Biological Activity of Methyl tert-butyl Ether in Relation to Soil Microorganisms has a Negative Environmental Impact
Abstract
Fuel oxygenates are added to gasoline to enhance combustion efficiency of automobiles and reduce air pollution. Methyl tert-butyl ether (MTBE) is the most commonly used oxygenate because of its low cost, high-octane level and ease of blending with gasoline. However, due to its water solubility, high mobility and low biodegradability it leaches in soil subsurface at the speed of groundwater. Amending gasoline with MTBE has made a widespread contamination of groundwater, surface waters in coastal environments and at low levels in well water. Although current public concern about MTBE contamination is widely discussed, but its adverse effects on soil micro flora is not yet understood. Soil Streptomycetes are beneficial to soil productivity and are of the major contributors to the biological buffering of soils having antagonistic activity against wide spectrum of pathogenic bacteria and fungi. Streptomyceticidal activity of Methyl tert-butyl ether (MTBE) is being reported here. Adverse effect of MTBE against four soil-inhabitant Streptomyces spp. isolates and two plant root-pathogens was investigated. To elucidate antimicrobial activity of MTBE, it was tested against four soil isolates of Streptomyces; a plant bacterial-pathogen, Erwinia carotovora and a plant root fungal-pathogen, Fusarium solani. MTBE did not reveal any growth inhibitory-activity against E. carotovora and F. solani but showed strong inhibitory effect against Streptomyces spp. isolates. The Minimum Inhibitory Concentration (MIC) was 1/800 of the original MTBE. Fuel leaks and spills can adversely suppress or eliminate the Streptomyces role in the soil causing alteration in the balance of soil micro flora. This change will lead to domination of microorganisms with adverse biological or ecological effects. Fortunately, major oil companies have decided to phase out MTBE from automobile fuels because of its adverse effect on environment and human health.
DOI: https://doi.org/10.3844/ajessp.2005.106.109
Copyright: © 2005 Gholam H.S. Bonjar. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 3,255 Views
- 3,913 Downloads
- 2 Citations
Download
Keywords
- Soil Micro Flora
- Soil Contamination
- MTBE
- Antagonism