References
Ali, A. F., Faizal, M., & Majumder, B. (2015). Absence of an effective Horizon for black holes in Gravity’s Rainbow.
Europhysics Letters,
109(2), 20001.
https://doi.org/10.1209/0295-5075/109/20001
Ali, A. F., & Khalil, M. M. (2015). A proposal for testing gravity’s rainbow.
Europhysics Letters,
110(2), 20009.
https://doi.org/10.1209/0295-5075/110/20009
Amelino-Camelia, G., Ellis, J., Mavromatos, N. E., & Nanopoulos, D. V. (1997). Distance Measurement and Wave Dispersion in a Liouville-String Approach to Quantum Gravity.
International Journal of Modern Physics A,
12(3), 607–623.
https://doi.org/10.1142/s0217751x97000566
Amelino-Camelia, G., Ellis, J., Mavromatos, N. E., Nanopoulos, D. V., & Sarkar, S. (1998). Tests of quantum gravity from observations of γ-ray bursts.
Nature,
393, 763–765.
https://doi.org/10.1038/31647
Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., & Smolin, L. (2011). Principle of relative locality.
Physical Review D,
84(8), 084010.
https://doi.org/10.1103/physrevd.84.084010
Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., & Dvali, G. (1998). New dimensions at a millimeter to a fermi and superstrings at a TeV.
Physics Letters B,
436(3–4), 257–263.
https://doi.org/10.1016/s0370-2693(98)00860-0
Awad, A., Ali, A. F., & Majumder, B. (2013). Nonsingular rainbow universes.
Journal of Cosmology and Astroparticle Physics,
2013(10), 052.
https://doi.org/10.1088/1475-7516/2013/10/052
Banks, T., & Fischler, W. (1999). A model for high energy scattering in quantum gravity.
ArXiv, 9906038.
https://doi.org/10.48550/arXiv.hep-th/9906038
Barrow, J. D., & Magueijo, J. (2013). Intermediate inflation from rainbow gravity.
Physical Review D,
88(10), 103525.
https://doi.org/10.1103/physrevd.88.103525
Chatrchyan, S., Khachatryan, V., Sirunyan, A. M., Tumasyan, A., Adam, W., Aguilo, E., & Stoykova, S. (2012). Search for dark matter and large extra dimensions in monojet events in pp collisions at √s=7TeV.
Journal of High Energy Physics,
2012(9), 1–37.
https://doi.org/10.1007/JHEP09(2012)094
Chatrchyan, S., Lehti, S., & Hindrichs, O. (2012). Search for microscopic black holes in pp collisions at $\sqrt {s} = {\text{7TeV}}$.
Journal of High Energy Physics,
2012(4), 1–36.
https://doi.org/10.1007/JHEP04(2012)061
da Rocha, R., & Coimbra-Araújo, C. H. (2006). Extra dimensions at the CERN LHC via mini-black holes: Effective Kerr-Newman brane-world effects.
Physical Review D,
74(5), 055006.
https://doi.org/10.1103/physrevd.74.055006
Dimopoulos, S., & Landsberg, G. (2001). Black Holes at the Large Hadron Collider.
Physical Review Letters,
87(16), 161602.
https://doi.org/10.1103/physrevlett.87.161602
Emparan, R., Horowitz, G. T., & Myers, R. C. (2000). Black Holes Radiate Mainly on the Brane.
Physical Review Letters,
85(3), 499.
https://doi.org/10.1103/physrevlett.85.499
Feng, Z.-W., & Yang, S.-Z. (2018). Rainbow Gravity Corrections to the Entropic Force.
Advances in High Energy Physics,
2018, 1–8.
https://doi.org/10.1155/2018/5968284
Galán, P., & Marugán, G. A. M. (2004). Quantum time uncertainty in a gravity’s rainbow formalism.
Physical Review D,
70(12), 124003.
https://doi.org/10.1103/physrevd.70.124003
Garattini, R. (2013). Distorting general relativity: gravity’s rainbow and f(R) theories at work.
Journal of Cosmology and Astroparticle Physics,
2013(06), 017.
https://doi.org/10.1088/1475-7516/2013/06/017
Garattini, R., & Majumder, B. (2014a). Electric charges and magnetic monopoles in Gravity’s Rainbow.
Nuclear Physics B,
883, 598–614.
https://doi.org/10.1016/j.nuclphysb.2014.04.005
Garattini, R., & Majumder, B. (2014b). Naked singularities are not singular in distorted gravity.
Nuclear Physics B,
884, 125–141.
https://doi.org/10.1016/j.nuclphysb.2014.04.014
Garattini, R., & Mandanici, G. (2012). Particle propagation and effective space-time in gravity’s rainbow.
Physical Review D,
85(2), 023507.
https://doi.org/10.1103/physrevd.85.023507
Giddings, S. B., & Thomas, S. (2002). High energy colliders as black hole factories: The end of short distance physics.
Physical Review D,
65(5), 056010.
https://doi.org/10.1103/physrevd.65.056010
Gim, Y., & Kim, W. (2014). Thermodynamic phase transition in the rainbow Schwarzschild black hole.
Journal of Cosmology and Astroparticle Physics,
2014(10), 003.
https://doi.org/10.1088/1475-7516/2014/10/003
Hackett, J. (2006). Asymptotic flatness in rainbow gravity.
Classical and Quantum Gravity,
23(11), 3833.
https://doi.org/10.1088/0264-9381/23/11/010
Hendi, S. H., Eslam Panah, B., Panahiyan, S., & Momennia, M. (2016). Gravity’s Rainbow and Its Einstein Counterpart.
Advances in High Energy Physics,
2016, 1–21.
https://doi.org/10.1155/2016/9813582
Hessaby, M. (1947). Continuous Particles.
Proceedings of the National Academy of Sciences,
33(6), 189–194.
https://doi.org/10.1073/pnas.33.6.189
Hessaby, M. (1948). Theoretical Evidence for the Existence of a Light-Charged Particle of Mass Greater than That of the Electron.
Physical Review,
73(9), 1128.
https://doi.org/10.1103/physrev.73.1128
Leiva, C., Saavedra, J., & Villanueva, J. (2009). Geodesic structure of the Schwarzschild black hole in rainbow gravity.
Modern Physics Letters A,
24(18), 1443–1451.
https://doi.org/10.1142/s0217732309029983
Li, H., Ling, Y., & Han, X. (2009). Modified (A)dS Schwarzschild black holes in rainbow spacetime.
Classical and Quantum Gravity,
26(6), 065004.
https://doi.org/10.1088/0264-9381/26/6/065004