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Abstract: Results of current research in biological and cognitive science 

reveal that neuronal interactions predominantly depend on neurotransmitters 

for signaling and sending information between neurons. Furthermore, a 

specific neuron that is connected to the next neuron transmits or sends 

multiple neurotransmitters in parallel ways, where each neurotransmitter has 

specific functional roles. Based on these results, a new type of logistic 

regression model is proposed that expands the dimensionality of connection 

weight coefficients from one to multiple coefficients, i.e., which means there 

are multiple connections between each input and hidden unit, rather than a 

single weight coefficient for every input unit. The number of dimensions of 

compound weights represents the number of various neurotransmitter 

categories and different weight components correspond to different 

neurotransmitter channels. According to recent biological studies, this new 

type of logistic regression model is promising to be much closer to a 

biological neuronal model. In terms of the new model structure in logistic 

regression with multidimensional weights, it is modeled on multiple filters 

and can enhance the interpretability of the sigmoid activation function of 

the learning algorithm. Results from computational experiments on 

CIFAR-10, CDC diabetes health indicators, and other benchmark datasets 

have shown that the performance of the existing logistic regression model 

can be enhanced by expanding the dimensionality of connected weights 

between each input unit and hidden unit and the approach of multiple 

weights will provide a new design architecture of models for artificial 

neural network architecture.  

 

Keywords: Logistic Regression, Logistic Function, Neuron, Neural 

Networks, Weight Connection, Regularization, Learning 
 

Introduction  

Motivated by the hierarchical structure of the cerebral 
cortex in the brain, diverse types of artificial Neural 
Network (NN) models have been proposed with practical 
applications, such as the Logistic Regression (LR) model 
(Wang et al., 2023, Yang and Loog, 2018), multilayer 
perceptron (Mahmoud et al., 2023), feedforward 

neural networks deep learning (Lara-Benítez et al., 
2023; Sun et al., 2023; Chaitra et al., 2023; Rendón-
Segador et al., 2023), convolutional neural networks 
(Huang et al., 2023; Lin and Wang, 2021), fuzzy neural 
networks (Lolaev et al., 2024; Madrakhimov et al., 2021; 

Rakhimovich et al., 2022), etc., which turned out to be 
very good for solving many applied problems. These 
problems, which are closely related to artificial intelligence, 
include visual object recognition and detection (Wu et al., 

2022), speech recognition (Vanderreydt and Demuynck, 
2024), and natural language processing (Zou et al., 
2024), etc. All these existing NN models have the same 
feature: Signal flow between two connected nodes is carried 
out on only one connected weight. In general, all input 
signals 

i
x of the module i  are multiplied by the weight 

parameter 
,i j

w and then processed by the activation 
function. Further, the obtained result is transferred into the 
input of the module j of the following layer. 
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Meanwhile, biological researchers, Lauder (1993); 

Brian et al. (2014) have shown that information 

transfer between two connected neurons occurs by the 

movement of chemical elements through a tiny tube 

called a neurotransmitter released by a connected 

neuron which is located at presynaptic terminals. Then 

these newly generated chemical elements are received 

by the following neuron at receptors. These types of 

neurotransmitters are classified into various tiny 

categories: Tiny neurotransmitters and neuropeptides. 

Tiny neurotransmitters are different tiny organic 

chemicals, which include elements such as glutamates, 

various types of neurotransmitters, biogenic dopamine, 

various types of purinergic neurotransmitters, etc. 

These neuropeptides are composed of different amino 

acids and they are much larger than tiny messenger 

molecules. Moreover, there are also other types of 

neuropeptides with different functionalities (Crawley et al., 

1985; McDonald and Pearson, 1989). In general, a 

neuron transfers data to another neuron via transferring 

multiple neurotransmitters in parallel flow and each 

neurotransmitter has a different behavior and role. 

Inspired by the behavior and principle of these 

information transfers between neurons, that neurons are 

connected to each other and transmit messages by sending 

multiple types of neurotransmitters via multiple channels, 

this study introduces a new model which is described 

further. In general, a new type of LR with Multi-Connected 

Weights (LRMCW) model is proposed by expanding the 

dimensions of connections between the input unit and 

hidden unit in the LR model from one connection to many. 

In LRMCW, various sizes of connection weights 

correspond to various types of neurotransmitters. In 

particular, weight coefficients between units in the existing 

LR model are considered as 1-dimensional, and weight 

coefficients between two units for the proposed model are 

considered as multi-dimensional. 

The LR method plays a special role in the field of 

statistical data analysis and machine learning, which has the 

ability to predict categorical outcomes (Wichitaksorn et al., 

2023; Zhang et al., 2019). The LR method was proposed 

by Cox (1958), which was originally considered a 

statistical approach that models the log odds of a simple 

event with a linear combination of independent variables 

of the algorithm. In machine learning, the LR method is a 

type of supervised learning (Martín-Baos et al., 2020; 

Wang and Park, 2017), which learns from input and 

output data. This method plays a special role in binary 

classification problems, where it is necessary to estimate 

the probability of observations pertaining to a certain 

rank. This method is based on a linear function, similar 

to the linear regression method, and also with a 

combination of a non-linear function, offering a 

solution for modeling discrete outcomes (Yuan and Xu, 

2023; Cheng et al., 2022; Ming and Yang, 2024). 

Zhang et al. (2020) proposed a NN model with 

multiple connection weights, which is slightly close to 

this paradigm. The results of computational experiments 

on training datasets have illustrated where the 

performance of existing NN models can be enhanced by 

expanding the dimension of weight connections within 

layers and this new approach provided a new architecture 

for NN models. Moreover, some applications for 

classification problems were demonstrated (Marakhimov 

and Khudaybergenov, 2022). 

The significance of the proposed model compared 

to standard LR and other models, the proposed 

LRMCW model has some advantages: 
 

• First, from a point of view of cognitive science, 

LRMCW considers the various types of 

neurotransmitters. With this assumption, the 

proposed LRMCW model can be considered as the 

much closer model to the structure of a biological 

NNs 

• Secondly, the model structure and activation of the 

hidden module (sigmoid activation function) are 

defined by various filters (appropriate to several 

connected weights). For an input value, the 

probability of activation, the hidden unit gets 

maximum activation if the input values have 

completely all features belonging to those obtained 

filters appropriate to the hidden unit. Moreover, 

activation of the LRMCW model is rare, where the 

representation of every connection level of the 

model is more explainable 
 

Logistic Regression Model 

This section discusses the mathematical foundation of 

the traditional LR model. Before presenting the LRMCW 

formulation, let us consider the traditional LR. This 

requires the definition of the following functions: A 

logistic function or a logit function (Rigon and Aliverti, 

2023) (Fig. 1). The logistic function, also called a 

sigmoid activation function is defined as: 
 

( )
-x

1

1+
S x = , xÎR

e
 

 

 
 
Fig. 1: Logistic function 
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The basis of LR is the logistic function, or sigmoid 

function, which converts a linear equation into a 

probability-a value between 0 and 1. In fact, it is a 

popular function in probability theory. This function is 

defined as: 
 

1
( =1) =

1+

n
- w x +wi i 0

i=1

P Y

e


 (1) 

 

where, ( 1)P Y = -probability which a dependent 

variable gets the value 1, 
0 1
, , ,

n
w w w -model 

coefficients that determine the contribution of each 

predictor, 
1 2
, ,

n
x x x  -independent variables 

(predictors), e -base of natural logarithm. 

Further, for convenience, the following formula is 

used for both LR: 
 

( )
1

1 z
y z

e−
= =

+
  (2) 

 

where, 
0

1
.

n

i i
i

z w x w
=

= − +  

The logistic function ensures that the estimated 

probabilities fall within the acceptable range from 0-1. LR 

with a single independent variable x and binary dependent 

variable {0,1}y with a dataset ( , )
i i

x y ( )1,2, ,i n=  

tries to fit the logistic probability model (2). 

Structure of the LRMCW Model 

This section introduces the structure of the proposed 

LRMCW and its learning algorithm. First, let us consider 

the structure of the traditional LR model and the proposed 

LRMCW model for comparison, which are shown in Fig. 2 

where for simplicity LRMCW model with 2-dimensional 

connection weights was modeled (Fig. 2b). 

Here is a description given for the structure of the 

proposed LRMCW method for a binary classification 

problem. Let us consider LR with 
i

x -input and y -

predicted output. The structure of the proposed LR and 

its single neuron, as well as the architecture of 

traditional LR and its uniform connection weights, are 

shown in Fig. 2. LR with the two-dimensional vector 

of connection weights is taken as an example which is 

illustrated in Fig. 2b. 

A standard LR consists of one connection between 

an input unit and hidden neuron and output, which is 

shown in Fig. 2a, where only one connection from the 

input node to the hidden neuron is allowed and input 

connections from more than one are prohibited. In 

standard LR, the connection between two nodes is 

represented by a real value. This means that each input 

has its own weight coefficient. The sensor signals enter 

the LR method through input layers’ nodes and 

propagate from input layers’ nodes to output to obtain 

a prediction result (classification). In machine learning, 

the traditional LR can be defined as below: 

 

0 1 1 0

1

n

n n i i

i

z w w x w x w x w
=

= + + + = +  (3) 

 

( )
1

1 z
z

e−
=

+
  (4) 

 

where, ( )1 2
, , , n

n
x x x x R=   - input vector, 

1
, ,

n
w w

- weight coefficients, 
0

w -threshold value,  -nonlinear 

function Error! Reference source not found. In the 

standard LR, which is used in case of binary 

classification. 

LR with Multi-Connected Weights 

The LRMCW consists of multiple connections 

between each input unit and a hidden neuron and output 

(computing) block, as depicted in Fig. 2b, where 

multiple connection coefficients from the input unit to 

the hidden neuron are permitted. Then, each input unit 

has its own weight vector of coefficients, which allows 

multiple weight connections between each input unit 

and summation block. Similarly, sensory signals are 

input to the LRMCW method through input and 

propagated from the input layer to output to obtain a 

classification result. The following formulas are the 

formulation of the proposed LRMCW method. 
 

 
(a) 

 

 
(b) 

 
Fig. 2: (a) Architecture of the traditional LR model; (b) 

Model of the proposed LRMCW method with 2-

dimensional weights 
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Let us consider that there are H connections 

between each input and summing block. Then the 

following equations can be obtained: 
 

(1) (1) (1) (1) (1)

1 10 1 0

1

n

n in i

i

z w w x w x w x w
=

= + + + = +  (5) 

 
(2) (2) (2) (2) (2)

2 10 1 0

1

n

n in i

i

z w w x w x w x w
=

= + + + = +  (6) 

 

( ) ( ) ( ) ( ) ( )

10 1 0

1

n

H H H H H

H n in i

i

z w w x w x w x w
=

= + + + = +  (7) 

 
Next, the input vector can be obtained as below: 

 

( )1
,...,

H
Z z z=  (8) 
 

Hence: 
 

( )1

1

1
,...,

1
n H

zh

h

z z

e
−

=

=

+


 (9) 

 
where, ( )  -usually a nonlinear activation function, which is 

often used in NN and usually called a sigmoid activation 
function,  1,...,h H -the number of weights between each 
input unit and the summation block. To illustrate the model 
below is a case where the number of weight coefficients 
between each input unit and summation block where two 
weight connections are taken, i.e., 2,H =  (Fig. 3). 

The encoding process in standard LR and LRMCW is 
very different. For instance, Let us consider LR-3-1 and 
LRMCW-3-H2-1 as a model sample to show the discrepancy 
between expanding the size of weight connections, i.e. 
increasing the channels for weight connections, as shown in 
Fig. 2b. LR-3-1 is a traditional LR model, where 3 is the 
dimension of input vector, one hidden block for summation 
and activation and one output, which can be applied in the 
case of binary classification. LRMCW-3-H2-1 is the 
proposed model, where 3 is the dimension of the input 
vector, one hidden block for summation and activation, and 
one output block, which is used in the case of binary 
classification. In LRMCW-3-H2-1, the dimension of 
connection coefficients is equal to 2 and H2 will be 
deciphered as 2H = . The total number of weights is 32+6 
= 12, where 6 means there exist 6 connections between the 
input and hidden unit. For LR-3-1, sensory inputs are 
passed through the weight connections of the input layer 
to obtain the hidden layer feature (which represents the 
activation probability of three input units), and the 
summation block feature is passed through the weight 
connections of the summation block to obtain the output. 
For LRMCW-3-H2-1, the sensory inputs are passed 
through input layer weight connections to obtain the 
temporal feature of the summation block and then 
separated into 2 parts according to the size of weights and 
then they are encoded in the final feature of the 
summation block. The last feature of the summation block 
checks the weights of input layer connections to produce 
output. Intuitively, LRMCW-3-H2-1 extracts more 
abstract latent features, which is more suitable for 
classification compared to LR-3-1. 

 
 
Fig. 3: Coding process LRMCW-3-H2-1 
 

Learning Algorithm 

This section describes the training algorithm of the 

proposed LRMCW. As an example and to simplify 

descriptions, the model of the above-mentioned 

LRMCW-3-H2-1 was chosen. 

Backpropagation Algorithm for LRMCW 

The proposed LRMCW with extended connectivity 

of weight coefficients up to 2,H = denoted as 

LRMCW-3-H2-1 can be trained using a standard 

learning algorithm similar to LR. Let  
1

x,
M

i
d

=
 - training 

data sets, where ( )1
x ,...,

T

n
x x=  - input data, n -

dimension of input data and d  - desired result (output), 

M -number of samples in the dataset. As a loss 

function to evaluate the accuracy, cross-entropy loss is 

used with the regularizing term, which is shown below: 
 

( ) ( ) ( )( )

( )

1

1 1

log 1 log 1

2

M

j j j j

j

H n

h

i

h i

E d y d y

L w

=

= =

= − + − − +




  (10) 

 
where: 
 

( ) ( )
2

, 0

0,

h h

h i i

i

w w
L w

otherwise

 
= 


 (11) 

 
And y -output value,  -regularization parameter. 

The second part of the expression is a non-negativity 
constraint imposed on connection weights ,h

i
w  which 

were applied to train NN models to improve their 

model interpretability in some works (Chorowski and 
Zurada, 2015; Chen et al., 1997). Typically, the 
concept of non-negativity values makes connection 
coefficients sparse, for instance, exclusively a portion 
of them keep non-zero and convert the activation in 
sigmoid activation function sparse. 

By applying the backpropagation rule, the partial 

derivative of weights 
h

i
w  and biases 

h

i
b  can be 

estimated as follows: 

 

( )h

i h

i

E
w y y d

w


= = −


 (12) 
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h

i h

i

E
b y d

b


= = −


 (13) 

 
Further, the updating of the parameters for the 

LRMCW method can be carried out consequently to the 

gradient descent rule. The backpropagation training 

procedure for LRMCW is illustrated in Algorithm 1. 
 

Algorithm 1. Procedure for Training the 

backpropagation of the LRMCW model 

Input data: Training data set ( ) ( ) 
1

x , .
M

i i

i
d

=
 

Parameters: Extended dimension of connection weights 
,H  regularization parameter   and learning rate .  

1: Randomly initialize weight and bias parameters: 

   , ,h h

i i
w b  

1, , , 1, , .h H i n= =  
2: For 1t =  to T  (the number of epochs) do 

• For each training sample ( )j
x  do 

2.1 Forward Propagation: 
Compute input sum and activation probability of 
output by using Eqs. 
Error! Reference source not found.-
Error! Reference source not found.. 

2.2 Backward Propagation: 
Compute partial derivatives of multi-connected 
weights ,h

i
w and biases h

i
b  by using Eqs. 

Error! Reference source not found.-
Error! Reference source not found.. 

2.3 Parameter Update: 

( ) ( ) ( )1 1h h h

i i i
w t w t w t= − − −  

( ) ( ) ( )1 1h h h

i i i
b t b t b t= − − −  

• Endfor 
3: Endfor 
 

Computational Experiments 

The proposed method was tested on popular datasets 

that are publicly available at (Asuncion and Newman, 

2007). Numerical experiments were obtained and learning 

characteristics as well as the classification characteristics 

for different configurations of LRMCW were displayed. 

Comparisons were carried out with the relevant state-of-

the-art algorithms such as C4.5, CART, XgBoost, etc. 

The regularization parameter λ was used from the 

set {1×10-3, 1×10-4, 5×10-5,..., 1×10-9} for smaller 

data sets and {1×10-3, 1×10-4,1×10-6} for data sets 

such as CIFAR-10 and CDC diabetes health indicators, 

based on test set performance. The learning rate 

parameter was used from set {0.1, 0.01, 0.005} 

according to the validation set performance across all 

datasets. For the traditional LR and proposed LRMCW, 

the activation function was employed in the hidden 

layer, and the output layer was a sigmoid function ( ),   

which was chosen according to the model. For the NN 

model, the activation functions that were used in the 

hidden layer were also a sigmoid function ( ),  and in 

the output layer, a SoftMax function was used. The 

objective function for learning the NN model was the 

cross-entropy loss function. 

First, numerical experiments are conducted to 

compare the classification performance of different 

LRMCW models with different numbers of weight 

connections on CIFAR-10 and CDC Diabetes Health 

Indicators datasets. In experiments, the number of 

weight connections was set to 1 and 2 for LRMCW and 

LR, which means that both models have a relatively 

equal number of trainable parameters (weights). Also, 

models were built and tested with a dimension of 

weight connections which was set equal to 2,..., 8 for 

LRMCW. For LRMCW, different numbers of weight 

connections were used. The name of the model, for 

example, LRMCW-1024-H2-1 means that the 

LRMCW model has 1024 inputs (3232 pixel image in 

CIFAR-10 dataset), 2 weight connections between each 

input and hidden unit (neuron), respectively, their 1024 bias 

(threshold) coefficients and 1 output and the total number of 

its training parameters equals 10242+1024 = 3072. And 

LRMCW-3-H8-1 model means that the LRMCW 

model has 3 inputs and 8 weight connections between 

each input and hidden unit, 8 biases for each connection 

and a total number of parameters is 3x8+8=36. In the 

computational experiment, for comparison, the average 

classification results and training time were obtained for 

LRMCW and LR models for 5 attempts, where the 

optimal ones were also given for each attempt. The results 

of computational experiments are shown in Tables 1-2. 

From Table 1 it can be seen that expanding the number 

of connections to more than 10 for the CIFAR-10 

dataset and more than 7 for the Abalone dataset in the 

LRMCW model makes higher classification errors and 

can lead to overfitting problems. 

From the output results depicted in Table 2, it is 

evident LRMCW consistently surpassed LR on most 

training datasets and the proposed LRMCW model 

achieved better classification results on most datasets, 

except for CIFAR-10 and Abalone data, on which C4.5 

achieved better results. However, on the Cirrhosis 

Patient Survival Prediction and Secondary Mushroom 

Dataset datasets, NN and C4.5 methods performed only 

slightly better than LRMCW. Meanwhile, the LRMCW 

model can outperform these two methods if there are 

much higher dimensions of weights.  

In Fig. 4(b) were shown performance characteristics 

of LRMCW-5-H2-1, LRMCW-5-H4-1, LRMCW-5-

H10-1, LRMCW-5-H15-1, LRMCW-5-H20-1 models 

for various parameters regularization on CIFAR-10 

dataset. It can be observed when the regularization 

value λ was less, LRMCW obtained much higher 

performance on the CIFAR-10 dataset. 
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Table 1: The average results of test classification errors, training time, and best result for 5 attempts with various LRMCW 

models on the CIFAR-10 training dataset. The lowest classification errors for methods are illustrated in bold 

 Model Regularization parameter   Classification error (%) Time (s) 

CIFAR-10 LRMCW-1024-H2-10 1×10-5, 1×10-6, 1×10-8 1.77 188 

 LRMCW-1024-H4-10 1×10-3, 1×10-4, 1×10-6 1.79 201 

 LRMCW-1024-H5-10 1×10-3, 1×10-4, 1×10-8 1.65 210 

 LRMCW-1024-H8-10 1×10-3, 1×10-5, 1×10-6 1.69 223 

 LRMCW-1024-H10-10 1×10-3, 1×10-6, 1×10-7 1.63 235 

 LRMCW-1024-H15-10 1×10-4, 1×10-5, 1×10-6 1.64 241 

 LRMCW-1024-H20-10 1×10-3, 1×10-4, 1×10-6 1.69 255 

Abalone LRMCW-1024-H3-3 1×10-5, 1×10-4, 1×10-7 1.83 152 

 LRMCW-1024-H4-3 1×10-5, 1×10-4, 1×10-8 1.71 162 

 LRMCW-1024-H5-3 1×10-5, 1×10-4, 1×10-6 1.73 169 

 LRMCW-1024-H6-3 1×10-3, 1×10-4, 1×10-6 1.52 180 

 LRMCW-1024-H7-3 1×10-3, 1×10-4, 1×10-6 1.41 195 

 LRMCW-1024-H10-3 1×10-3, 1×10-4, 1×10-6 1.45 206 

 LRMCW-1024-H11-3 1×10-3, 1×10-4, 1×10-6  1.43 217 

 
Table 2:  The average and smallest result errors of tests with various LR and LRMCW models for 5 attempts on small data 

sets. The obtained best output result for every training dataset is illustrated in bold  

Training dataset Errors LR LRMCW CART NN C4.5 XgBoost 

CIFAR-10 average 1.521±3.321 1.401±3.225 1.496±3.455 1.306±2.921 1.433±2.111 1.344±1.134 

 smallest 0 0 0 0 0 0 

WINE average 1.582±0.421 1.622±0.729 1.696±0.850 1.151±0.987 1.406±0.749 1.306±0.757 

 smallest 0 0 0 0 0 0 

CDC diabetes average 2.726±0.819 2.612±0.770 2.785±0.821 2.784±0.961 2.650±0.644 2.685±0.878 

health indicators smallest 0.541 0.257 0 0 0 0 

Abalone average 1.250±0.685 1.188±0.790 1.405±0.520 1.499±0.882 1.251±0.560 1.306±0.832 

 smallest 0.158 0 0 0 0 0 

MetroPT-3 average 3.211±1.415 2.956±1.210 3.578±1.350 3.496±2.742 3.201±1.336 3.176±1.453 

dataset smallest 0  0  0 0 0 0 

Cirrhosis patient average 1.632±2.229 1.322±2.156 1.389±1.888 1.120±1.144 1.557±1.250 1.433±0.957 

survival smallest 0.255 0 0 0 0 0 

prediction 

Secondary average 3.561±1.402 3.204±1.127 3.456±1.250 3.250±1.185 2.966±1.860 3.101±1.475 

mushroom smallest 0.240 0.120 0 0 0 0 

dataset 

 

 
 
Fig. 4: Classification errors between LRMCWs in the CIFAR 

10 dataset 
 

From the experiment results depicted in Table 2, it 

can be also observed where LRMCW method with a 

lesser number of weights as well outperforms 

traditional LR with a large number of weights, which 

are LRMCW-5-H10-1, LRMCW-5-H15-1, LRMCW-

5-H20-1. The results show that LRMCW was superior 

to LR not because LRMCW had more parameters 

compared to LR since each LRMCW unit is built coordinating 

multiple filters, whereas every LR unit is built with only a 

single filter. In Table 1 it is obvious that the training time 

for LRMCW is higher, and larger its size, which is the 

result of introducing a larger number of parameters. 

Conclusion 

The main idea of the article was inspired by the 

biological aspects of neurons where a stream of 

neurotransmitters is released simultaneously and in 

parallel by one neuron to transmit information to the next 

neuron. The LRMCW method was the expansion of the 

dimension of connection weights between the input unit 

and neural LR from one connection to a multidimensional 

connection, where each weight corresponds to one type of 

neurotransmitter. Using computational experiments, the 

effectiveness of the proposed model was demonstrated on 

training datasets that are located in a public repository 

(machine learning repository).  
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Expanding the dimensions of weights can be 
considered to significantly improve the performance of 
the LR model and provide new insights into improving 
models. However, it should be noted that the design of 
the encoding mechanism proposed by the model affects 
the performance of the LRMCW model. That is why 

increasing the dimension of weight coefficients 
significantly increases model parameters, which 
accordingly leads to an increase in the computational 
complexity of the algorithm. The problem of over-
dimensionality becomes more severe when 
dimensional expansion is applied to large-scale 

models. However, this may give a model that can be 
considered close to the biological neurons of the brain. 
To avoid over-dimensionalization of model parameters 
and fitting, pruning techniques should be explored to 
throw away some of the weight connections to reduce 
the computational complexity of the model, which can 

be considered as further promising research challenges. 
Moreover, expanding the number of connections can 
lead to overfitting problems in some cases. In future 
research, further work will be carried out on these 
problems to solve. 
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