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Abstract: A novel expression for the deviation angle of the bed-load discharge 

is developed which allows its distinction with the other deviation angles of the 

flow velocity and boundary shear stress. A transverse bed-slope equation is 

developed which compares very well with experimental data and field data at the 

Fall River and Muddy Creek, USA. Stream-wise computations are successfully 

performed of the transverse bed slopes in the Fall River. Correction for the 

thickness of the bed-load layer in curved channels and expression for the lateral 
distribution of grain sizes are presented. A contribution is made in developing 

the upslope lateral bed-load transport rate equation which allows modification of 

well-known existing transverse bedload rate equations. An expression of the 

stream-wise bed-load transport in curved and meandering channels is proposed. 

The developed approach equations have a higher degree of physical realism than 

existing methods. 
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Introduction 

There is a close interrelationship between river flow, 

sediment transport, and river channel formation, (Chang 

1992; Da Silva, 2006; Ferreira da Silva and Ebrahimi; 

2017; Weiss and Higdon, 2022). In other words, meander 

planform, bed topography, bank erosion, and lateral 

migration, are very much related to the dynamics of flow 

and sediment transport in curved channels, which, in turn, 

provides the basis for analysis and modeling, (Chang, 

1992). Hafez (2022) addressed the importance of the 

water flow discharge and sediment load as the driving 

mechanisms for forming and influencing alluvial river 

meander plan forms. “The role of secondary currents in 

curved alluvial channels consists of moving sediment 

particles away from the concave bank and toward the 

convex bank. This general movement has effects on point-

bar formation, sediment sorting, lateral migration, bank 

erosion, and width variation. At the time of transverse 

equilibrium, the lateral bed-load transport is 

counterbalanced by the transverse bed slope”, (Chang, 

1992). In spite of such important statements, works on 

lateral sediment transport rate and its associated 

transverse bed slope and processes date back to the last 

century (e.g., Ikeda (1982); Parker (1984); Falcon-

Ascanio and Kennedy (1983); Odgaard (1986a-b)).  

Understanding the mechanics of flow and sediment is 
a necessary part in order to understand the meandering 

phenomenon. Recent investigation of the mechanics of 
flow in meandering channels is addressed by Hafez 
(2024); while the mechanics of sediment transport in 
alluvial meandering channels is addressed herein. 

In spite of numerous studies on flow and sediment 

transport mechanics of river meandering, in spite of the 

advancement of computer power to perform two and 

three-dimensional detailed computations and in spite of 

advances in measurement techniques, still several 

fundamental issues of the mechanics of flow and 

sediment transport in meandering channels have not 

been solved even on the scale of the one-dimensional 

analysis, (Hafez, 2024). On the other hand, experimental 

and field works unfortunately have not often tried to 

measure the transverse bed load rate as in the following 

two examples. In the experiments of He et al. (2021) in 

two laboratorial sine-generated channels, i.e., one with a 

deflection angle = 30° and the other 110°, the 

longitudinal and transverse transport of bedload were 

evaluated in the examined bends of the two meandering 

flumes, however, they were expressed in the unit of 

volume (m3) which precludes knowing the actual rate of 

bed-load transport. Intensive field data collection of 

1499 bends was performed by Zhou and Tang (2022) 
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using Landsat images in the Yimin River China, 

however, no hydraulic and sediment data were collected. 

In this study, several fundamental issues in sediment 
transport mechanics in alluvial meandering rivers such as 
the transverse bed slope, the transverse bed load rate, the 
thickness of the bed load layer in alluvial meandering 
channels, and the transverse bed load deviation angle are 
re-visited and new developments are presented. 

Some assumptions in past studies have been made 
which are liable for improvements as seen in the next 
review section. In this study, some of the fundamental 
assumptions in the pioneering works are revisited and 
modified. In addition, equations are presented in 
attractable and user-friendly forms which allow their 
inclusion in analytical and numerical models. Mechanics 
of sediment in curved channels in this study include 
mainly the transverse bed slope, the lateral bed-load 
transport, and bed-load deviation angle in addition to 
longitudinal bed load in curved channels. 

Review of Curved Channel Mechanics  

In a theoretical approach for determining the transverse 

bed slope in curved channels, Ascanio and Kennedy (1983) 

balanced the radial component of the fluid force shear 

stress (𝜏𝑜𝑟) by the submerged weight component of the 

bed layer down the transverse bed slope with angle (β), 

that is: 
 
𝜏𝑜𝑟 =  𝑧𝑏  (1 −  𝜆)(𝜌𝑠 −  𝜌) 𝑔 sin 𝛽 (1) 
 

where, zb is the thickness of the bed-load layer in straight 

channels, λ is the bed-layer porosity, ρs is the sediment 

density, ρ is the water density and g is the gravitational 

acceleration. They used the bed-layer thickness given by 

Karim (1981) which is expressed as: 
 

𝑧𝑏 = 𝑑 
𝑈∗

𝑈∗𝑐
  (2) 

 

where, d = d50 is the median bed material size, U* = 

U/(f/8)1/2 is the shear velocity, U is the average main 

velocity, f is the Darcy-Weisbach friction factor and 𝑈∗𝑐  

is the critical shear velocity for incipient motion given as: 
 

𝑈∗𝑐 =  (
𝜌𝑠− 𝜌

𝜌
 𝑔 𝑑 𝜏∗𝑐)

1 2⁄

 (3) 

 
where, 𝜏∗𝑐 is the critical Shields’ stress. To get the 

lateral bed-shear stress, Ascanio and Kennedy (1983) 

balanced the moment due to the centrifugal 
acceleration by that due to the radial bed shear stress 

and obtained the relation: 
 

𝜏𝑜𝑟 =  𝜌 𝐷 
𝑈2

𝑟
 

1+𝑚

(2+𝑚)𝑚
  (4) 

 
where, D is the local flow depth, �̅� is the depth-averaged 

longitudinal velocity and r is the channel radius of 

curvature. In the central portion of the channel cross-

section in wide channels which is the case herein, �̅� could 

be assumed equal to the cross-sectional-averaged 

longitudinal velocity. The quantity m is related to the 
Darcy-Wabash friction factor (f) and the von Karman 

constant (κ) by: 
 
1

𝑚
=  

1

𝜅
 √

𝑓

8
, or m =  𝜅 √

8

𝑓
 (5) 

 
It is noted that Eq. (4) for the lateral bed shear stress 

neglects the contribution by the transverse pressure force 
which is induced by the transverse water surface slope in 

spite that this pressure force is a key part in curved flows 

as pointed out by Hafez (2024). 

Substitution of Eqs. (1-3) into Eq. (1) while β is 

assumed to be small enough that tan β ≈ sin β yields: 
 

𝑆𝑡 = tan 𝛽 =  𝜌 𝐷 
𝑈2

𝑔 𝑟
 

1+𝑚

(2+𝑚)𝑚
 

𝑈∗𝑐

 (1− 𝜆)(𝜌𝑠− 𝜌) 𝑑 𝑈∗
  (6) 

 

If β = 15°, sin (15°) = 0.259 ≈ 0.26 while tan (15°) = 
0.268 ≈ 0.27. Therefore, it can be safely stated that when 

the transverse bed slope is less than 0.25 or its angle 

β<15° the assumption of equality of the sine and tangent 

functions becomes valid. 

Ascanio and Kennedy (1983) actually did not 

consider Eq. (6) but they obtained a different simplified 

form by substituting Eqs. (2-4) into Eq. (1) and 

incorporating the simplified Nunner’s relation (Nunner, 

1956): m = 1/f1/2 to get: 
 

𝑆𝑡 = 𝑡𝑎𝑛 𝛽 =  
𝑑𝐷

𝑑𝑟
≅ 𝑠𝑖𝑛 𝛽 =  

𝐷

𝑟
 𝐹𝑑  

(8 𝜏∗𝑐)1 2⁄

(1− 𝜆)
 

1+ 𝑓1 2⁄

1+2 𝑓1 2⁄  (7) 

 

where, β is assumed to be small enough that tan β ≈ sin β 
and Fd is the densimetric Froude number defined by: 

 

𝐹𝑑 =  
𝑈

{[(𝜌𝑠− 𝜌) 𝜌⁄ ] 𝑔 𝑑}1 2⁄  (8) 

 

Equation (7) was found to fit the experiments of 

Zimmerman and Kennedy (1978) if 
(8 𝜏∗𝑐)1 2⁄

(1− 𝜆)
= 1.3. 

Ascanio and Kennedy (1983) report that for 𝜏∗𝑐  = 0.06 

the resulting porosity is λ = 0.47, a not-unreasonable value 
for the agitated moving bedload particles. It should be 

noted that Yeh and Kennedy (1993) introduced a 

correction factor, Cb, to extend Eq. (2) to other than the 

primary-flow direction for which it was derived. Through 

the calibration process of measured and computed depth 

profiles, they obtained values for Cb ranging from 0.75-

0.45 and stated that it should be dependent on the bed-

particle size.  

To integrate Eq. (7) to get the transverse bed profile 

they followed the assumption of Yen and Yen (1971) that: 

 

𝑆 =  𝑆𝑐  
𝑟𝑐

𝑟
  (9) 
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where the subscript c designates the centreline value and 

S is the channel longitudinal slope. Equation (9) is used to 

express the radial variation of the depth-averaged velocity 

(�̅�(𝑟)) as: 
 

�̅�(𝑟) =  √
8 𝑔 𝑆 𝐷(𝑟)𝛿𝜏(𝑟)

𝑓
=  √8 𝑔 𝑆𝑐  

𝑟𝑐

𝑟
 
𝐷(𝑟)𝛿𝜏(𝑟)

𝑓
  (10) 

 

where, 𝛿𝜏(𝑟) is the bed shear stress reduction factor due 

to the bank effect which is unity for very wide channels. 

Substituting Eq. (10) into Eq. (7) and integrating the 

resulting expression for dD/dr yields: 

 

1

√𝐷
− 

1

√𝐷𝑐

=  [
1

√𝑟
−  

1

√𝑟𝑐

]
(8 𝜏∗𝑐)1 2⁄

(1 −  𝜆)
 

1 + 𝑓1 2⁄

1 + 2 𝑓1 2⁄  

 {
8 𝑔 𝑆𝑐 𝑟𝑐𝛿𝜏(𝑟)

𝑓 𝑔 [(𝜌𝑠− 𝜌) 𝜌⁄ ] 𝑑 
}

1 2⁄

  (11) 

 

where, Dc is the channel center line depth. Equation (11) 

was found by Ascanio and Kennedy (1983) to fit well the 

transverse bed profiles from experiments by Zimmermann 

(1974) and the Missouri River data by Falcon-Ascanio 

(1979). It is noted, however, that several assumptions 

exist in Ascanio and Kennedy (1983) such as the 

simplified radial bed shear stress in Eq. (4), the use of bed 

layer thickness from Eq. (2) that does not consider 

channel curvature and the Nunner’s simplification of (m). 

Based on the force balance on a sediment particle 

between the bottom currents and the submerged weight 

directed down the transverse bed slope, Engelund (1974) 

derived the following equation: 
 

𝑡𝑎𝑛 𝛿𝑣𝑏 =  
𝑡𝑎𝑛 𝛽

𝑡𝑎𝑛 𝜙
 (12) 

 
where, 𝛿𝑣𝑏 is the flow velocity deviation angle at the bottom 

(i.e., tan 𝛿𝑣𝑏 = vb/ub; vb and ub are the bed velocities in the 

lateral and stream-wise directions, respectively), β is the 

angle of the transverse bed slope, ϕ is the angle of repose of 

sediment and tan ϕ is the dynamic friction coefficient.  
Bridge (1977) approach on the transverse bed slope, 

𝑆𝑡 , is based on Eq. (12) and the angle of flow velocity 

deviation given by Rozovskii (1957) as tan 𝛿𝑣𝑏 = 11 (D/r), 

which when inserted into Eq. (12) yields: 
 

𝑆𝑡 =  𝑡𝑎𝑛 𝛽 =  
𝑑𝐷

𝑑𝑟
= 11 

𝐷

𝑟
𝑡𝑎𝑛 𝜙  (13) 

 
Integrating Eq. (13) and evaluating the integration 

constant at the channel center line yield: 
 
𝐷

𝐷𝑐
=  (

𝑟

𝑟𝑐
)

11 tan 𝜙
  (14) 

 

To obtain the grain size distribution, Bridge (1977) 

balanced the transverse drag force on a given particle 

located on the transverse bed slope and the weight 

component down the slope as: 

𝜋 (
𝑑

2
)

2

𝜏𝑜𝑟 = 𝜋 (
𝑑

2
)

2

 𝜏𝑜 tan 𝛿𝑣𝑏 =  
4

3
  

𝜋 (
𝑑

2
)

3
(𝜌𝑠 −  𝜌) 𝑔 sin 𝛽 (15) 

 
where, τo is the longitudinal bed shear stress. It is noted 

that Eq. (15) is based on the assumption: τr = τo (tan 𝛿𝑣𝑏), 
which means that the angle between the longitudinal and 

radial bed shear stress is the same angle between the 

longitudinal and radial flow velocity. It is well known that 

the shear stress is proportional to the square of velocity 

while Eq. (15) implies linear proportionality between the 

shear stress and velocity.  

For small β (sin β ≈ tan β = dD/dr) Eq. (15) reduces to: 
 

𝑆𝑡 = 𝑡𝑎𝑛 𝛽 =  
𝑑𝐷

𝑑𝑟
=  

3 𝜏𝑜 𝑡𝑎𝑛 𝛿𝑣𝑏 

2 𝑔 𝑑 (𝜌𝑠− 𝜌) 
   (16) 

 
It is noted that in applying Eq. (16), the relation: tan 

𝛿𝑣𝑏 = 11 (D/r) has been used for the bed-shear deviation 
angle which means that the flow deviation angle is used 

in place of the bed shear stress deviation angle. The radial 

distribution for 𝜏𝑜 is taken by Bridge (1977) as: 
 

𝜏𝑜 = 𝜌 𝑔 𝐷 𝑆𝑐  
𝑟𝑐

𝑟
  (17) 

 
Substituting Eq. (17) into Eq. (16), using the relation: 

tan 𝛿𝑣𝑏 = 11 (D/r) and solving for the grain size (d), a 

relationship for grain-size distribution is obtained: 
 

𝑑 =  
3 𝜌 𝐷 𝑆𝑐 𝑟𝑐 

2(𝜌𝑠− 𝜌) 𝑟 
 (18) 

 

Odgaard (1986a), in a similar derivation such as by 

Ascanio and Kennedy (1983) with differences in using the 

critical condition based on grain roughness, presented the 

following equation for the transverse bed slope: 
 

𝑆𝑡 =  tan 𝛽 =  
3 𝛼

2
 

√𝜏∗𝑐

𝜅
 

𝑚+1

 𝑚+2
 𝐹𝑑  

𝐷

𝑟
 (19) 

 
where, α is the projected area-volume ratio for a particle, 

normalized by that of a sphere (α = 1.27) and κ = 0.4. 

Equation (19) is identical to an earlier version 
(Odgaard, 1984, his Eq. 5) which has been shown to be in 
agreement with laboratory and field data, Odgaard 
(1986a). Odgaard (1986a) used the fully developed 

equation for the transverse bed slope, Eq. (19), in his 
model equation for the stream-wise variation of the 
transverse bed slope. Bridge (1992) expressed that the 
assumption made by Odgaard (1986a) that the bed grains 
are at the threshold of motion (critical conditions for 
incipient motion) is unjustifiable. In addition, it was 
assumed that the lateral near-bed velocity is equal to the 
lateral water surface velocity (i.e., assuming a linear 
transverse velocity profile for fully developed flow). 
However, this is not necessarily true as could be seen in 
the velocity profile by Rozovskii (1957) for rough beds 
and Hafez (2024).  
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Odgaard (1982) assumed a straight transverse bed 

profile, the critical shear stress is proportional to d-2/3, and 

obtained an equation for the distribution of the grain size as: 
 
𝑑

𝑑𝑐
=  (

𝐷

𝐷𝑐
)

5 3⁄

 (
𝑟𝑐

𝑟
)

3 2⁄

  (20) 

 
where, dc is the grain size at the channel center line. 

Regarding lateral bed-load movement, Ikeda (1982) 

studied lateral bed-load transport down the transverse bed 

slope in a straight channel and showed that: 
 

𝑞∗
𝑟

𝑡𝑎𝑛 𝛽
= 𝐹(

𝜏∗

𝜏∗𝑐
) (21) 

 
And: 

 

𝑞∗
𝑟 =  

𝑞𝑏
𝑟

√(𝑠−1)𝑔 𝑑3
 (22) 

 
where, 𝑞∗

𝑟 is the dimensionless lateral bed-load transport 

per unit width, 𝑞𝑏
𝑟 is the lateral bed-load transport per unit 

width, 𝜏∗ is the dimensionless shear stress or the Shields 

stress, 𝜏∗𝑐 is the critical Shields stress and s is the sediment 

particle specific gravity. Ikeda performed wind tunnel 

experiments using 0.26 and 0.42 mm sand and used other 

data from a water flume in order to determine the 

functional relationship in Eq. (21) and obtained: 
 

𝑞∗
𝑟

𝑡𝑎𝑛 𝛽
= 0.0085 [

𝜏∗

𝜏∗𝑐
 (

𝜏∗

𝜏∗𝑐
− 1)]

1 2⁄

  (23) 

 
Or: 

 

𝑞𝑏
𝑟 = 0.0085 𝑡𝑎𝑛 𝛽 √(𝑠 − 1)𝑔 𝑑3  [

𝜏∗

𝜏∗𝑐
 (

𝜏∗

𝜏∗𝑐
− 1)]

1 2⁄

  (24) 

 
Parker (1984) argued that there are mechanistic 

differences between bed-load transport in air and water as 

𝜏∗ is three or four times more in water than in air and that 

the functional relationship as given in Eq. (21) depends on 

the medium. Parker (1984) followed the concept that in 

curved alluvial channels, the prediction of lateral bed-load 

transport must include the effects of secondary currents in 
addition to the transverse bed slope. On the basis of the 

approach by Kikkawa et al. (1976); Parker (1984) 

presented the following formula for the lateral unit width 

bed-load discharge as follows: 
 
qb

r

qb
s = tan δvb − 

1+ (CL CD⁄ ) tan 𝜙

tan 𝜙
 (

τ∗c

τ∗
)

1 2⁄

tan 𝛽  (25) 

 
where, 𝑞𝑏

𝑟 and 𝑞𝑏
𝑠 are the lateral and longitudinal bed-load 

discharges per unit channel width, respectively, CL and CD 

are the lift and drag coefficients for sediment particles, 

respectively, ϕ is the sediment angle of repose and tan ϕ 

is the dynamic friction coefficient, τ* is the shields stress 

and 𝜏∗𝑐  is the critical shields stress for incipient motion. 

In the case of lateral equilibrium, 𝑞𝑏
𝑟 is zero, and Eq. (25) 

is reduced to: 

𝑆𝑡 =  𝑡𝑎𝑛 𝛽  =  
𝑡𝑎𝑛 𝜙

1+ (𝐶𝐿 𝐶𝐷⁄ ) 𝑡𝑎𝑛 𝜙
 (

𝜏∗

𝜏∗𝑐
)

1 2⁄

𝑡𝑎𝑛 𝛿𝑣𝑏 (26) 

 
Equation (26) bears resemblance to transverse bed 

slope equations such as Eq. (7).  

Hasegawa (1989) employed the following relation for 

the transverse bed-load transport rate: 
 

𝑞𝑏
𝑟 =  𝑞𝑏

𝑠  (
𝑣𝑎𝑣

𝑈
+ 𝑡𝑎𝑛 𝛿𝑣𝑏 + 𝑇 

𝜕 𝜂𝑏

𝜕 𝑟
)  (27) 

 
where, 𝑣𝑎𝑣 is the transverse component of the depth-

averaged flow velocity, 𝜂𝑏 is the downward displacement 
of the bed relative to a cross-sectional mean bed elevation 

and T is given by: 
 

𝑇 =  √
𝜏∗𝑐

𝜇𝑠 𝜇𝑘 𝜏∗𝑜
  (28) 

 
where, 𝜇𝑠  and 𝜇𝑘 are the static and dynamic coefficients 

of Coulomb friction of the sediment particles, respectively 

and 𝜏∗𝑜 denotes the cross-sectional average of 𝜏∗. 
Equation (27) requires data that are difficult to obtain 

which precludes its use. 

It is noted that in both of Eqs. (25 and 27) the lateral bed 

load transport rate depends on the longitudinal transport 

rate through tan (δ) which is called in the literature as tan 

(δ). Therefore, in these formulas, the well-known 

uncertainties in the longitudinal bed load rate is influencing 

the estimation of the lateral bed load rate. If a dam is built 

on a river that traps sediment in its upstream reservoir, then 

downstream of the dam the longitudinal bed-load transport 

will be small or almost vanishing. However, the author 

believes that the clear water downstream of the dam will 

have high stream power enough to erode the river banks 

producing sediment that could be transported laterally by 

the secondary currents or cross flow. Also, sediment might 

come from human activities on the banks that induce bank 

erosion or from tributary flow and this provides non-

alluvial sediment to the river stream. Often downstream of 

dams as shown by Hafez (2022) river meandering increases 

to reduce the river's relatively high excess energy. The 

curvature of the river channel induces cross-flow associated 

with lateral bed-load transport which is almost independent 

of longitudinal bed-load transport. It is also assumed in 

Eq. (25) that the angle between the transverse and 

longitudinal bed-load discharges is the same as the flow 

velocity deviation angle in spite that the bed-load discharge 

is proportional to velocity to the third power. This is evident 

as the bed load rate is proportional to the bed shear stress to 

the power of 3/2 as in Meyer-Peter and Muller (1948) and 

the bed shear stress is proportional to the square of velocity). 

The foregoing review asserts that in spite of the great 

efforts that existed in past works; still, there are still 

significant improvements that could be introduced as will 

be seen in the following section. In particular, answers are 

sought to the following questions. Could a differentiation 
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be made between the different deviation angles of the 

resultant: Flow velocity, boundary shear, and bed-load 

discharge? could an expression be developed for the 

thickness of the bed-load layer in curved channels which 

differs from that in straight channels? could the expression 

for the transverse bed slope be correctly and physically 

derived? could a transverse bed-load function be found that 

balances the inward transport due to secondary currents and 

the outward transport due to downslope movement by 

gravity? could an expression be developed for the 

longitudinal bed-load transport in curved and alluvial 

meandering channels? “can the developed equations be 

with a higher degree of physical realism”? 
 The following section will try to answer these 

important questions by developing innovative equations 
that improve the existing knowledge. 

Materials and Methods 

The Present Approach 

First, recent equations developed by Hafez (2024) for 

the transverse flow velocity and the transverse boundary 
shear stress are used in this section; therefore, these 

equations are stated herein. Hafez (2024) expresses the 

transverse flow velocity, the transverse bed velocity, and 

the transverse bed or boundary shear stress, respectively as: 
 

𝑣 =  
1

𝜈𝑇
 (𝑔 𝑆𝑟 ( 

𝑧2

2
−  𝐷 𝑧) + 

𝑈2 (𝑝+1)2

𝑟 (2𝑝+1)
 (𝐷 𝑧 − 

𝑍2𝑝+2

𝐷2𝑝 (2𝑝+2)
) ±

 
𝜏𝑟𝑠

𝜌
𝑧) + 𝑣𝑏 (29) 

 
where, 𝜈𝑇  is the turbulent viscosity, 𝑆𝑟 is the transverse 

water surface slope, z is the vertical coordinate, p = 1/m 

such that “m” is defined as in Eq. (5), 𝜏𝑟𝑠 is the transverse 

shear at the water surface due to wind or ship forces or 

any lateral surface forces and 𝑣𝑏 is the transverse bed 
velocity given by the following equation: 
 

𝑣𝑏 =
1

𝜈𝑇
 (𝑔 𝑆𝑟 ( 

𝐷2

3
) − 

𝑈2𝐷2 (𝑝+1) (𝑝+2)

2 𝑟 (2𝑝+3)
∓  

𝜏𝑟𝑠

𝜌

𝐷

2
) (30) 

 
For the boundary shear stress, the following equation 

is given which considers the transverse boundary shear 

stress a balancing the centripetal and the radial pressure 

forces unlike that in Ascanio and Kennedy (1983) who 

only considered balancing the centripetal force: 
 

𝜏𝑜𝑟 = 𝜌 𝐷 (
𝑈2 (𝑝+1)2

𝑟 (2𝑝+1)
 −  𝑔 𝑆𝑟  )  (31) 

 

Transverse Bed Slope 

To determine an equation for the transverse bed slope, 

use is made of either: The model equation of Ascanio and 

Kennedy (1983), Eq. (1), or the model equation by Bridge 

(1977), Eq. (15), while in both cases adopting the relation 

developed for the lateral boundary shear stress by Hafez 

(2024), which is Eq. (31) herein. 

Substitution is made of Eqs. (31 and 2) for the 

transverse boundary shear stress and the bed-load layer 

thickness, respectively with the inclusion of a correction 

factor, into the model equation of Ascanio and Kennedy 

(1983), Eq. (1), resulting in: 
 

𝜌 (
𝑈2 (𝑝+1)2

𝑟 (2𝑝+1)
 𝐷 −  𝑔 𝑆𝑟  𝐷) =  𝑧𝑏(1 −  𝜆)(𝜌𝑠 −  𝜌)𝑔 sin 𝛽 (32) 

 

From Eq. (32), the following equation is obtained for the 

transverse bed slope in curved open channels assuming a 

small lateral bed slope angle, i.e., 𝑆𝑡 = tan β ≈ sin β: 

 

𝑆𝑡 =  sin 𝛽 =  
𝜌 𝑈∗𝑐 ( 

�̅�2 (𝑝+1)2

𝑟 (2𝑝+1)
 𝐷− 𝑔 𝑆𝑟 𝐷)

𝐶𝑏 𝑑 𝑈∗ (1− 𝜆)(𝜌𝑠− 𝜌) 𝑔
  (33) 

 

It should be noted that Eq. (2) is used for zb in Eq. (33) 

with the introduction of the correction factor, Cb, as 

proposed by Yeh and Kennedy (1993) which is later 

determined through calibration with data.  

If the model equation by Bridge (1977), Eq. (15), is 

used, the following alternative equation is obtained for the 

transverse bed slope in curved open channels: 

 

𝐶𝑎 𝜋 (
𝑑

2
)

2
𝜌 (

𝑈2 (𝑝+1)2

𝑟 (2𝑝+1)
 𝐷 −  𝑔 𝑆𝑟  𝐷) =

4

3
 𝜋 (

𝑑

2
)

3
(𝜌𝑠 −

 𝜌) 𝑔 sin 𝛽  (34) 

 

where, Ca is a factor that accounts for sediment particles 

exposure to the acting lateral bed shear stress and it could be 

determined through calibration with data. Equation (34) 

after solving for the transverse bed slope becomes: 

 

𝑆𝑡 =  sin 𝛽 =  
3 𝐶𝑎  𝜌 (

�̅�2 (𝑝+1)2

𝑟 (2𝑝+1)
 𝐷− 𝑔 𝑆𝑟 𝐷)

2 (𝜌𝑠− 𝜌) 𝑔 𝑑
 (35) 

 

For small lateral bed slope angle, 𝑆𝑡 = tan β ≈ sin β 

and from Eq. (12) tan β = tan δvb tan ϕ. Using these 

relations in Eq. (35), the following equation could be 

obtained for the lateral distribution of grain sizes: 
 

𝑑 =  
3 𝐶𝑎  𝜌 (

�̅�(𝑟)2 (𝑝+1)2

𝑟 (2𝑝+1)
 𝐷(𝑟)− 𝑔 𝑆𝑟 𝐷(𝑟))

2 (𝜌𝑠− 𝜌) 𝑔 (tan 𝛿𝑣𝑏 tan 𝜙)
  (36) 

 

In Eq. (36) the local water depth and the depth-

averaged velocity, depend in general on the radial 

distance through a functional dependence on r; this 

dependence could be given according to Ascanio and 

Kennedy (1983). Due to a lack of data, the transverse 

variation of the variables is not discussed herein and 

scope is limited to evaluating the variables at the central 

portion of the cross section. 

Transverse Bed-Load Transport Rate 

The lateral bed-load discharge per unit channel width 

could be assumed to be composed of two parts; the first is 
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the inward (toward the convex bank or the point bar side 

of the cross-section) transport due to the non-zero lateral 

bed velocity and the second is the outward transport 

(toward the concave bank) due to downslope movement 

by gravity on the transverse bed slope. Based on the lateral 
bed velocity equation that is developed by Hafez 

(2024), Eq. (30) herein, the following equation could 

be assumed for determining the lateral inward transport 

bed-load discharge per unit channel width as the 

product of the bed velocity and the thickness of the bed-

load layer in curved channels as: 
 
𝑞𝑏

𝑟 =  (𝑠 −  1) (1 −  𝜆) 𝑧𝑏 𝐶𝑣𝑏𝑣𝑏 𝑐𝑜𝑠(𝛽)  (37) 
 
where, 𝐶𝑣𝑏 is a dimensionless coefficient that represents the 

portion of the lateral bed velocity that is transferred within 

the bed-load layer and to the moving bedload particles. It 

can be considered as an average velocity coefficient and cos 

(β) is used to get the component of the transverse bed load 

in the direction of the transverse bed slope. The right-hand 

side of Eq. (37) represents the bed-load transport by 

secondary currents up the transverse bed slope. 

Using Eq. (24) by Ikeda (1982) for the downslope 

movement by the gravity of the bed particles and Eq. (2) 

for zb with the correction factor Cb in addition to Eq. (37), 

the following equation is obtained for the lateral bed-load 
transport rate: 
 

𝑞𝑏
𝑟 =  (𝑠 − 1) (1 −  𝜆) 𝐶𝑏  𝑑 

𝑈∗

𝑈∗𝑐
 𝐶𝑣𝑏𝑣𝑏 𝑐𝑜𝑠(𝛽) − 

0.0085 𝑡𝑎𝑛 𝛽 √(𝑠 − 1)𝑔 𝑑3  [
𝜏∗

𝜏∗𝑐
 (

𝜏∗

𝜏∗𝑐
− 1)]

1 2⁄

  (38) 

 
It should be noted that the correction factor Cb is 

introduced in Eq. (38) to reflect the thickness of the bed-

load layer in curved channels as being different from that 
in straight channels. Substituting Eq. (29) for the lateral 

bed velocity in Eq. (38) results in: 

 

𝑞𝑏
𝑟 = {(𝑠 −  1) (1 −  𝜆) 

𝐶𝑏  

𝑈∗𝑐
2

𝐶𝑣𝑏

𝜈𝑇
 [𝑔 𝑆𝑟 ( 

𝐷2

3
) −

 
𝑈2𝐷2 (𝑝+1) (𝑝+2)

2 𝑟 (2𝑝+3)
∓ 

𝜏𝑟𝑠

𝜌

𝐷

2
]

2

} 𝑐𝑜𝑠(𝛽) −

{0.0085 𝑡𝑎𝑛 𝛽 √(𝑠 − 1)𝑔 𝑑3  [
𝜏∗

𝜏∗𝑐
 (

𝜏∗

𝜏∗𝑐
− 1)]

1 2⁄

 (39) 

 

Equations (38 or 39) are called the Modified-Ikeda 

lateral bed-load transport equation.  

The second part on the right-hand side of Parker 

(1984), Eq. (25), expresses the lateral bed load 

transport downslope of the transverse bed. It could be 

adopted in the present approach to express the 

downslope component of the lateral bed-load 

discharge. By subtracting this downslope component in 

Parker (1984) equation from the lateral upslope 

transport, Eq. (37), while substituting Eq. (2) for zb 

with the correction factor Cb, the following equation for 

the lateral bedload rate results in: 

𝑞𝑏
𝑟 =  (𝑠 −  1) (1 −  𝜆) 𝐶𝑏 𝑑 

𝑈∗

𝑈∗𝑐
 𝐶𝑣𝑏𝑣𝑏 cos(𝛽) −

 
[1+ (𝐶𝐿 𝐶𝐷⁄ ) tan 𝜙]

tan 𝜙
 (

𝜏∗𝑐

𝜏∗
)

1 2⁄

tan 𝛽 
𝑞𝑏

𝑟

tan 𝛿𝑞𝑏

  (40) 

 

where, in Eq. (40) the relation: 𝑞𝑏
𝑠 =  

𝑞𝑏
𝑟

𝑡𝑎𝑛 𝛿𝑞𝑏

 is substituted 

for the longitudinal unit bed-load discharge (𝑞𝑏
𝑠) in area 

units (m2/s). The bed load deviation angle (tan 𝛿𝑞𝑏
) could 

be given by Eq. (49) given thereafter. 

Now solving in Eq. (40) for the lateral bed load rate yields: 
 

𝑞𝑏
𝑟 =  

(𝑠− 1) (1− 𝜆) 𝐶𝑏 𝑑 
𝑈∗

𝑈∗𝑐
 𝐶𝑣𝑏𝑣𝑏 cos(𝛽)

{1+ 
[1+ (𝐶𝐿 𝐶𝐷⁄ ) tan 𝜙]

tan 𝜙
 (

𝜏∗𝑐
𝜏∗

)
1 2⁄ tan 𝛽

tan 𝛿𝑞𝑏
}

  (41) 

 
It is noted that Eq. (41) has an advantage over the 

equation of Parker (1984), Eq. (25), in that it does not 

include the highly uncertain longitudinal bed load rate 

(𝑞𝑏
𝑠). Eq. (41) is called the modified-parker equation.  

Flow Velocity, Boundary Shear Stress, and Bed-

Load Rate Deviation Angles 

In this study distinction is made between the near bed 

resultant flow velocity deviation angle, the resultant bed 

shear stress deviation angle, and the resultant bed-load 

discharge deviation angle as in the following. The 

primary-flow velocity power law given by Zimmerman 

and Kennedy (1978) is: 
 
𝑢

𝑈
=  

𝑚+1

𝑚
 𝜂1 𝑚⁄  = (1 + 𝑝) 𝜂1 𝑚⁄   (42) 

 

where, p =1/m. The power law was used in many 

meandering investigations such as Ascanio and Kennedy 

(1983); Chang (1983-1984); Odgaard (1986a). Recently 

in a different, with some similarities, (Dey et al., 2023) 

adopted the power law for the stream-wise velocity in 

their investigation of flow over a downstream-skewed 

wavy bed in which flow curvature is in the vertical plane, 

Hafez (2024). 

The longitudinal surface velocity could be obtained 

from Eq. (42) by letting z = D to get: 
 
𝑢𝑠 =  �̅� (1 + 𝑝) (43) 
 

The surface velocity deviation angle, 𝛿𝑣𝑠, could be 

given according to Eq. (29), Hafez (2024), by substituting 

z = D and Eq. (43) as: 
 

 𝑡𝑎𝑛 𝛿𝑣𝑠 =  
𝑣𝑠

𝑢𝑠
=  

1

𝑈 (𝑝+1) 𝜈𝑇
 (− 

𝐷2

2 
𝑔 𝑆𝑟 + 

𝑈2𝐷2 (𝑝+1) 

2 𝑟 
 ±

 
𝜏𝑟𝑠

𝜌 
𝐷) + 

𝑣𝑏

𝑈 (𝑝+1)
  (44) 

 
The flow bed velocity deviation angle,𝛿𝑣𝑏 , using 

Eq. (30) for vb, could be given, by 3Hafez (2024) as: 
 

𝑡𝑎𝑛 𝛿𝑣𝑏  =  
𝑣𝑏

𝑢𝑏
=  

1

𝑢𝑏 𝜈𝑇
 (

𝑔 𝑆𝑟 ( 
𝐷2

3
) −

 
𝑈2𝐷2 (𝑝+1) (𝑝+2)

2 𝑟 (2𝑝+3)
∓ 

𝜏𝑟𝑠

𝜌

𝐷

2

)  (45) 



Youssef Ismail Hafez / American Journal of Environmental Sciences 2024, Volume 20: 48.63 

DOI: 10.3844/ajessp.2024.48.63 

 

54 

There are several ways to determine ub in Eq. (45) such 

as from the vertical distribution of the longitudinal main 

velocity or from a bed-load formula and the thickness of 

the bed-load layer. Hafez (2024) based on the well-known 

logarithmic velocity distribution over the rough boundary, 

assumed 𝑢𝑏  ≈ 8.5 𝑢∗ and 𝑢∗ is the local shear velocity. 

However; the determination of the near-bed velocity is not 

an easy task. 

The resultant bed shear stress deviation angle, 𝛿𝜏𝑏, 

Hafez (2024), using Eq. (31) for 𝜏𝑜𝑟, could be given as: 
 

𝑡𝑎𝑛 𝛿𝜏𝑏 =  
𝜏𝑜𝑟

𝜏𝑜
=  

𝜌 (
�̅�2 (𝑝 + 1)2

𝑟 (2𝑝 + 1)
 𝐷 −  𝑔 𝑆𝑟  𝐷)

𝜌 
�̅�2 𝑓

8

= 

 
8 (

�̅�2 (𝑝+1)2

𝑟 (2𝑝+1)
 𝐷− 𝑔 𝑆𝑟 𝐷)

 𝑈2 𝑓
  (46) 

 
The bed-load resultant discharge deviation angle, 𝛿𝑞𝑏

, 

using Eq. (41) for 𝑞𝑏
𝑟, could be given as: 

 

tan 𝛿𝑞𝑏
=  

𝑞𝑏
𝑟

𝑞𝑏
𝑠 =  

(𝑠− 1) (1− 𝜆) 𝐶𝑏 𝑑 
𝑈∗

𝑈∗𝑐
 𝐶𝑣𝑏𝑣𝑏 cos(𝛽)

{1+ 
[1+ (𝐶𝐿 𝐶𝐷⁄ ) tan 𝜙]

tan𝜙
 (

𝜏∗𝑐
𝜏∗

)
1 2⁄ tan 𝛽

tan 𝛿𝑞𝑏
}

 

𝑞𝑏
𝑠   (47) 

 

where, 𝑞𝑏
𝑠 could be given using a suitable longitudinal bed 

load formula (such as for example the longitudinal bed 

load by Meyer-Peter and Muller (1948) and vb could be 

given by Eq. (30). However, Eq. (47) suffers from its 

dependency on the longitudinal bed-load discharge (𝑞𝑏
𝑠) 

which is difficult to be determined. Most bed load 

equations use the critical Shields stress criterion while 

(Perret et al., 2023) data show a large scatter in the critical 

Shields stress values for initial. A different and more 

convenient way could be used for determining the 

deviation angle of the resultant flow velocity and the 

resultant bed-load discharge based on the deviation angle 

of the resultant boundary shear stress. It is hypothesized 

herein that the equation of the deviation angle for the 

resultant bed shear stress has considerable confidence due 

to knowledge with reasonable accuracy of the lateral and 

longitudinal boundary shear stresses. For the other two 

equations, Eqs. (45 and 47), the requirement of accurately 

knowing the longitudinal bed velocity and longitudinal 

bed load puts considerable uncertainties in using these 

equations. Most of the developed bed load equations 

represent instantaneous bedload transport related to 

temporal hydraulic and bed conditions and are not well-

suited to estimate long-term average bedload over a broad 

range of channels, Braithwaite (2023).  
It is commonly assumed that the shear stress is 

proportional to the square of the flow velocity while the 

bed-load transport is proportional to the shear stress to the 

power of 1.5 according to Meyer-Peter and Muller (1948), 

Eq. (59) thereafter. The same proportionality would be 

assumed to be applicable to the deviation angles. For 

example, it can be stated that: 𝑡𝑎𝑛 𝛿𝜏𝑏 =  
𝜏𝑜𝑟

𝜏𝑜
∼  

𝜌 𝑣𝑏
2

𝜌 𝑢𝑏
2 =

 
𝑣𝑏

2

𝑢𝑏
2 

= (𝑡𝑎𝑛 𝛿𝑣𝑏)2. Applying the last relation while 

substituting the deviation angle for the bed shear stress 
from Eq. (46) yields: 
 

𝑡𝑎𝑛 𝛿𝑣𝑏  =  √ 𝑡𝑎𝑛 𝛿𝜏𝑏  =  √
8 (

�̅�2 (𝑝+1)2

𝑟 (2𝑝+1)
 𝐷− 𝑔 𝑆𝑟 𝐷)

 𝑈2 𝑓
 (48) 

 
Using the same methodology to the bed load deviation 

angle results in: 
 

tan 𝛿𝑞𝑏
=  (tan 𝛿𝜏𝑏)1.5 = (

8 (
�̅�2 (𝑝+1)2

𝑟 (2𝑝+1)
 𝐷− 𝑔 𝑆𝑟 𝐷)

 𝑈2 𝑓
)1.5  (49) 

 
where, (𝑡𝑎𝑛 𝛿𝜏𝑏) is given as by Eq. (46). Comparing 

Eqs. (49 and 47), it can be seen that Eq. (49) has the 

advantage of including the main velocity and roughness 

effects in addition to the inclusion of the water depth and 

radius of curvature while Eq. (47) includes the highly hard to 

obtain with accuracy the longitudinal bed load discharge. 

In addition, Eq. (49) has a simpler structure than Eq. (47). 

The foregoing developed equations for the lateral bed 

velocity and the flow bed-velocity deviation angle allow 

for determining the longitudinal bed-load discharge in an 

alluvial meandering or curved river reach which has not 
been done to the best of the knowledge of the writer. From 

Eq. (45) the longitudinal bed velocity in curved reach 

could be given as  𝑢𝑏 =  𝑣𝑏 𝑐𝑜𝑡 𝛿𝑣𝑏, where vb could be 

obtained from Eq. (30) and 𝑐𝑜𝑡 𝛿𝑣𝑏 could be obtained as 

the reciprocal of the left-hand side of Eq. (48). The 

longitudinal unit bed-load discharge only due to 

curvature, (𝑞𝑏
𝑠)𝑐𝑟𝑣, could be then given as: 

 
(𝑞𝑏

𝑠)𝑐𝑟𝑣  = 𝐶𝑞𝑏  𝑢𝑏  𝑧𝑏 =  𝐶𝑞𝑏  𝑣𝑏 𝑐𝑜𝑡 𝛿𝑣𝑏  𝑧𝑏  (50) 
 
where, Cqb is a coefficient that relates the average velocity 

within the bed-load layer to the bed-load velocity at the 

top edge of the bed layer (could be taken as 0.5), ub is 

given according to Eq. (50) and zb is given according to 

Karim (1981) formula, Eq. (2) corrected using Cb. It is 
important to stress that Eq. (51) is valid only for curved or 

meandering reaches and it requires the existence of a 

transverse bed velocity. Now, the total longitudinal 

bedload transport rate (𝑞𝑏
𝑠)𝑡𝑜𝑡  could be given as: 

 
(𝑞𝑏

𝑠)𝑡𝑜𝑡 =  (𝑞𝑏
𝑠)𝑠𝑡𝑟 +  (𝑞𝑏

𝑠)𝑐𝑟𝑣 (51) 
 
where, (𝑞𝑏

𝑠)𝑠𝑡𝑟 is the longitudinal bed load transport due 

to the longitudinal energy slope while (𝑞𝑏
𝑠)𝑐𝑟𝑣 is the 

longitudinal bed load transport due to curvature of the 

river channel resulting from non-zero net transverse bed 
load rate and is given by Eq. (50). Although most river 

reaches are rare to be straight over 10-12 channel widths, 

Odgaard (1986a), most sediment morphological models 

such as the well-known and widely used HEC-RAS, 

Brunner (2016), considers only the straight longitudinal 

bed load rate. Equation (51) is valid for any river that 
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reaches straight or curved. If the reach is straight (r → ∞ 

and vb would be zero) then (𝑞𝑏
𝑠)𝑐𝑟𝑣 would be zero.  

Results and Discussion 

Application of the Theoretical Formulations to Two 

Sets of Field Data 

Valuable field data exist for the Fall River, Rocky 

Mountain National Park, by Thorne et al. (1983) and for 

Muddy Creek, Wyoming, by Dietrich and Smith (1983). 

“These reaches were selected for verification because 

they cover a complete or near complete cycle of 

secondary-flow development and decay through two-

consecutive meander bends. Because of their small radius of 

curvature, the bends offer a significant challenge to the 
theory. Both bends show a substantial variation in bed 

topography over a very short distance.” Odgaard (1986b). 

The author agrees with Odgaard (1986b) in that these two 

cases are characterized by strong meandering structure 

making each case a well-known case study and a significant 

challenge to the equations developed from the bend theory.  

For a reach of 110 m in the Fall River, the values of 

the mean water depth, width, depth-averaged velocity, 

discharge, longitudinal water surface slope, and median 

grain diameter are 0.34, 7.8 m, 0.49 m/s, 1.4 m3/s, 0.00173 

and 0.2 mm, respectively. The calculated Manning 
roughness coefficient in metric units (s/[m1/3]) from the 

Manning equation is 0.0414 s/[m1/3] (f = 0.192) and the 

Shields factor is 0.035. In all runs the von Karman 

constant is taken as 0.4 and the bed porosity as 0.4, 

Odgaard (1986b).  

Table 1 shows calculations of the transverse bed slope 

in the Fall River using different equations in the first reach 

at Section 1, which is shown in Fig. (1). At Section 1 the 

radius of curvature is equal to 52 m for which the 

measured transverse bed slope is about 0.0388 according to 

data by Thorne et al. (1983). Section 2 is located near the 
exit of the first bend where fully developed flow conditions 

often exist near the bends' exit. In spite of that Eqs. (6-7) 

predict a very close value, with Eq. (7) prediction being 

better, it should be kept in mind that the bed-layer 

thickness equation, Eq. (2), which is based on straight 

channel condition was used for the bed-load layer 

thickness for this case of a curved river reach. Indeed, this 
bed-layer thickness should be considerably smaller than 

the thickness due to straight conditions, because the bed-

shear and bed-load transport in straight channels are 

considerably higher and more intense than their 

equivalents in curved reaches. Using the large straight 

thickness of the bed load layer which is supposed to be in 

the denominator of the equation would yield a small 

transverse bed slope. To compensate for that, an increase 

in the lateral bed shear by Ascanio and Kennedy (1983) 

must occur by dropping the transverse water surface slope 

contribution from Eq. (4) because of its negative sign. 

Equation (6) uses the original equation for the lateral bed 
shear while Eq. (4) is without the use of the simplified 

Nunner’s relation. Although in both cases the results are 

very close, nonetheless, conceptually speaking these two 

Eqs. (6-7) suffer from the aforementioned assumptions of 

using the longitudinal bed-layer thickness and a boundary 

shear formula which does not include the transverse 

pressure force.  

 

 
 
Fig. 1: Discretization of Fall River, after Odgaard (1986b)

 
Table 1: Prediction of the transverse bed slope (𝑺𝒕) at the Fall River and Muddy Creek, USA 

 Manning’s St St St St St St St St 

 roughness, n measured Eq. (6) Eq. (7) Eq. (16) Eq. (19) Eq. (26)* Eq. (33)$ Eq. (35)& 

Fall River, 0.0414 0.0388 at  0.034 0.038 0.192 0.039 0.205 0.038 0.031 

Calibration,  section 1     0.190 0.021 0.040 

section 1,       0.171 0.013 0.046 

rc = 52 m           0.041 0.010 0.062 

Fall River, 0.0414 0.185 0.162 0.180 0.909 0.185 0.194 0.181 0.189 

verification,  at 

rc = 11 m  section 2, 

Muddy Creek, 0.0369 0.167 0.172 0.191 0.400 0.197 0.153 0.173 (0.088, 

verification,  at       Ca =0.65) 

rc = 8 m  section 22       (0.136, 

         Ca = 1.0) 
*Calibration values of CL/CD = 0.008, 0.2, 0.5 and 10.0, respectively 
$Calibration values of Cb = 0.25, 0.45, 0.75 and 1.0, respectively 
&Calibration values of Ca = 0.5, 0.65, 0.75 and 1.0, respectively 
Values in red represent the best match of predictions with the measured data 
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Equation (16) by Bridge (1977) highly over-predicts 

the transverse bed slope by about 5 times which is due to 

the used form for the lateral bed shear as τo tan (δvb) in 

addition to assuming the whole magnitude of this bed 

shear to be transferred to the bed-particles without 
considering any sheltering or shear-reduction effect. 

Equation (19) by Odgaard (1986a) provides an excellent 

match, however, as stated before a fundamental weakness 

lies in its assumption of the incipient motion of the bed 

particles as pointed out by Bridge (1992). Another 

assumption of Eq. (19) is the equality of the lateral bed 

and surface velocities but this approximation can be 

accepted as the two velocity values although are not often 

equal, however, they could be close. 

Equations (26), (33), and (35) have unknown 
coefficients that are determined through calibration. As 
shown in Table (1) for Eq. (26) a ratio of the lift to drag 
coefficient of 10 produced the best prediction. Bridge 
(1992) reports a ratio of 0.008 at the threshold of motion 
while it approaches infinity at the threshold of suspension. 
If the ratio CL/CD of 10.0 seems to be unrealistic it can be 
assumed that in Eq. (26) the ratio CL/CD is replaced by a 
factor Co*(CL/CD) which is assumed equal to 10.0 with 

Co is a calibration coefficient equal to 10 divided by the 
actual lift/drag ratio. 

Equation (33) gives best results when Cb is 0.25. This 

value will be confirmed when field data for the muddy 
creek and the Fall River are used later for calibration and 

verification of this coefficient as seen in Table 1. It means 

that the thickness of the bed-load layer in curved channels 

at these flow and sediment conditions is one-quarter of the 

thickness of the bed-load layer in straight channels. 

Ascanio and Kennedy (1983) used a longitudinal bed-

shear-stress reduction factor where a value of 0.43 was 

considered by them for a friction factor of 0.165. 

Similarly, a reduction factor Ca could be justified when it 

is used for the lateral bed shear stress. This factor should 

be dependent on the bed-particle size and so should the 

factor Cb. A value for Ca of 0.65 was found to have a 

transverse bed slope of 0.04 versus a measured value of 

0.0388 as seen in Table (1) where the friction factor is 

0.193. Since complete field data are hard to find in which 

all the required hydraulic, sediment, and topographical data 

exist, a trial will be made herein for calibration and 

verification of the aforementioned constants.  

Table 1 shows the prediction of the transverse bed 

slope at the Fall River in section 2, Fig. (1), where the 

radius of curvature is 11 m and the measured transverse 

bed slope is 0.185. Equations (19), (33), and (35) provide 

very close values followed by Eqs. (7) and (26) while 

Eq. (16) predicts about 5 times the measured value. It is 

seen that Eqs. (26), (33), and (35) using the calibrated 

coefficients predict very well the transverse bed slope 

which indicates success in the calibration process. 

For a reach of 40 m in the Muddy Creek, the values of 

the mean water depth, width, depth-averaged velocity, 

discharge, longitudinal water surface slope, and median 

grain diameter are 0.40, 4.0 m, 0.55 m/s, 1.1 m3/s, 0.0014 

and 0.7 mm, respectively, Odgaard (1986b). The calculated 
manning roughness coefficient is 0.0369 (f = 0.145) and the 

shields factor is 0.04. The lateral water surface slopes 

based on measured water surface elevations are 0.003 at 

section 19 A and 0.004 at section 18 which are located at 

the bend apex. The calculated transverse water surface 

slope (𝑆𝑟) from Eq. (52) with the coefficient Cr = 1, 

Rozoveskii (1957), is 0.00385, and using Eq. (53), Hafez 

(2023) when dividing Δ𝑧 by the width B to yield the lateral 

water surface slope (𝑆𝑟) yields 0.00412 compared to a 

measured value of 0.004. These predictions support the 
bend theory equation for predicting the lateral water 

surface slope and the use of Eqs. (52) or (53) when values 

of the transverse water surface slope are required. 

Equation (53) has an advantage over Eq. (52) in that it 

includes channel roughness effects via the parameter p: 

 

𝑆𝑟 =  
𝐶𝑟 𝑈2

𝑔 𝑟𝑐
  (52) 

 

Δ𝑧 =  
 (1+𝑝)2

(2𝑝+1)
 

𝑈2 𝐵

𝑔 𝑟𝑐
𝑜𝑟 𝑆𝑟 =  

 (1+𝑝)2

(2𝑝+1)
 

𝑈2 

𝑔 𝑟𝑐
 (53) 

 

where, Δz is the difference in height between the outer 

and the inner banks and 𝑟𝑐 is the channel centreline 

radius of curvature. 

Table 1 shows for muddy creek the prediction by 
Eqs. (6) and (33) give excellent match to the measured 

data. Equation (16) predicts a very high value, while 

Eqs. (7), (26), and (35) predict close values. The 

prediction by Eq. (35) deserves some explanation. For a 

Ca value of 0.65, the predicted slope is almost half the 

measured value but when Ca = 1 the prediction improves 

to be 81% of the measured slope. It should be remembered 

that the calibrated value of 0.65 was based on a grain 

diameter of 0.2 mm at Fall River while the grain diameter 

used in Muddy Creek is 0.7 mm which is more than 3 

times larger. It is expected that larger particles have less 

sheltering effect than smaller ones and a value of Ca = 1 
could be assumed in this case which produces a lateral 

bed-slope of 0.136 (81% of the measured value). The 0.7 

mm grain diameter was reported by Odgaard (1986b) to be 

the median grain size while Dietrich and Smith (1984) 

reported measured grain diameters in Muddy Creek which 

vary from 0.3-2.0 mm depending upon the location in the 

stream. Indeed this discussion points out the importance 

of the accuracy of the measured data especially grain sizes 

as Eq. (35) is very sensitive to grain sizes. 

Now, after this detailed analysis of the existing and 

developed equations herein for predicting the fully 
developed transverse bed-slope (St) is made, these 

equations could be used in investigating the stream-wise 
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variation of St as was done in Odgaard (1986b) which 

presented the following Eq. (34) in Odgaard (1986a): 

 

𝑆𝑇𝑐 =  𝑆𝑇𝑐𝑜 − (𝑆𝑇𝑐𝑜 − 𝑆𝑇𝑐𝑖) 𝐸  (54) 

 

where, 𝑆𝑇𝑐  is the transverse bed-slope at a stream-wise 

distance (x) along the channel center line, 𝑆𝑇𝑐𝑜 is the fully 

developed transverse bed-slope which could be given 

using the equations developed herein (i.e., S_Tco= St), 

𝑆𝑇𝑐𝑖 is the initial transverse bed-slope (at x = 0; x = 

distance along channel axis) and E is a function which 

depends on the relative distance (x/B) where B is the 

channel width. This equation points to the need for fully 

developed or uniform quantities when analyzing non-

uniform conditions. 

Table 2 shows stream-wise computations of the 

transverse bed slopes in the Fall River using Eq. (54). The 

discretization of the Fall River according to Odgaard 

(1986b) is that reach 1 is between sections 0-1, reach 2 is 

nearly between sections 1-3, reach 3 is nearly between 

sections 3 and 4, reach 4 is nearly between sections 4 and 

7 and reach 5 is between sections 7-8. Two approaches are 

used in Table 2, the first is by Odgaard (1986b) in which 

the fully developed transverse bed-slope Eq. (19) is used, 

while the second uses Eq. (33) by the present approach 

with Cb = 0.25. The same values of the function, E, are 

used in the present approach as it is only a distance 

function. Table (2) shows very good agreement between 

the two approaches. 

It can be concluded that Eq. (33) with the proper value 

for Cb resembles Eqs. (6-7) by Ascanio and Kennedy (1983), 

but with the correct form for the transverse boundary shear 

stress and the thickness of the transverse bed-load layer. This 

makes Eq. (33) more conceptually and physically correct 

than Eqs. (6-7), in spite that the predicted numeric values 

are nearly equal.  

The data of the measured transverse bed slope by 

Zimmerman and Kennedy (1978) fit linearly Eq. (7) by 

Ascanio and Kennedy (1983) with a slope equal to 1.3. 

This means that 
(8 𝜏∗𝑐)1 2⁄

(1− 𝜆)
 in Eq. (7) is 1.3 according to 50 

data points. These data could be used to calibrate the 

correction factor for the thickness of the bed-load layer in 

curved channels assuming that the straight line with slope 

1.3 fits the measured data well. Equation (33) could be 

cast in the following form: 

 

𝑆𝑡 =  [
𝑝2 (1+2 𝑓1 2⁄ )

𝐶𝑏  (2𝑝+1)(1+ 𝑓1 2⁄ )𝑓1 2⁄ ] 
𝐷

𝑟
 𝐹𝑑  

(8 𝜏∗𝑐)1 2⁄

(1− 𝜆)
 

1+ 𝑓1 2⁄

1+2 𝑓1 2⁄   (55) 

 

For Eq. (55) to be representing the experimental data 

of the transverse bed slope by Zimmerman and Kennedy 

(1978), the quantity in the square bracket on the right-

hand side should be unity. This causes Eq. (55) to be 

exactly equivalent to Eq. (7) by Ascanio and Kennedy 

(1983). The use of the lateral distribution of velocity and 

slope as by Ascanio and Kennedy (1983) yields exactly 

Eq. (11) which fits very well through the experimental 

data of Zimmerman and Kennedy (1978), the transverse 

bed profiles from experiments by Zimmermann (1974) 

and the Missouri River data by Falcon-Ascanio (1979). 

However, the present approach has a higher degree of 

physical realism than that by Ascanio and Kennedy 

(1983) because it considers more realistic lateral 

boundary shear stress and thickness of the bed load layer 

in meandering channels. The employed bed shear stress 

formulation is more realistic because it expresses that the 

transverse boundary shear stress balances the centripetal 

and the radial pressure forces unlike that by Ascanio and 

Kennedy (1983) who only considered balancing the 

centripetal force. 

 
Table 2: Computations of transverse bed slopes along the center line in Fall River 

     Distance 
     from   STco, STc, 
  STci, STco,  beginning  STci, present using STc, 
Reach rc Odgaard Odgaard Section of reach Value of present approach, Eq. (33)  Odgaard 
number (m) (1986b) (1986b) number (m) function, E approach Eq. (33) for STco (1986b) 

1 52 0 0.039 1 23 -0.42 0.000 0.038 0.054 0.055 

     24 -0.45 0.000 0.038 0.055 0.057 

2 11 0.057 0.185 2 12 0.28 0.055 0.181 0.146 0.149 

    3 25 -0.46 0.055 0.181 0.239 0.244 

    End 32 -0.39 0.055 0.181 0.230 0.235 

3 ∞ 0.235 0 4 12 0.28 0.230 0.000 0.064 0.066 

    End 15 0.03 0.230 0.000 0.007 0.007 

4 11 0.007 0.185 5 12 0.28 0.007 0.181 0.132 0.135 

    6 20 -0.30 0.007 0.181 0.233 0.238 

    End 23 -0.42 0.007 0.181 0.254 0.260 

5 ∞ 0.26 0 7 5 0.84 0.254 0.000 0.213 NA 

    8 13 0.19 0.254 0.000 0.048 0.049 
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From this condition of unity the following equation for 

Cb results: 

 

𝐶𝑏 =  
𝑝2 (1+2 𝑓1 2⁄ )

 (2𝑝+1)(1+ 𝑓1 2⁄ )𝑓1 2⁄   (56) 

 

This equation expresses the correction factor Cb in 

terms of the friction factor and von Karman constant 

which means its dependency on the grain sizes (a measure 

of bed load) and suspended load. Replacing the friction 

factor by its equivalency in terms of Manning's roughness 

coefficient, results in the graph shown in Fig. (2). It is 

interesting to note that Manning's roughness coefficient 

equals about 0.04 (which is very close to the roughness 

values at Fall River and Muddy Creek) the value of Cb is 

0.25 which supports the previous calibration process. 

Equation (56) for Cb suggests that the bed-load layer 

thickness in curved channels (𝑧𝑏𝑟) could be given as: 
 

𝑧𝑏𝑟 = 𝐶𝑏  𝑑 
𝑈∗

𝑈∗𝑐
=  

𝑝2 (1+2 𝑓1 2⁄ )

 (2𝑝+1)(1+ 𝑓1 2⁄ )𝑓1 2⁄  𝑑 
𝑈∗

𝑈∗𝑐
  (57) 

 

Now, the hydraulic and sediment data of Muddy Creek 

are used for the calculation of the lateral bed-load rate 

under varying roughness conditions. Manning's 

roughness coefficient (n) is changed in increments with 

corresponding variations in the energy slope (S) 

according to manning's formula: 

 

𝑆 =  
𝑛2 𝑄2

𝐵2 𝑅𝐻
10 3⁄  (58) 

 

where, Q is the water discharge, B is the channel width 

and RH is the hydraulic radius. In applying Eq. (25) by 

Parker (1984) the longitudinal bed load rate is required. In 

this context, the Meyer-Peter and Muller (1948) bed load 

formula is used which is given as: 

 

[
𝑞𝑏 (𝛾𝑠− 𝛾)

𝛾
]

2 3⁄

𝜌1 3⁄  
0.25

(𝛾𝑠− 𝛾)𝐷𝑠
=  

(𝑘𝑠 𝑘𝑟⁄ ) 𝛾 𝑅𝐻 𝑆

(𝛾𝑠− 𝛾)𝐷𝑠
− 0.047  (59) 

 

 
 
Fig. 2: Variation of the correction factor, Cb, for the lateral bed-

layer thickness versus Manning’s roughness coefficient 

where, qb is the bed-load discharge in weight per unit time 

and unit channel width, γs is the sediment unit weight, γ is 

the water unit weight, ks is a roughness coefficient 

according to Strickler based on the energy gradient caused 

by skin friction and Kr is a roughness coefficient 
according to the total energy gradient. In the absence of 

bedforms, (𝑘𝑠 𝑘𝑟⁄ ) could be assumed unity according to 

Chang (1992). The unit bed load rate (qb) which is weight-

based is divided by γs to get 𝑞𝑏
𝑠 in units of area/time. To 

apply Eq. (25), tan (δvb) is taken as 11(D/rc) according to 
Rozovskii (1957). 

The bed velocity coefficient appearing in Eqs. (38 and 41) 

is assumed as 0.1 as follows. If the bed-load layer were 

filled completely with water and the bed velocity is vb at 

the top of the bed-load layer and zero at the bottom 

immobile bed, then the average bed velocity would be 0.5 vb 

assuming linear variation. Since the bed-load layer is 

filled mostly with sediment particles which are heavier 

than the water molecules the average velocity within the 

bed-load layer would be less than 0.5 vb as much friction 

exists between the sediment particles than between the 

water molecules. Therefore, a value of 0.1 vb seems a 

reasonable assumption and its exact value should be 

considered in future research. To apply Eqs. (25 and 39), 

the required transverse bed-slope, tan (β), is selected as 

that by Eq. (33) where Cb is given according to Eq. (56). 

Since this bed-load transport rate is under fully developed 

conditions, the transverse bed-load discharge should be 

zero or at least becomes close to zero.  
The calculations of the lateral bed-load transport using 

different equations are shown in Tables (3-4), Figs. (3-4). 

It is seen in Table (3) and Fig. (3), that Ikeda’s equation 

values for the downslope transport, Eq. (24), are very 

small so all the transverse bed-load is due to the upslope 

transport as by Eq. (37). This deficiency makes Eq. (39) 

not a suitable equation for calculation of the transverse 

bed-load rate which is in line of Parker (1984) reservation 

on Ikeda’s equation. It is apparent from Fig. (4), Eq. (25) 

by Parker (1984) produces highly transverse bed-load 
rates which are much larger than those by the present 

approach by Eq. (41). Equation (41) where the upslope 

inward transport is due to the present approach, Eq. (37), 

while the downslope transport is due to Parker (1984) 

seems to produce very small lateral bed load transport 

rates as seen in Fig. (4). It should be noted that the 

hydraulic data for the Muddy creek cannot be guaranteed 

to represent fully developed conditions, i.e., it might 

represent quasi fully developed conditions and therefore a 

perfect zero lateral bed load rate should not be expected. 

It is seen from Table (3) that the downslope component of 

the lateral bed-load rate is higher by two orders of 
magnitudes by Parker (1984) equation than by Ikeda 

(1982) equation. Comparing the corresponding values in 

Tables (3-4) where the quantity CL/CD is 10.0 in the 

former and 1.0 and 0.5 in the latter, shows that its effect 
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is not significant although the variation of CL/CD is of an 

order of magnitude. Schmeeckle et al. (2007) made direct 

measurements of lift and drag over a gravel bed, but also 

in low gradient streams with deep flow. They found for 

spherical particles that CD ≈ 0.76 and that CL was highly 
variable. For fully submerged particles (Lamb et al., 2017) 

in their Direct measurements of lift and drag on shallowly 

submerged cobbles in steep streams found that drag 

coefficients for spheres increase systematically from 

CD ≈ 0.1-CD ≈ 0.7 while the lift coefficients for fully 

submerged particles vary from 0.06< CL <4. Thus, the 

values selected herein for the quantity CL/CD are within 
the experimental findings while a precise determination is 

recommended in future research. 
 
Table 3: Calculations of transverse bed-load transport discharge (cm2/s) using data from Muddy Creek 

 Only upslope Ikeda (1982), Modified- Only downslope  Modified- 
 transport  only downslope Ikeda, transport, from Parker* (1984), Parker*, 
Manning’s Eq. (37), transport Eq. (24), Eq. (39), Eq. (25), Eq. (25), Eq. (41), 
roughness, n (cm2/s) (cm2/s) (cm2/s) (cm2/s) (cm2/s) (cm2/s) 

0.013 0.118 0.0002 0.117 0.008 0.014 0.038 

0.019 0.166 0.0007 0.165 0.044 0.087 0.052 
0.023 0.203 0.0013 0.201 0.092 0.198 0.062 
0.027 0.234 0.0019 0.232 0.147 0.339 0.071 
0.030 0.261 0.0026 0.258 0.208 0.506 0.078 
0.033 0.286 0.0034 0.282 0.273 0.696 0.084 
0.035 0.308 0.0042 0.304 0.342 0.907 0.090 
0.038 0.329 0.0050 0.324 0.413 1.138 0.095 
0.040 0.349 0.0058 0.342 0.487 1.388 0.100 
0.042 0.367 0.0066 0.360 0.563 1.656 0.104 
0.044 0.385 0.0075 0.377 0.641 1.940 0.108 
0.046 0.402 0.0084 0.393 0.721 2.240 0.112 
0.048 0.418 0.0093 0.408 0.803 2.556 0.116 
0.050 0.433 0.0103 0.422 0.886 2.886 0.120 
0.051 0.448 0.0112 0.436 0.970 3.231 0.123 
0.053 0.462 0.0122 0.449 1.056 3.590 0.126 
0.055 0.476 0.0131 0.462 1.142 3.962 0.129 
0.056 0.490 0.0141 0.475 1.230 4.347 0.132 
0.058 0.503 0.0151 0.487 1.319 4.745 0.135 
0.059 0.516 0.0161 0.499 1.409 5.156 0.138 
0.061 0.528 0.0171 0.510 1.499 5.579 0.140 

*CL/CD =10.0 

 
Table 4: Calculations of transverse bed-load transport discharge (cm2/s) using data from Muddy Creek 

 Only downslope Parker (1984), Parker (1984), Only downslope Modified-Parker, Modified-Parker, 
 transport, from Eq. (25), Eq. (25), transport, from Eq. (41), Eq. (41), 
Manning’s Eq. (25), (cm2/s) at CL/CD =1.0 at CL/CD = 0.5 Eq. (25), at CL/CD =1.0 at CL/CD = 0.5 
roughness, n  (cm2/s) (cm2/s) (cm2/s) (cm2/s) (cm2/s) 

0.013 0.002 0.019 0.020 0.002 0.077 0.082 
0.019 0.011 0.120 0.121 0.009 0.107 0.114 
0.023 0.023 0.267 0.270 0.019 0.130 0.138 
0.027 0.037 0.449 0.455 0.031 0.148 0.158 
0.03 0.052 0.662 0.670 0.043 0.164 0.175 
0.033 0.068 0.901 0.912 0.057 0.179 0.190 
0.035 0.085 1.163 1.178 0.071 0.192 0.204 
0.038 0.103 1.448 1.465 0.086 0.204 0.217 
0.04 0.122 1.753 1.774 0.101 0.215 0.229 
0.042 0.141 2.078 2.101 0.117 0.225 0.241 
0.044 0.160 2.421 2.447 0.134 0.235 0.251 
0.046 0.180 2.781 2.811 0.150 0.244 0.261 
0.048 0.201 3.158 3.191 0.167 0.253 0.271 
0.05 0.221 3.550 3.587 0.185 0.261 0.280 
0.051 0.243 3.958 3.999 0.202 0.269 0.289 
0.053 0.264 4.381 4.425 0.220 0.277 0.297 
0.055 0.286 4.819 4.866 0.238 0.285 0.305 
0.056 0.308 5.270 5.321 0.256 0.292 0.313 
0.058 0.330 5.735 5.790 0.275 0.299 0.321 
0.059 0.352 6.213 6.271 0.294 0.306 0.328 
0.061 0.375 6.703 6.766 0.312 0.312 0.335 
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Fig. 3: Components of the lateral bed-load transport by 

modified-Ikeda equation 
 

 
 
Fig. 4: The lateral bed-load transport by modified-Parker and 

Parker (1984) equation 
 

Therefore, it could be concluded that Eq. (41) gives the 

best prediction (at least conceptually speaking) for the 

lateral bed-load transport rate and it can be used in sediment 

and morphological models. This equation although 

developed for fully developed flow conditions (uniform 

flow) could be used for non-uniform flow conditions in 

numerical models as it is a common practice to use 

equations (such as resistance and bed-load equations) 

developed under uniform flow (fully developed) conditions 

for non-uniform and gradually varied conditions.  
It should be noted that the present approach is based on 

one-dimensional analysis in the vertical direction as done 

for the transverse velocity and transverse boundary shear. 

However, the developed equations herein could be used in 

another different dimension as seen when the developed 

transverse bed-slope equation was used along the stream-

wise direction (s) through Eq. (54). Similarly, the 

developed equations were used in several analyses, Bridge 

(1977); Odgaard (1984; 1986a-b), concerned with the 

lateral direction, r, as in calculating the lateral depth and 

sediment grain sizes distributions. This means that the 
developed equations herein can be useful in analyses 

concerned with stream-wise and transverse directions.  

Along the same lines as above, a quasi-nonlinear 

approach could be used in which mild curvature 

conditions (rc >> B, where rc is the center radius of 

curvature) are assumed. This leads to neglecting the terms 

that have the velocity combinations (u, v), (u, w), (v, w)); 

where u, v, and w are the main, lateral, and vertical 

velocity components, respectively. This process 

simplifies considerably the equations of motion, Chang 

(1992); Hafez (2024). The resulting equations contain the 

local flow depth and the local depth-averaged velocity 

which could be assumed to depend on the radial direction, 

r. Then integration of the resulting equations with respect 

to becomes possible when using relations for the lateral 

variations of D(r) and �̅�(𝑟), i.e., assuming topographic 

steering condition which is addressed in Blanckaert 

(2010); Hafez (2023).  

Table (5) shows the deviation angles for the resultant 

flow velocity, Eq. (48) and the resultant bed-load 

discharge, Eq. (49), derived from the resultant boundary 

shear deviation angle, Eq. (46), versus channel roughness. 

It can be seen that the deviation angles for the resultant 

flow velocity are the highest followed by that of the 

boundary shear then lastly comes the bed-load discharge 
with the common decreasing trend among the three angles 

versus increasing channel roughness. The deviation 

angles for the resultant velocities at low roughness values 

are comparable to Rozovskii (1957) such that: (δvb) ≈ 

arctan (11 D/r) ≈ 23.8°. Table (5) shows also that at n = 0.01 

(low roughness) the lateral bed-load discharge is about 6% 

of the longitudinal bed-load discharge while this ratio 

reduces to about 2% at n = 0.1 (high roughness). Eqs. (48-49) 

have an advantage over Eqs. (45 and 47), respectively in 

that no knowledge is required for the near-bed velocity or the 

longitudinal bed-load discharge because knowledge of them 

is a very challenging task. Comparing the results of 
predictions by Eqs. (45 and 48) for the resultant flow velocity 

deviation angle, the angles by Eq. (48) have a narrow range 

between 21.5 and 15.0° while the range by Eq. (45) is 

between 58.8 and 9.1°, Hafez (2024). However, both 

equations have an advantage over the relation: 𝑇𝑎𝑛 𝛿𝑣𝑏 ≈

 11 
𝐷

𝑟
 in including the roughness effects which definitely 

play an important role in all flow and sediment 

investigations. Both equations, Eqs. (45 and 48) could be 

used in equations such as by Bridge (1977) for the transverse 

bed slope and in the modified Parker equation for the bed-

load deviation angle. Equation (41) (modified Parker 
equation) adopts the bed-load rate deviation angle by 

Eq. (48) which allowed the removal of the highly uncertain 

bed-load equation in the original Parker (1984) equation. 

In summary, this study highlighted some weaknesses 

and deficiencies in past existing methods regarding the 

mechanics of sediment formation and transport in curved 

and alluvial meandering open channels. It shows the 

possibility of presenting improvements in past methods 

assumptions and equations and in the meantime utilizing 

their strength by adopting some past relations and 

combining them with newly developed equations as in the 

case of the developed transverse bed-load equation. It is 

recommended to investigate the applicability of methods 

of measurements of bed load such as (ISSDOTv2, The 

Integrated, Section Surface Difference Over Time, 

version 2), (McAlpin et al., 2023), to measure the 

transverse bed load rate. 
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Table 5: Deviation angles for the resultant bed shear, flow velocity, and bed-load discharge 

Manning’s Resultant bed shear Resultant flow velocity Resultant bed-load rate tan 𝛿𝜏   tan 𝛿𝑣    tan 𝛿𝑞𝑏
 

roughness deviation angle from  deviation angle from deviation angle from from Eq. (46) from Eq. (48) from Eq. (49) 

coefficient (n) Eq. (46) in degrees Eq. (48) in degrees Eq. (49) in degrees in radians  in radians in radians 

0.01 8.8 21.5 3.5 0.156 0.394 0.061 

0.015 8.3 20.9 3.2 0.146 0.382 0.056 

0.02 7.9 20.4 2.9 0.138 0.371 0.051 

0.025 7.4 19.9 2.7 0.130 0.361 0.047 

0.03 7.1 19.4 2.5 0.124 0.352 0.044 

0.035 6.7 18.9 2.3 0.118 0.343 0.040 

0.04 6.4 18.5 2.2 0.112 0.335 0.038 

0.045 6.1 18.1 2.0 0.107 0.328 0.035 

0.05 5.9 17.8 1.9 0.103 0.321 0.033 

0.055 5.6 17.4 1.8 0.099 0.314 0.031 

0.06 5.4 17.1 1.7 0.095 0.308 0.029 

0.065 5.2 16.8 1.6 0.091 0.302 0.028 

0.07 5.0 16.5 1.5 0.088 0.296 0.026 

0.075 4.8 16.2 1.4 0.085 0.291 0.025 

0.08 4.7 16.0 1.3 0.082 0.286 0.023 

0.085 4.5 15.7 1.3 0.079 0.281 0.022 

0.09 4.4 15.5 1.2 0.077 0.277 0.021 

0.095 4.3 15.3 1.2 0.074 0.273 0.020 

0.1 4.1 15.0 1.1 0.072 0.269 0.019 

 

Conclusion 

Expression for the bed-load discharge deviation 
angle is developed which allows distinction with the 
other two deviation angles of the flow velocity and the 
boundary shear. These expressions have the advantage 

of including the roughness and the main velocity in 
addition to including the water's average depth and the 
channel radius of curvature. The expression for the 

lateral boundary shear stress is used to improve the 
existing models for calculating transverse bed slope in a 
correct physical and conceptual form. The developed 
transverse bed slope compares very well with 

experimental and field data at Fall River and Muddy 
Creek, USA. Correction is made to the thickness of the 
bed-load layer in straight channels to fit curved 

channels. This enabled the improvement of the well-
known equations by Bridge (1977); Ascanio and 
Kennedy (1983); Parker (1984) for the transverse bed 

slope by using improved expressions for the transverse 
boundary shear stress and the bed-load layer thickness 
in curved channels making their equations more 
physically correct.  

An expression for the lateral bed-load transport is 
developed which has an advantage over that by Parker 
(1984) in balancing the lateral sediment movement 

upslope due to the secondary currents by the downslope 
movement of bed particles due to gravity. An equation 
is developed to predict the longitudinal bed-load 
transport in curved and alluvial meandering channels. 

Although the developed equations were derived under 
steady and fully developed flow conditions, they can be 
used in unsteady and non-uniform flow and sediment 

models in line with common practice when the 
unsteady and non-uniformity variations are gradually 
varied. In addition, the developed equations can be 

used in analyses concerned with the stream-wise and 
lateral directions. 
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