Research Article Open Access

Continuity Function on Partial Metric Space

Fitri Aryani1, Hafiz Mahmud1, Corry Corazon Marzuki1, Mohammad Soleh1, Rado Yendra1 and Ahmad Fudholi2
  • 1 Universitas Islam Negeri Sultan SyarifKasim (UIN Suska) 28293, Indonesia
  • 2 Universiti Kebangsaan Malaysia, Malaysia

Abstract

Ordered pairs form of a metric space (S,d), where d is the metric on a nonempty set S. Concept of partial metric space is a minimal generalization of a metric space where each xS,d(x,x) does not need to be zero, in other terms is known as non-self-distance. Axiom obtained from the generalization is following properties p(x,x)≤p(x,y) for every x,yS. The results of this paper are few studies in the form of definitions and theorems concerning continuity function on partial metric space.

Journal of Mathematics and Statistics
Volume 12 No. 4, 2016, 271-276

DOI: https://doi.org/10.3844/jmssp.2016.271.276

Submitted On: 27 August 2016 Published On: 13 November 2016

How to Cite: Aryani, F., Mahmud, H., Marzuki, C. C., Soleh, M., Yendra, R. & Fudholi, A. (2016). Continuity Function on Partial Metric Space. Journal of Mathematics and Statistics, 12(4), 271-276. https://doi.org/10.3844/jmssp.2016.271.276

  • 3,624 Views
  • 2,416 Downloads
  • 2 Citations

Download

Keywords

  • Lipschitz Function
  • Metric Space
  • Partial Metric Space
  • Uniformly Continuous