parameter space 

are evaluated. 

In the case of SGA, instead, it is known that the 

population size and the maximum number of generations 

can deeply affect the result found by a genetic algorithm. 

Here is why, in order to find the best parameter settings 
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for the SGA, we meta-optimized the SGA by using a Grid 

Search applied to the following parameter ranges: 

Population size (30, 50, 80), max number of generations 
(30, 50, 80), crossover probability (0.5, 0.7, 0.9) and 

learner (DT or SVM). 

As a performance measure, we were interested in the 
genetic algorithm discovering a parameter setting 

performing as close as possible to the best performance 
discovered by Grid Search when used as a meta-optimizer 
in the learning contexts. Also by using the lowest possible 
population size and max generations. 

The parameter settings for SGA are Population size 
equal to 50, max number of generations equal to 50, and 
crossover probability equal to 0.9. The fact that genetic 
algorithms, in general, are robust learners makes it quite 
easy to find one of the many suitable parameter settings 
(Neri, 2005; 2008). 

We kept the remaining parameters of SGA to their 
default values as set in the Python library Genetic 

Algorithm (https://pypi.org/project/geneticalgorithm/) 
from which we built the SGA used in this study. 

Data Set Descriptions 

To perform the experiments in our study, we selected 

four data sets with varying characteristics from the UCI 

Machine Learning repository: 
 
1. Mushrooms -8124 instances, 22 attributes 

(categorical), classification task: To predict if a 

mushroom is either edible or poisonous from some 

physical characteristics (Schlimmer, 1987) 

2. Pima Indians Diabetes -769 instances, 8 attributes 

(categorical), classification task: To predict if the 

patients have or do not have diabetes based on some 
diagnostic measurements. Source: 

https://www.kaggle.com/uciml/pima-indians-

diabetes-database 

3. Congressional voting records -435 instances, 16 

attributes (categorical), classification task: Predicting 

Republican or Democratic membership from vote 

record (Schlimmer, 1987) 

4. Abalone -4177 instances, 8 attributes (categorical, 

integer, real), regression task: Predicting the age of 

abalone (a marine snail) from its physical 

measurements (Waugh, 1995) 
 

An open research question is if the proposed 
methodology needs to be extended when different data 
types for instance financial time series (Neri, 2012a; 
2012c; 2010; 2011) or unusual domains are considered 
(García-Magariño et al., 2019). 

Building a performance map then could be 
particularly useful when selecting a learner for some 
novel data, because it provides information on the 
robustness of the learner when different configurations 
are used, a situation which is bound to happen in real-
world usage of a learning system. 

Here is why we believe that comparing learners by 

using performance maps provides more insights than the 

use of a single-valued performance measure as 
traditionally done in the literature. 

Results and Discussion 

Figures 1-4 show the performance maps for the learning 

contexts of Table 3. The peruse makes explicit that: 
 
1. If we consider all learning contexts, DT performs 

better in a region of the parameter space where ’min 
impurity’ is close to 0, ’min sample' is below 50, and 
'max depth' is above 20. When increasing the 'min 
impurity' value above 0.2, the performance decreases 
abruptly and significantly 

2. If we consider all learning contexts, SVM performs 
better in a region or the parameter space where 
’gamma’ is equal to ’scale’, ‘C-value' is lower than 

1.0, and ‘kernel’ is ‘poly’, ‘rbf’ or ‘linear’ 
3. However, if we are interested in a species learner and 

data, the performance map shows the locations of the 
highest-performing parameter settings and it displays 
how these regions vary in location and extensions 
across the parameter space. 

4. Performance maps do not need to be complete to be 
useful. Completeness may require a high 
computational cost to achieve. Indeed, even partial 
performance maps are very helpful in selecting high-
performing parameter settings over just a blind 
selection of the same done by manually undertaking 

trial runs. Comparing performance maps using Grid 
Search with those using SGA demonstrates the point. 

 
Moreover, by perusing the results in Table 3 and the 

performance maps, one can observe that even with 
relatively low computational costs, it is already possible 
to find high-performing parameter settings when an 
effective meta-optimizer, such as SGA, is applied to 
explore the learner’s parameter space. 
 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 1: Performance maps for the mushrooms data set. In the 

cases of (a) <DT, Grid search>; (b) <DT, SGA>; (c) 
<SVM, Grid search> and (d) <SVM, SGA> 

 
(a) 

 

 
(b) 

 

 
(c) 



Filippo Neri / Journal of Computer Science 2024, 20 (9): 1110.1120 

DOI: 10.3844/jcssp.2024.1110.1120 

 

1115 

 
(d) 

 
Fig. 2: Performance maps for the congressional voting records 

data set. In the cases of (a) <DT, Grid search>; (b) <DT, 
SGA>; (c) <SVM, Grid search> and (d) <SVM, SGA> 

 

 
(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 

Fig. 3: Performance maps for the Pima Indians data set. In the 
cases of (a) <DT, Grid search>; (b) <DT, SGA>; (c) 
<SVM, Grid search> and (d) <SVM, SGA> 

 

 
(a) 



Filippo Neri / Journal of Computer Science 2024, 20 (9): 1110.1120 

DOI: 10.3844/jcssp.2024.1110.1120 

 

1116 

 
(b) 

 

 
(c) 

 
(d) 

 
Fig. 4: Performance maps for the abalone data set. In the cases 

of (a) <DT, Grid search>; (b) <DT, SGA>; (c) <SVM, 
Grid search> and (d) <SVM, SGA>. Note that the 
highest points in (c) for ’poly’ and ’rbf' reach the value 
of 0.56. Perspective makes them appear to be lower 

 

High Performance in Learning Contexts 

Table 4 introduces an additional measure to assist in 
comparing learners across learning contexts: The high-

performance values HP (k). As introduced in Section 2.1, 
HP (k) measures how frequently are high-performing 

parameter settings within a (k 100)% distance from the 
maximum on a given performance map. HP (k) values thus 

allow us to express in short one of the main insights offered 
by a performance map: How easy or difficult is to find high-

performing parameter settings for the learning context. 
We could then compare two learning contexts in terms 

of their HP (k) values for a given selection of k distances. 
We could define a learning context as higher performant 

than another if it has higher HP (k) values for a given 
selection of k distances. 

 
Table 3: Meta-optimization of learners in several learning contexts 

 Learner and  

Dataset meta optimization Best accuracy/R2 Std Evaluated points Time 

Mushrooms DT-Grid 1.0 0.00 1440 197.45 
 DT-SGA 1.0 0.00 49 6.70 
 SVM-Grid 1.0 0.00 160 1000.25 
 SVM-SGA 1.0 0.00 47 320.30 
Congr. votes DT-Grid 0.96 0.03 1440 18.08 
 DT-SGA 0.96 0.03 272 5.28 

 SVM-Grid 0.97 0.02 160 5.50 
 SVM-SGA 0.96 0.02 129 6.11 
Diabetes DT-Grid 0.75 0.04 1440 62.53 
 DT-SGA 0.75 0.04 241 12.50 
 SVM-Grid 0.76 0.04 160 2312.26 
 SVM-SGA 0.76 0.04 122 2127.17 
Abalone DT-Grid 0.49 0.02 1440 133.13 
(R2) DT-SGA 0.49 0.02 291 35.22 

 SVM-Grid 0.56 0.02 160 1512.06 
 SVM-SGA 0.56 0.02 109 1068.36 
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Table 4: High-Performance values HP (k)) in several learning contexts 

 Learner and  HP (0.05) HP (0.10) HP (0.20) 
Data set meta optimization Best accuracy (within 5% of best) (within 10% of best) (within 20% of best) 

Mushrooms DT-Grid 1.00 0.16 0.16 0.66 
Mushrooms DT-SGA 1.00 0.25 0.25 0.65 
Mushrooms SVM-Grid 1.00 0.89 0.97 0.98 
Mushrooms SVM-SGA 1.00 0.89 0.93 1.00 
Congr. voting rec. DT-Grid 0.96 0.66 0.66 0.66 
Congr. voting rec. DT-SGA 0.96 0.78 0.78 0.78 
Congr. voting rec. SVM-Grid 0.97 0.91 0.96 0.96 
Congr. voting rec. SVM-SGA 0.96 0.91 0.96 0.96 
Diabetes DT-Grid 0.75 0.12 0.15 1.00 
Diabetes DT-SGA 0.75 0.32 0.39 1.00 
Diabetes SVM-Grid 0.77 0.31 0.32 0.58 
Diabetes SVM-SGA 0.77 0.30 0.30 0.57 
Abalone DT-Grid 0.49 0.09 0.23 0.28 
Abalone DT-SGA 0.49 0.25 0.40 0.45 
Abalone SVM-Grid 0.56 0.14 0.32 0.54 
Abalone SVM-SGA 0.56 0.17 0.36 0.59 

 

From Table 4, one can observe that the learning contexts 

with SGA as the meta-optimizer have higher HP (k) values 

than those associated with Grid Search. This means that the 

performance maps associated with SGA contain more 

parameter settings performing closer to the maximums 

than performance maps associated with Grid search. 

This finding is due to the capability of genetic 

algorithms to focus their search towards high-performing 

parameter settings and to avoid low-performing ones. On 

the Contrary, Grid Search will have to include all parameter 

settings in its exploration of the parameter space. 

In addition, considering the Congressional Voting 

Records data set, one can note that the learning context 

with SVM and SGA dominates the learning context with 

SVM and Grid Search. Indeed, Table 4 shows that SVM 

is generally a more robust learner than DT across the 

considered learning contexts finding consistently higher 

HP-valued performance maps except in the case of 

Diabetes (the No Free Lunch theorem at works!). 

Methodology results in conclusion, the better-

performing pair <learner, meta optimizer> appears to be 

<SVM, SGA> over the considered learning contexts. 

We complete our experimental study by repeating that 

using classic performance measures (accuracy, error rate, 

etc.) together with performance maps and HP values 

allows for a multi-faceted comparison of learning 

algorithms across data sets including robustness to 

varying parameter settings for the learner. 

We believe that having more insight into the behavior of 

a learner is especially useful when dealing with novel, unseen 

data. Indeed, being able to calculate and possibly visualize its 

performance map provides more confidence in how the 

learner would behave in the future and what subset of 

parameter settings are likely to produce high-performing 

outcomes: the highest the HP (k) values, the highest the 

probability that the learner will operate within the [best 

performance *(1-k), best performance] range when variation 

to its configurations settings will happen in the future. 

Conclusion 

In the paper, we propose to map learning algorithms 

on data (performance map) in order to gain more insights 

into the distribution of their performances across their 

parameter space. This approach provides useful 

information when selecting the best configuration for a 

learning context and when comparing alternative learners. 

To formalize the above ideas, we introduced the notions 

of learning context, performance map, and high-

performance function. We then applied the concepts to a 

variety of learning contexts to show their capabilities. 

We showed that the proposed methodology can 

provide more information on the robustness of a learner 

in a given learning context thus enriching the traditional 

single-valued performance measures used in literature 

when comparing learners. 

Future research directions are plentiful. Because meta-

optimization is a separate learning task itself, it opens up 

a series of interesting research questions like How to 

better use relatively small data samples or data streams. 

Another direction is to study the application of this 

methodology to more sophisticated learning systems such 

as agent-based systems for modeling complex time series 

in financial applications (Neri and García‐Magariño, 

2020; Neri, 2012b; 2018; 2019; 2021a-b). Or what will 

happen when neural networks are used as learners? How 

to select their most important parameters and how to deal 

with their long training time maybe in control applications 

(Marino and Neri, 2019)? 

A Simple Genetic Algorithm and Grid Search 

In the study, we use two meta-optimizers SGA and 

Grid search. The pseudo code for the SGA used in this 

study can be found in Table 5 and that of Grid search can 

be found in Table 6. 



Filippo Neri / Journal of Computer Science 2024, 20 (9): 1110.1120 

DOI: 10.3844/jcssp.2024.1110.1120 

 

1118 

Table 5: Simple Genetic Algorithm 

//Note: each individual codes for a parameter set for the Learner 
//Function DoExperiment performs a 10 fold cross validation 
//on Learner, configured with the parameters coded by an 

individual, 
//applied on the data set Data 
EvaluateFitness(Population, Learner, Data) 
 for each individual in the Population 
 Fitness(individual )= DoExperiment(Learner, individual, 
 Data) 
SGA(PopulationSize, MaxGenerations, Learner, Data) nGen = 1 
 BestIndividual = {} 
 Population = initPopulation(PopulationSize, Learner) 

 EvaluateFitness(Population, Learner, Data) while nGen < 
 MaxGenerations 
 MatingPool = Select(Population) 
 DoC rossOver(MatingPool) 
 DoMutation(MatingPool) 
 NextGenPopulation = ReplaceIn(MatingPool, Population) 
 EvaluateFitness(NextGenPopulation, Learner, Data) 
 Population = NextGenPopulation 

 Maintain(BestIndividual,Population) //elitism 
 BestIndividual = FindBestSolution(Population) nGen = 
 nGen + 1 
 end while return(BestIndividual) 

 
Table 6: The Grid Search Algorithm. 

//ParameterSpace contains all combinations of parameters for 
the Learner 
 GridSearch(Learner, Data, ParameterSpace) 
 BestParameterSettings = {}  
 BestAccuracy = 0  
 For each p in ParameterSpace  

 Accuracy = DoExperiment(Learner, p, Data)  
 if (Accuracy > BestAccuracy) then 
 BestParameterSettings = p  
 return(BestParameterSettings) 

 
One of the meta-optimization methods used in our 

work is a Simple Genetic Algorithm (SGA) with elitism 

(Goldberg, 1989). SGA is a well-known algorithm 

therefore we will not explain it in detail. We implemented 

SGA in Python 3.8, by adapting the library genetic 

algorithm. In particular, we improved the SGA in the 

library by (1) adding a cache memory inside the fitness 

function to avoid repeated evaluations of the same 

individual and (2) adding a stopping criterion based on a 

minimum level of performance. The SGA stops when its 

best individual has a fitness equal to or above the given 

minimum. We did not add these two improvements in the 

code in Table 5 to improve its readability. 

The parameters used to run the SGA in all the learning 

contexts are Max generation = 50, population size = 50, 

mutation rate = 0.1, crossover rate = 0.9, replacement rate 

= 0.9, crossover-type = uniform, stop-when-fitness-is-

above = 0.99. 

The second meta-optimization method used in this 

study is Grid Search. Grid Search consists of enumerating 

all the possible values inside a given search space and 

evaluating them. Also, Grid Search is a well-known 

algorithm so we will not comment on it. 
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