Anaerobic Transformation of Biodegradable Waste; Simultaneous Production of Energy and Fertilizer
- 1 University Teknologi PETRONAS, Malaysia
- 2 University Kebangsaan Malaysia, Malaysia
Abstract
Almost 40% of the total waste produced in developing countries is made of biodegradable waste. Typically the waste including the biodegradable portion is transported to the so-called landfills without any segregation process, treatment and utilization in advance. Although mitigation practices such as source reduction, reuse and recycle are essential and required to be practiced in any integrated waste management plan, one of the best approaches to reduce the volume of the waste goes to the landfills is biological transformation. Biological transformation of waste occurs in two major categories; aerobic and anaerobic biodegradation. Anaerobic transformation of biodegradable waste produces methane gas (CH4) which is the valuable source of energy. At first the gas has some impurities such as CO2 and other trace materials which are required to be removed from the main stream before utilization. In addition to methane, the byproduct of the anaerobic process is slurry that can be used as soil amendment agent. It contains several vital elements such as nitrogen, phosphorous and potassium (N, P and K) for crops. The quality of slurry is required to be assessed since it affects the soil conditions and plants growth. In this study the importance of biological transformation in waste management systems has been discussed. Different methods and significant factors in methane production via anaerobic digestion have been highlighted and finally, the criteria of produced fertilizer have been elaborated.
DOI: https://doi.org/10.3844/ajessp.2013.113.119
Copyright: © 2013 Amirhossein Malakahmad, Syazana Nasrudin, Noor Ezlin Ahmad Basri and Shahrom Md Zain. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 3,613 Views
- 4,986 Downloads
- 5 Citations
Download
Keywords
- Methane
- Slurry Quality Control
- Integrated Waste Management