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Abstract: This study builds on prior UPLC-Q-Exactive Orbitrap-MS analyses of
Anchusa italica Retz. Flowers (Airfs) to explore their anti-cardiovascular
mechanis·ms and key bioactive markers. UPLC-Q-Exactive Orbitrap-MS
identified 30 major compounds, including polyphenols and flavonoids with strong
antioxidant activity. The potential active ingredients were then screened using
Lipinski's rule of five, and a network pharmacology method was employed to
construct an 'active ingredient-target' network diagram, resulting in the
identification of 28 core targets. GO and KEGG enrichment analyses were then
used to reveal the potential mechanisms of these compounds in cardiovascular
diseases. Molecular docking experiments demonstrated that 5-hydroxy-7-
methoxy-3-(4-hydroxybenzylidene)chroman-4-one (HY-N8673) and caffeic acid
exhibited strong binding affinity with epidermal growth factor receptor (EGFR)
and SRC proteins. Molecular dynamics simulations further validated the binding
stability of these compounds to the target proteins. Additionally, ADMET
parameter predictions indicated that these compounds possess favorable
pharmacokinetic properties and a low risk of toxicity. In conclusion, this study
provides a scientific basis for the application of Airfs in the treatment of
cardiovascular diseases.

Keywords: Anchusa italica Retz. Flowers, Cardiovascular Disease, Network
Pharmacology, Molecular Docking, Dynamics Modeling

Introduction
Cardiovascular disease is a major cause of mortality

and disability on a global scale. Its pathogenesis is
intricate, involving numerous pathophysiological
processes. In recent years, with the advancement of
research in the field of natural medicines, a growing
number of studies highlight the cardiovascular protective
potential of plant extracts and their active compounds.
Anchusa italica Retz. belongs to the Boraginaceae family
and is recognized as a perennial herbaceous plant (Chen
et al., 2017). It is rich in flavonoids and polyphenols (Hu
et al., 2020). It has anti-inflammatory, antioxidant and
antimicrobial properties (Khomsi et al., 2022). Airfs are
incorporated into various prescription formulations,
notably "Aioweixin Oral Liquid" and "Jianxin
Hemiergaoziban Anbire Tablet. The employment of
UPLC-Q-Exactive Orbitrap-MS for preliminary
characterisation and initial quantification of chemical
constituents, in conjunction with network pharmacology
and molecular docking, has emerged as an effective
methodology for elucidating the mechanisms of drug
constituents in the treatment of diseases (Shu et al.,
2024; Jiang et al., 2024).

The objective of the present study was to ascertain
the mechanism of action of Airfs in the treatment of
cardiovascular diseases. This accomplishment was made
possible through the application of network
pharmacology, molecular docking, molecular dynamics
simulation, and ADMET toxicity prediction. These
methods were utilized in conjunction with the results
obtained from Airfs detected via UPLC-Q-Exactive
Orbitrap-MS. The study also sought to provide
references for the development and safety of the drug.

Materials and Methods

UPLC-Q-Exactive Orbitrap-MS Methodology and
Data Collection

The methodology for ultra-performance liquid
chromatography coupled with high-resolution mass
spectrometry (UPLC-Q-Exactive Orbitrap-MS) was
adopted from our previous work on Anchusa italica
Retz. flowers (Wang et al., 2024).

Briefly, dried flower samples were extracted with a
cold solvent mixture of water, acetonitrile, and
isopropanol (1:1:1, v/v/v). The extracts were centrifuged,
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and the supernatant was vacuum-dried. The residue was
reconstituted in 30% acetonitrile for analysis.

Chromatographic separation was achieved on a
Waters HSS T3 column (100×2.1 mm, 1.8 µm)
maintained at 40 °C. The mobile phase consisted of (A)
0.1% formic acid in water and (B) 0.1% formic acid in
acetonitrile, with a flow rate of 0.3 mL/min. The gradient
elution program was as follows: 0% B at 0-1 min,
increasing to 95% B at 12 min, held until 13 min, and
then returned to initial conditions for re-equilibration.

Mass spectrometric analysis was conducted with a
heated electrospray ionization (HESI) source in both
positive and negative ionization modes. The full MS/dd-
MS2 data-dependent acquisition was used with the
following parameters:

Mass range: 70-1050 Da
Spray voltage: +3.0 kV / -2.8 kV
Full MS resolution: 70,000
MS/MS resolution: 17,500

Raw data were processed using Progenesis QI
software (Waters Corporation) for peak alignment,
normalization, and compound identification. Metabolite
identification was based on accurate mass and MS/MS
fragmentation matching against commercial and custom
databases, with a minimum spectral match score of 0.7.

Screening and Target Prediction of the Main Active
Ingredients of Anchusa italica Retz. Flowers

The identification of the compounds was followed by
a screening process for relative content using UPLC-Q-
Exactive Orbitrap-MS for compounds with a relative
content greater than 0.2%. The evaluation of the
compounds was then conducted by integrating the
TCMSP (Traditional Chinese Medicine Systematic
Pharmacology Database and Analysis Platform) database
using SwissTarget Prediction in accordance with the
Lipinski's fivefold rule. The evaluation of the compounds
by SwissTarget Prediction according to the Lipinski's
five-fold rule resulted in the identification of 30 eligible
compounds, TCMSP, and the SwissTarget Prediction
database (Liu et al., 2024). Subsequently, the PubChem
database was employed to identify the SMILES structure
of the active ingredients. The SMILES structure of the
active ingredient was input into the
SwissTargetPrediction database to predict the target
points of the ingredients. The results of the screening are
merged to remove duplicates. In order to identify disease
targets related to cardiovascular disease, the OMIM
database, GeneCards database (score ≥ 5), and TTD
database were consulted. The targets were then combined
and de-emphasized in order to obtain disease targets.

Network Diagram Construction

WeiShengXin was employed to identify the
intersection of disease targets and compound targets. The

resulting targets were imported into the String database,
where a confidence level of >0.7 was set for scoring.
Targets that were not connected were concealed, and
inter-target interactions were identified. The data were
then imported into the Cytoscape 3.10.0 software, where
protein-protein interactions were constructed. The
network analyzer was employed to calculate the degree
value, and the 28 core targets were filtered out with the
limit of 2 times the median degree value (Gong et al.,
2023; Santos et al., 2022). A network diagram of the
"active ingredient targets" was constructed.

Enrichment Analysis

Go and Kegg analyses were performed using the
microbiology platform, and the analysis module
integrated R language packages such as clusterProfiler
and pathview. Data were screened at P-value ≤ 0.05, and
GO analysis was applied to the first 10 entries of each
item, which were imported into the microbiology
platform for visualization. KEGG was applied to the first
20 pathways for visualization and analysis (Gajera et al.,
2024).

Docking of Molecules

Docking was performed using the LibDock module
in Discovery Studio 3.0. Protein identification was
conducted via the UniProt database. The PDB number
should then be copied and the PDB database accessed to
download the 3D files (.sdf) of the desired proteins. The
Pubchem database ought to be utilized for locating the
3D files pertaining to the core components. The next step
is to open Discovery Studio (DS) software and process
each protein molecule in order to remove water
molecules, ligands, and complementary residues in
preparation for docking. To process all compounds,
select "Prepare Ligands" from the small molecule menu
bar within the DS software. Each protein should be
defined as a receptor molecule, and the machine learning
module should be used to predict the possible binding
regions. In the event that the crystal structure does not
include H atoms, the receptor should be hydrogenated
prior to this step. Subsequently, the processed
compounds are docked with multiple compounds using
the "Receptor-Ligand Interactions" module, and the
corresponding parameters are set. The docking results
are then output and analyzed at the conclusion of the
program. Observations indicate that a higher docking
score corresponds to stronger binding activity between
the ligand compound and the receptor (Xiang et al.,
2024).

Molecular Dynamics Simulation

All-atom molecular dynamics simulations were
performed on the basis of the small molecule-protein
complexes obtained by docking as initial structures,
using AMBER 22 software (Salomon-Ferrer et al.,
2013). Prior to the simulation, the charge of the small
molecule was calculated by antechamber module and
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Hartree-Fock (HF) SCF/6-31G* of Gaussian 09
software. Subsequently, the small molecules and proteins
were described using the GAFF2 small molecule force
field and the ff14SB protein force field, respectively
(Wang et al., 2005). The LEaP module was utilised for
each system to add hydrogen atoms, a truncated
octahedral TIP3P solvent box was added to the system at
a distance of 10 Å (Linse & Hub, 2021), to balance the
system charge, Na+/Cl- was introduced. Ultimately, the
topology and parameter files necessary for the
simulations were generated.

Molecular dynamics simulations were conducted
using AMBER 22 software. Before commencing the
simulations, the system underwent energy optimization,
specifically employing the steepest descent method for
2500 steps, followed by the conjugate gradient method
for another 2500 steps. Following the completion of the
energy optimisation of the system, a 200 ps warming of
the system at a fixed volume and constant rate of
warming was used to gradually increase the temperature
of the system from 0 K to 298.15 K. An NVT (isothermal
isobaric) system simulation of 500 ps was carried out to
ensure the homogeneous distribution of solvent
molecules within the solvent box at a constant
temperature of 298.15 K. Subsequently, the system
temperature was adjusted to match the temperature of the
solvent box through the implementation of the NVT
(isothermal isobaric) system simulation. The NPT
(isothermal isobaric) simulation of the entire system was
run for 500 ps to achieve equilibrium. Following this, the
composite system underwent NPT (isothermal isobaric)
tethered simulations for 100 ns, maintaining periodic
boundedness conditions. During these simulations, the
non-bond truncation distance was fixed at 10 Å, while
the Particle Mesh Ewald (PME) method was employed
to compute long-range electrostatic interactions. Bond
lengths of hydrogen atoms were constrained using the
SHAKE method, and temperature was controlled via the
Langevin algorithm, with a collision frequency γ of 2 ps-
1. The pressure of the system is set to 1 atm, and the
integration step is set to 2 fs, with the trajectories saved
at 10 ps intervals. The trajectories are saved for
subsequent analyses (Kräutler et al., 2001).

The free energies of binding between proteins and
ligands for all systems were calculated by the
MM/GBSA method. MD trajectories with a duration of
90-100 ns were utilised as the basis for the calculations
in this study, employing the following equations：

This term is used to denote internal energy, van der
Waals interactions, and electrostatic interactions. The
internal energies comprise the bond energy (Ebond), the
angular energy (Eangle), and the torsion energy
(Etorsion); collectively, these are designated as the
solvation free energy. The polar solvation free energy is

denoted by GGB, and the non-polar solvation free energy
by GSA. The GB model developed by Nguyen et al.
(2013) was employed in this study (igb = 2). The non-
polar solvation free energy (GSA) is then calculated
based on the product of surface tension (γ) and solvent-
accessible surface area (SASA), GSA = 0.0072 ×
SASA.Entropy change is ignored in this study due to the
high consumption of computational resources and low
accuracy (Genheden & Ryde, 2015; Rastelli et al., 2010;
Xu et al., 2013).

Prediction of the ADMET Parameters

The ADMET parameters were predicted using
ADMET lab 2.0 (Xiong et al., 2021). In addition, we
also calculated the drug-likeness of compounds. Drug-
like properties were assessed base on the prediction of
Lipinski's 'rule of 5', including molecular weight, log P
value, number of hydrogen bonds donor, and acceptor.

Results

Identification of the Compounds in Anchusa italica
Retz. Flowers

The outcomes of the identification process were
methodically arranged, and the substances were
categorised according to their potency. Substances that
ranked within the top 30% were then subjected to further
scrutiny. The results of this analysis can be found in
Table 1 and Table 2. The main compounds were
polyphenols, flavonoids and other substances with strong
antioxidant activity.

Network Pharmacologic Results of Anchusa italica
Retz. Flowers in the Treatment of Cardiovascular
Disease

Target Prediction and Network Diagram Construction

The active ingredients were evaluated in accordance
with Lipinski's five-fold rule, wherein the molecular
weight of the compounds was less than 500 daltons, the
number of hydrogen bond donors (including hydroxyl,
amino, etc.) in the structure of the compounds was not
more than 5, the number of hydrogen bond acceptors in
the compounds was not more than 10, and the
logarithmic value of the lipid-water partition coefficient
(log P) of the compounds was between -2 and 5 (Lohit et
al., 2024; Murugan et al., 2024). A total of 30
compounds met the requisite criteria, with 2,382
intersections between disease targets and 125
intersections between targets. Figure 1 illustrates the
Wayne diagram, protein interaction network, component
target network. The components that comply with
Lipinski's law of five-fold multiplicity, possess a clear
target, and are part of the core target are subjected to the
"active ingredient action target" analysis. The active
ingredients are listed in Table 3.

δG
​ =bind δG ​ −complex δG

​

+ δG
​

( receptor ligand)

δG
​ =bind δE ​ +internal δE ​ +VDW δE ​ +elec δG ​ +GB δG ​

SA
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Table 1: UPLC-Q-Orbitrap-MS data information (Part A)

No. Metabolite Mode Adducts Mass Error
(ppm)

InChiKeys Class

1 3-(3,4-Dihydroxyphenyl) lactic acid neg M-H, 2M-H, M-
H2O-H

-0.316308832 PAFLSMZLRSPALU-
UHFFFAOYSA-N

Phenylpropanoic acids

2 Rosmarinate acid neg 2M-H 7.600916835 DOUMFZQKYFQNTF-
WUTVXBCWSA-N

Polyphenols

3 Rutin pos M+H -1.757341311 IKGXIBQEEMLURG-
NVPNHPEKSA-N

Flavonoids

4 Narcissoside pos M+H -1.80057108 UIDGLYUNOUKLBM-
GEBJFKNCSA-N

Flavonoids

5 Ethyl gallate neg 2M-H 0.754971092 VFPFQHQNJCMNBZ-
UHFFFAOYSA-N

Benzene and substituted
derivatives

6 Isosalvianolic acid C neg M+FA-H -2.767111043 AVGRZVZQTALJJF-VURDRKPISA-
N

Benzoxepines

7 5-Hydroxy-7-methoxy-3-(4-hydroxybenzylidene)
chroman-4-one

neg M-H, M+FA-H 0.971925064 CEIWQXCJVAWOKP-
IZZDOVSWSA-N

Homoisoflavonoids

8 Yunnaneic acid G neg M-2H, M-H 7.880191191 CWAPEEAMMSAHDI-
BUVRPPHQSA-N

Aryltetralin lignans

9 Malic acid neg M-H -0.753114648 BJEPYKJPYRNKOW-
UHFFFAOYSA-N

Hydroxy acids and derivatives

10 N1, N5, N10-(E)-tri-p-coumaroylspermidine pos M+H -2.336608514 PFDVWJCSCYDRMZ-
AUCPOXKISA-N

Cinnamic acids and derivatives

11 10-O-Coumaroyl-10-O-deacetylasperuloside neg M+FA-H 3.449770472 JXFDBOBLMXBLDZ-
ULUBWVSDSA-N

Cinnamic acids and derivatives

12 Nepetin-7-glucoside pos M+H -1.693115222 DMXHXBGUNHLMQO-
IWLDQSELSA-N

Flavonoids

13 P-Anisic acid neg M-H2O-H, M-H 0.332339198 ZEYHEAKUIGZSGI-
UHFFFAOYSA-N

Aromatic Carboxylic Acids

14 Naringenin 7-O-gentiobioside neg M+FA-H 6.276315133 CSOSCFNWAYKBEH-
YGEVQDKLSA-N

Flavonoids

15 Succinic acid neg M-H2O-H, M-H,
2M-H

-1.220187467 KDYFGRWQOYBRFD-
UHFFFAOYSA-N

Carboxylic acids and
derivatives

16 Chrysosplenetin neg M-H, 2M-H,
M+Cl

0.990676641 NBVTYGIYKCPHQN-
UHFFFAOYSA-N

Flavonoids

17 Salvianolic acid A neg M-H -1.012712223 YMGFTDKNIWPMGF-
UCPJVGPRSA-N

Stilbenes

18 L-Isoleucine pos M+H -1.457240252 AGPKZVBTJJNPAG-
WHFBIAKZSA-N

Carboxylic acids and
derivatives

19 Ternatumoside II neg M-H, M+Cl 1.543633984 JAQAIBSNJJWIKR-
VQMPHKDYSA-N

Flavonoids

20 Lysofungin neg M-H 1.545141645 SAHCQBPGXQFTRA-
ZOEHVZSMSA-N

Glycerophospholipids

21 Ailanthoidol neg M+Cl -6.732557459 ZDQCRQVGMKIBPN-
ONEGZZNKSA-N

2-arylbenzofuran flavonoids

22 3-Hydroxybenzoic acid neg M-H, 2M-H 0.455450111 FJKROLUGYXJWQN-
UHFFFAOYSA-N

Benzene and substituted
derivatives

23 Isosulochrin neg M+FA-H 1.086337199 XKIBNYJGNBTYMP-
UHFFFAOYSA-N

Benzene and substituted
derivatives

24 3-Acetyldeoxynivalenol pos M+NH4 -2.158535331 ADFIQZBYNGPCGY-HTJQZXIKSA-
N

Prenol lipids

25 Neoeriocitrin neg M+FA-H 0.417576558 OBKKEZLIABHSGY-
DOYQYKRZSA-N

Flavonoids

26 Caffeic acid neg M-H, M+Cl 0.822046551 QAIPRVGONGVQAS-
DUXPYHPUSA-N

Cinnamic acids and derivatives

27 Clostebol acetate neg M+K-2H 3.463109522 XYGMEFJSKQEBTO-
KUJXMBTLSA-N

Steroids and steroid derivatives

28 D-Tryptophan neg M-H, 2M-H 0.32798398 QIVBCDIJIAJPQS-SECBINFHSA-N Indoles and derivatives
29 Blumeatin B neg M+FA-H 1.182533103 SVPNMFZMHPLGRR-

DLBZAZTESA-N
Flavonoids

30 Eugenol gentiobioside neg M-H -0.818383291 WXQNHYCVTYUIEE-
OALZDZJCSA-N

Organooxygen compounds
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Table 2: UPLC-Q-Orbitrap-MS data information (Part B)

No. Metabolite Formula Retention
time(min)

m/z Fragment ions

1 3-(3,4-Dihydroxyphenyl)
lactic acid

C9H10O5 2.467 197.045484 72.9931;107.0501;109.0294;122.0364;123.0451;134.0371;135.0452;151.04;179.0352;197.0455

2 Rosmarinate acid C18H16O8 6.318 719.167232 72.993;123.045;133.0296;135.0452;161.0246;179.0352;197.0457;359.0775;521.1082;719.1678

3 Rutin C27H30O16 4.184 611.159589 149.0231;150.0307;153.0181;173.0597;201.0543;229.0493;257.0442;303.0495;465.1024;611.1588

4 Narcissoside C28H32O16 4.459 625.175188 203.0339;217.0493;228.0414;245.0443;273.0382;274.0467;302.0417;317.0651;479.1179;625.1743
5 Ethyl gallate C9H10O5 2.728 395.098669 72.9931;94.3979;107.0508;109.0298;123.0453;134.0371;135.0453;151.0395;179.0352;197.0458

6 Isosalvianolic acid C C26H20O10 5.579 537.102488 72.9932;135.0453;179.0352;197.0457;229.0145;267.066;269.0816;295.0616;339.0518;493.1131

7 5-Hydroxy-7-methoxy-3-(4-
hydroxybenzylidene)
chroman-4-one

C17H14O5 6.809 343.082616 117.0345;119.0502;123.0451;135.03;145.0296;151.0402;163.0402;253.0504;297.0402;297.077

8 Yunnaneic acid G C36H30O16 5.981 717.151768 109.0294;135.0452;161.0246;229.0148;243.0298;295.0615;339.0518;365.0681;475.1036;519.0936

9 Malic acid C4H6O5 0.882 133.014146 59.0138;62.2723;71.0139;72.9931;87.0087;88.0404;89.0244;114.9219;115.0036;133.0143

10 N1, N5, N10-(E)-tri-p-
coumaroylspermidine

C34H37N3O6 7.342 584.274149 72.0813;119.0492;147.0438;204.1017;218.1174;275.175;292.2014;420.2275;438.2378;584.2753

11 10-O-Coumaroyl-10-O-
deacetylasperuloside

C25H26O12 4.811 563.142417 75.0086;89.0243;119.0501;135.0299;163.0402;281.0668;283.0977;327.0877;445.1148;563.1389

12 Nepetin-7-glucoside C22H22O12 4.393 479.117593 203.0338;217.0492;228.0417;245.0443;257.0445;273.0388;274.0467;302.0418;317.0652;479.1172

13 P-Anisic acid C8H8O3 2.354 151.040118 81.0347;95.05;105.0347;108.0217;121.0297;122.0375;123.0452;133.0296;150.0316;151.0402

14 Naringenin 7-O-
gentiobioside

C27H32O15 4.397 641.176065 125.0244;149.0246;164.0118;256.0375;300.0278;315.0511;475.1461;501.1244;515.1419;641.1764

15 Succinic acid C4H6O4 1.235 117.019188 55.0189;71.0504;73.0295;94.4018;99.0084;99.9258;109.1107;116.0717;116.9285;117.0192

16 Chrysosplenetin C19H18O8 6.954 373.093262 72.9931;123.0453;132.0221;134.0374;135.0453;160.0169;161.0239;175.0404;179.0353;197.0459

17 Salvianolic acid A C26H22O10 5.537 493.11352 72.9931;123.0451;135.0452;179.0352;197.0457;267.0661;269.0817;295.0615;313.0719;493.1139

18 L-Isoleucine C6H13NO2 1.061 132.101714 56.0503;58.0657;69.0705;72.0814;74.0243;84.0451;86.0969;86.1482;87.1001;132.1019

19 Ternatumoside II C27H30O15 5.687 593.152111 135.03;151.0037;211.0397;227.035;229.0506;255.0298;283.0252;284.0325;429.084;593.152
20 Lysofungin C27H49O12P 10.141 595.289809 78.959;96.9695;152.9959;223.0017;241.0119;279.233;315.0489;415.2271;433.2367;595.2893

21 Ailanthoidol C19H18O5 6.318 361.082629 72.993;123.045;161.0246;179.0352;197.0457;360.08

22 3-Hydroxybenzoic acid C7H6O3 4.747 137.02448 65.0395;73.9387;79.8703;85.1056;93.0345;103.4346;107.8421;136.0167;136.0401;137.0244

23 Isosulochrin C17H16O7 4.903 377.088166 72.9931;123.0452;135.0452;149.061;179.0344;197.0462;333.0983;347.0778;359.0777;377.0887

24 3-Acetyldeoxynivalenol C17H22O7 4.842 356.169649 55.0549;83.0496;93.0577;119.0731;120.0809;136.0756;141.0908;220.1329;254.1382;356.1698
25 Neoeriocitrin C27H32O15 4.853 641.17603 125.0246;137.0246;149.0247;167.0352;192.0067;300.0277;315.0511;475.1461;501.1248;641.1762

26 Caffeic acid C9H8O4 5.112 179.03513 55.7567;59.0138;71.0138;75.0085;89.0244;107.0502;117.0344;134.0375;135.0452;179.0354

27 Clostebol acetate C21H29ClO3 0.786 401.130389 59.0138;71.0138;85.0294;89.0244;101.0244;113.0243;119.035;161.0458;179.0563;341.1096

28 D-Tryptophan C11H12N2O2 3.749 203.082668 59.0138;61.8589;72.0091;74.0248;116.0505;130.0665;142.0663;159.0934;186.0562;203.0828

29 Blumeatin B C17H16O7 5.122 377.088198 72.993;123.0451;133.0295;135.0452;137.0246;161.0246;179.0352;197.0458;359.0778;377.0876
30 Eugenol gentiobioside C22H32O12 5.527 487.181701 59.0138;71.0139;73.0295;89.0244;101.0243;113.0243;161.0457;221.0668;263.0771;445.1722

Fig. 1: Network pharmacology-related Venn diagrams, protein-
interaction network diagrams, and component-target
network diagrams

Table 3: Key Active Ingredients of Anchusa italica Retz. flowers

ID Metabolite Pubchem_ID

AIF-1 3-(3,4-Dihydroxyphenyl) lactic acid 439435

AIF-2 5-Hydroxy-7-methoxy-3-(4-hydroxybenzylidene)
chroman-4-one

15484394

AIF-3 Ailanthoidol 5316929

AIF-4 Caffeic acid 689043

AIF-5 Chrysosplenetin 5281608

AIF-6 Clostebol acetate 13327

AIF-7 D-Tryptophan 9060

AIF-8 Ethyl gallate 13250

The top 3 active ingredients in the network with the
highest degree values were 5-Hydroxy-7-methoxy-3-(4-
hydroxybenzylidene) chroman-4-one (degree: 14),
Chrysosplenetin (degree: 14), caffeic acid (degree: 12),
are the key active ingredients of the network.

http://192.168.1.15/data/13215/fig1.png
http://192.168.1.15/data/13215/fig1.png
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Results of GO and Kegg Enrichment Analysis

Go and Kegg analyses were conducted via the
microbiology platform, and the analysis module
integrated R language packages such as clusterProfiler,
pathview, etc. The data were screened with Pvalue ≤
0.05, and 1,022 BP entries were obtained, which were
mainly involved in cellular response to chemical stress,
phosphatidylinositol-mediated signaling, protein kinase
B signaling, response to oxidative stress and other
processes. A total of 68 CC entries were identified,
mainly involving cell basement membrane,
phosphatidylinositol 3-kinase complex, etc. 115 MF
entries were identified, mainly involving phosphatase
binding, phosphatidylinositol kinase activity, protein
phosphatase binding, etc., and the top 10 entries of each
item were imported into the microbiology platform for
visualization. The results of GO enrichment analysis are
shown in Figure 2. 143 pathways were identified by
KEGG screening, the top 20 pathways were enriched and
analyzed.

Fig. 2: Results of enrichment analysis (A: Biological Process;
B: Cellular Component; C: Molecular Function; D:
KEGG enrichment)

Docking of Molecules

The components with the top three-degree values
were molecularly docked with the proteins with the top
five-degree values, and the protein information is shown
in Table 4.
Table 4: Core protein-related information

ID Uniprot ID PDB ID Degree
STAT3 P40763 6NJS 42
SRC P12931 1FMK 41
EGFR P00533 1XKK 37
PIK3CA P42336 7L1C 34
AKT1 Q38998 5AAR 33

STAT3 is a transcription factor that plays a role in
myocardial protection and the regulation of myocardial
hypertrophy (Yang et al., 2020). It is also involved in a
number of cardiovascular physiological and pathological

processes, including cardiomyocyte necrosis, ischemia-
reperfusion injury, myocardial hypertrophy, and
myocardial fibrosis. SRC is a non-receptor-type protein
tyrosine kinase that is involved in a variety of cellular
processes, including cell proliferation, differentiation,
and migration. In the cardiovascular system, SRC has the
potential to be involved in the protective and injury
responses of cardiomyocytes (Hussain et al., 2023).
However, its specific role may depend on the specific
pathological conditions under consideration. Activation
of EGFR is associated with cardiomyocyte growth and
repair. Its role in cardiovascular disease may be double-
edged, and further in-depth studies are required to
elucidate its specific mechanisms (Masuda et al., 2023).
Aberrant activation or dysfunction of PIK3CA and
AKT1 could potentially contribute to the development of
cardiovascular disease. PIK3CA affects vascular health
through its role in cell signaling, whereas AKT1 is
directly involved in physiological and pathological
processes in the heart and blood vessels. These findings
suggest that PIK3CA and AKT1 may be potential targets
for the development of novel therapies for cardiovascular
disease (Fang et al., 2019). EGFR has been shown to
interact with a variety of molecules, including PIK3CA
and AKT1, among others. It is imperative to
acknowledge the potential for stimulation or inhibition of
these genes to exert a cascading effect on other enzyme
activities and molecular pathways. A notable example is
the direct phosphorylation of STAT proteins by EGFR,
which promotes their dimerization and nuclear
translocation, thereby regulating the expression of
immune-related genes, such as cytokines. The
aforementioned intervention has been demonstrated to
impede the process by which tumors evade the immune
system, thereby augmenting the sensitivity of the tumors
to chemotherapy (Logue & Morrison, 2012). The
docking results demonstrated that 5-Hydroxy-7-
methoxy-3-(4-hydroxybenzylidene) chroman-4-one and
caffeic acid (CA) exhibited the most favorable outcomes
in terms of their interaction with EGFR and SRC, with
docking scores of 99.0153 and 78.7345, respectively.
These findings are illustrated in Figures 3 and 4.

Fig. 3: Docking results for key compounds: 5-Hydroxy-7-
methoxy-3-(4-hydroxybenzylidene) chroman-4-one with
SRC (A: overall docking results, B: 2D and 3D display
of molecule-specific docking points)

http://192.168.1.15/data/13215/fig2.png
http://192.168.1.15/data/13215/fig2.png
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Fig. 4: Docking results for key compounds: Caffeic acid and
EGFR (A: overall docking results, B: 2D and 3D display
of molecule specific docking sites)

Fig. 5: Molecular docking results of Milrinone and
Levosimendan (A: SRC-Milrinone, B: SRC-
Levosimendan, C: EGFR-Milrinone, D: EGFR-
Levosimendan)

Milrinone is a pharmaceutical agent that functions by
inhibiting phosphodiesterase activity, resulting in
positive inotropic and vasodilatory effects (Huang et al.,
2011). It is a commonly prescribed medication for the
treatment of cardiovascular diseases, including heart
failure and acute heart failure. Levosimendan is another
pharmaceutical agent that is clinically indicated for the
treatment of heart failure. In order to perform a
comprehensive analysis, molecular docking was utilized
to study the interaction between two proteins, SRC and
EGFR (Antila et al., 2000). Negative controls were
implemented, and the scores of known cardiovascular
drugs that interacted with the proteins were compared. In
addition, benchmarking of inhibitors was performed. The
analysis of their similarities and differences in binding
affinity and binding modes can facilitate a more
comprehensive understanding of the pharmacological
properties of the research molecules and provide
significant references for subsequent drug development.
The results of the docking are shown in Figure 5. The
docking results demonstrated that the highest site-
specific docking scores of Milrinone with SRC and
EGFR were 77.7611 and 66.8557, respectively, which
were lower than the docking scores of 5-Hydroxy-7-
methoxy-3-(4-hydroxybenzylidene) chroman-4-one and
SRC (99.0153). The highest docking scores of
Levosimendan with SRC and EGFR were 101.7991 and

93.9514, respectively, which were higher than those of
the target components, suggesting further optimization of
the target components. This finding indicates that the
target component has the potential to be further
optimized as a cardiovascular drug.

Figure 6 illustrates the extent to which the six distinct
docking groups exert their influence on the target scoring
system. The results indicate that Group A exhibited the
highest scores, demonstrating an extremely significant
difference (***, p < 0.0001), suggesting a substantial
enhancement in the model.Group E demonstrated a
highly significant difference (**, p < 0.01), while Group
B exhibited statistically significant differences (*, p <
0.05). In contrast, the difference between groups C and D
was not statistically significant (ns, p ≥ 0.05). To a
certain extent, these findings suggest that the docking
effect of the target component with the inhibitor is
difficult and unsatisfactory. All data are expressed as
mean ± standard deviation (mean ± SD).The significance
level was adjusted to account for multiple comparisons
using one-way ANOVA, followed by multiple
comparisons.

Fig. 6: Molecular docking significance analysis (A: 5-
Hydroxy-7-methoxy-3-(4-hydroxybenzylidene)
chroman-4-one-SRC); B:Caffeic acid-EGFR; C: SRC-
Milrinone; D: EGFR-Milrinone; E: SRC-Levosimendan;
F: EGFR-Levosimendan

Molecular Dynamics of Markers for Anchusa
italica Retz. flowers

The root-mean-square deviation (RMSD) from the
molecular dynamics (MD) simulation serves as a metric
for understanding the motion process of the complex. A
higher RMSD, coupled with pronounced fluctuations,
signifies intense movement, while lower values and
steady trends reflect smoother motion. As demonstrated
in Figure 7, the STING/Elafibranor complex converges
after 40 ns of simulation and fluctuates stably within the
range of 3-4 Å. This finding indicates that the small

http://192.168.1.15/data/13215/fig4.jpeg
http://192.168.1.15/data/13215/fig4.jpeg
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molecule exhibits a high degree of binding affinity and
stability to the protein.The 5-Hydroxy-7-methoxy-3-(4-
hydroxybenzylidene)chroman-4-one consent term is HY-
N8673 in the Pubchem database.

Fig. 7: Root mean square deviation (RMSD) of complexes over
time during molecular dynamics simulations

RMSF can respond to the flexibility of the protein
during molecular dynamics simulation. Usually, after the
drug binds to the protein, the flexibility of the protein
decreases, which leads to the stabilisation of the protein
and the effect of enzyme activation. As shown in the
Figure 8, the RMSF of the protein is within 2Å except
for the local region of the protein, which indicates that
the main structure of the protein is very rigid, and the
effect may be achieved by binding the small molecule
Elafibranor.

Fig. 8: Root-mean-square fluctuations (RMSF) calculated
based on molecular dynamics simulation trajectories

MM-GBSA Binding Free Energy Calculations

The trajectory of molecular dynamics simulation was
utilised to calculate the binding energies using the MM-
GBSA method, a technique that has been demonstrated
to offer enhanced accuracy in reflecting the binding
effects of small molecules and target proteins.

As demonstrated in Table 5, the binding energies of
EGFR_Caffeic acid and SRC_HY-N8673 were
determined to be -32.80±1.40 and -17.40±0.37 kcal/mol,
respectively. The negative values thus indicate that these
two molecules have binding affinity to the target protein,
and lower values indicate stronger binding. The
calculations demonstrate that both molecules exhibit a
high degree of binding affinity. Energy decomposition

analysis reveals that the primary contributing factor to
the binding of EGFR_Caffeic acid, SRC_HY-N8673 is
van der Waals energy, followed by electrostatic energy,
and then non-polar solvation free energy.
Table 5: Binding free energies and energy components predicted

by MM/GBSA ( kcal/mol)

System name EGFR_Caffeic acid SRC_HY-N8673
ΔEvdw -20.04±2.04 -28.45±1.73
ΔEelec -6.39±6.32 -9.34±2.47
ΔGGB -2.45±5.75 24.01±3.48
ΔGSA -3.90±0.19 -3.62±0.24
ΔGbind -32.80±1.40 -17.40±0.37

Using the MM-GBSA energy disaggregation
technique, we identified the top 10 amino acids crucial
for the binding of EGFR to Caffeic acid, and were THR
854, LYS 745, PHE 856, LEU 858, ASP 855, MET 766,
LEU 861, LEU 788, LEU 777, and THR 79. For
SRC_HYN8673, the top 10 contributing amino acids are
LEU 89, GLU 147, GLY 105, LYS 104, VAL 87, ALA
88, THR 247, TYR 90, GLU 106, and TYR 149,
respectively. It can thus be concluded that these amino
acids are critical. As shown in Figure 9.

Fig. 9: The Ten Key Amino Acids Critical for Small Molecule
and Protein Binding

Fig. 10: Changes in the number of hydrogen bonds between
small molecules and proteins during molecular
dynamics simulations

Hydrogen bonding interaction is one of the strongest
non-covalent interactions. In this study, the number of
hydrogen bonds formed between ligand molecules and
proteins during 100ns molecular dynamics simulations
was monitored. As demonstrated in Figure 10, the
number of hydrogen bonds formed by EGFR_Caffeic
acid and SRC_HY-N8673 during the simulation was
distributed between 0-7 and 0-5, with EGFR_Caffeic

http://192.168.1.15/data/13215/fig7.png
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acid concentrating on 3-4 most of the time, and
SRC_HY-N8673 concentrating on 0 most of the time.
This observation suggests that hydrogen bonding
interactions play a significant role in the stable binding
of EGFR_Caffeic acid and SRC_HY-N8673. It appears
that hydrogen bonding strongly influences the binding
stability of EGFR_Caffeic acid, while its effect on
SRC_HY-N8673 binding is weaker.

ADMET Prediction of Anchusa italica Retz.
Flowers

Lipinski's 'Rule of Five' can be used to describe the
drug-like properties of small molecules associated with
oral bioavailability characteristics, including log P (less
than 5), molecular weight (less than 500), number of
hydrogen bond donors (less than or equal to 5) and
number of acceptors (less than or equal to 10). The
results show that both molecules fulfil all the criteria of
the Rule of Five. The rosemarinic acid molecule has a
relatively large number of eight hydrogen-bonded
receptors and low drug similarity.In addition to the drug-
like properties, the ADMET properties of the molecules
were predicted. The Caco-2 values for molecules HY-
N8673, caffeic acid, and rosmarinic acid were -4.917,
-4.94, and -6.513, respectively, suggesting that HY-
N8673 and caffeic acid have higher permeability to
membranes, while rosmarinic acid has lower
permeability. Additionally, the Pgp-substrate probability
was all less than 0.1, indicating that all three molecules
have a low probability of being exocytosed after entering
the cell.

The plasma protein binding of HY-N8673, caffeic
acid and rosmarinic acid was determined to be 95.41%,
64.67% and 77.28%, respectively. This suggests that HY-
N8673 exhibits high plasma protein binding, while
caffeic acid and rosmarinic acid demonstrate lower
binding affinities. Furthermore, the volume distribution
of the three molecules was found to be minimal,
suggesting that their distribution characteristics in vivo
are inadequate , thus preventing the molecules from
crossing the blood-brain barrier.The half-life of the HY-
N8673 molecule was found to be more segmented at
0.832 h, that of caffeic acid at 2.07 h, and that of
rosmarinic acid at 1.906 h.

Furthermore, the clearance rates of the two drugs,
HY-N8673, and rosmarinic acid, were 7.495, 14.358, and
13.238 mL/min/kg, respectively. These clearance rates
are moderate.

It has been shown that rosmarinic acid with more
favorable ADMET prediction can be used as a potent
antiviral source for the development of drugs for the
treatment of SARS-CoV-2 infection (Patel et al., 2023).
Caffeic acid is also more abundantly studied, with
studies of ADMET prediction and molecular docking of
caffeic acid showing the ability to inhibit HMGCR,
which provides cholesterol-lowering potential (Heera et
al., 2022). Finally, a prediction of the toxicity of the

molecules was made. The prediction indicated that HY-
N8673, caffeic acid, and rosmarinic acid did not
demonstrate hERG toxicity; HY-N8673 and rosmarinic
acid may exhibit Ames mutagenesis toxicity, while
caffeic acid did not manifest Ames mutagenesis toxicity.

Discussion
A network pharmacological study was conducted,

utilising the UPLC-Q-Exactive Orbitrap-MS data. The
construction of the 'active ingredient-target gene'
network resulted in the identification of 28 core targets,
which were subjected to further analysis.The primary
markers identified by web-based pharmacological
screening included HY-N8673 and caffeic acid, among
other compounds. Prior studies utilising UPLC-Q-
Exactive Orbitrap-MS analysis have demonstrated that
the relative abundance of rosmarinic acid in Airfs can
reach up to 39.8511%, with notable concentrations also
observed for CA and 3,4-Dihydroxyphenyllactic acid
(Wang et al., 2024). These findings suggest that
rosmarinic acid is a natural phenolic acid derived from
the esterification of CA and 3,4-Dihydroxyphenyllactic
acid (Noor et al., 2022). The structural relationship
between the two compounds enables rosemarinic acid to
inherit a number of the bioactive properties of caffeic
acid, including antioxidant, anti-inflammatory and
antibacterial properties (Takeda et al., 2002). This
partially elucidates the indirect role played by this
substance, rosemarinic acid, in the prevention of
cardiovascular diseases. Research has demonstrated that
rosmarinic acid can form complexes with cyclodextrin
(CD) derivatives, thereby enhancing its solubility and
permeability. For instance, the complex formed with
hydroxypropyl-γ-CD (HP-γ-CD) increased the
permeability from 6.901 × 10-7 cm/s to 1.085 × 10-6
cm/s at pH 4.5, which approaches the optimal
permeability level. Furthermore, the antioxidant and
enzyme inhibitory activities were enhanced. The
therapeutic potential of rosemarinic acid can be enhanced
by increasing the permeability (Woottisin et al., 2022).
Therefore, molecular dynamics simulation was utilised
to calculate the binding effect of caffeic acid on target
proteins. Subsequently, ADMET was employed to
predict its molecular properties and molecular toxicity.
The results demonstrated that rosemarinic acid analogues
exhibited suboptimal drug properties and membrane
permeability, while caffeic acid exhibited favourable
drug-forming and absorption properties, a low
probability of drug-drug interactions, and an absence of
Ames mutagenesis and hERG toxicity (Banerjee & Roy,
2023; Imray & Macphee, 1981). However, it is worth
noting that HY-N8673 may be an inhibitor of several
metabolic enzymes and there is a risk of drug-drug
interactions. HY-N8673 is a member of the flavonoid
family, exhibiting notable biological activities, including
antioxidant, anti-inflammatory, and anticancer properties.
It has been postulated that the compound's ability to bind
to metabolic enzymes may result in the inhibition of key
enzymes, thereby impacting metabolic pathways. For
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instance, the potential for COX-2 (cyclooxygenase-2)
inhibition has been suggested, contributing to its anti-
inflammatory effects (Li et al., 2024).

Despite the notable efficacy of existing therapeutic
agents in the treatment of cardiovascular disease, such as
β-blockers, ACE inhibitors, and calcium channel
blockers, these medications are limited in their capacity
to address the multifaceted pathological mechanisms
underlying the condition. They are typically designed to
target a single pathway or mechanism, which often
results in inadequate therapeutic outcomes and limited
improvements in patient prognosis.

Conclusion
In this study, we integrated network pharmacology,

molecular docking, and ADMET prediction to screen
multiple molecular targets (e.g., STAT3, EGFR,
PIK3CA, etc.) associated with cardiovascular diseases.
These targets are implicated in various pathological
processes, including inflammation, fibrosis, and
apoptosis. The utilization of multi-target regulation holds
great promise in comprehensively intervening in the
complex pathological mechanisms underlying
cardiovascular diseases. A comparison with existing
therapeutic modalities reveals that the molecular targets
and potential drugs identified in this study may offer
enhanced precision and the capacity to target specific
pathological processes, thereby enhancing therapeutic
efficacy and reducing adverse effects.
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